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simplified model of quantum field theory in which space is taken to be
one-dimensional, and also in ‘string’ models of elementary particles,
where the particles are represented by one-dimensional extended objects.
Some of the important facts in the representation theory of loop groups
‘ were first discovered by physicists, and in this book our whole approach
to the subject has been coloured by quantum field theory.

Although it is intrinsically a very simple and patural group we know
surprisingly little about Map(X; G)—particularly about its representa-
tions—except when X is a circle. In that case the situation is enormously
easier, and has been very fully worked out. Loop groups turn out to
behave like compact Lie groups to a quite remarkable extent. The aim of
This book is to give a general exposition of what is known about them,
concentrating on the global and analytical aspects of the theory rather
than the algebraic ones. This has not been the usual approach to the
subject, and deserves some comment. Usually loop._groups-have .been
approached by way of their Lie algebras, which are (essentially) examples
of what aré cafled Kac-Moody algebras. These are the Lie algebras
“which can be described in térms of generators and relations in the same
i way as the finite dimensional semisimple algebras. The classical theory of
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Cartan and Killing shows how to associate an algebra to a finite integer
matrix satisfying certain ¢ COI]dlthllS which include positive definiteness.
Omitting the positivity c« condition leads to the Kac—Moody algebras. If
one merely weakens ‘positive-definite’ to ‘positive-semidefinite™ “one

obtains a_subclass of thé Kac=Moody algebras which are “ustally called

affine algebras These are (up to a one-dimensional central extension) the

Lie algebras of loop groups. and of the twisted versions of. Joop_groups
which we shall describe presently For Kac-Moody algebras which are
not affife ng¢~ description_is known other than the one in_terms of
generators and _relations, and it is a mystery in what contexts the
corresponding groups may arise. They are certainly not of the form
Map(X; G) with dim(X)>1. On the other hand when the theory of
Kac-Moody algebras is developed algebraically it does not make very
much difference—for many purposes at least—whether or not the algebra
is affine.

A considerable stimulus was given to the theory of general Kac-
Moody algebras by the discovery by Macdonald [107] in 1972 of a class of
formal power series identities analogous to the Weyl denominator
formula, but reducing in particular cases to such results as the Jacobi
triple product identity. Kac pointed out that Macdonald’s identities
resulted immediately from a generalization of the Weyl character formula
to Kac-Moody algebras, and the character formula has been much
studied since then from various points of view. The characters turn out to
be modular functions in a certain sense, though why that should be true
remains another of the mysteries of the subject.

It is perfectly reasonable to conclude from all this that the groups we
are studying are interesting not because they are loop groups but because
they possess a certain very special combinatorial structure. From that
point of view this book, which ignores all Kac-Moody algebras except
the ‘affine’ ones, must seem rather perverse. The case for our approach is
partly aesthetic. In studying loop groups we are pursuing geometry and
analysis rather than algebra and combinatorics, and for some people the
geometrical picture is more illuminating and attractive. On the other
hand, while acknowledging that it would be very rash and optimistic to
think that the theory of loop groups will tell us anything directly about
more general groups of the form Map(X; ), it is plain that the methods
and conmstructions we use are very basic ones and belong to the
mainstrecam of mathematics, especially in connection with quantum field

theory. It does not seem unreasonable to think they may find application
elsewhere.

The first main feature of our approaéh is to think of loop groups as
groups of operators in Hilbert space. We regard an element of LG as a

multiplication operator in the Hilbert space H = L*(S'; V) of L? func-
tions on the circle with values in some finite dimensional representation V
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of G. We decompose H as H,,. © H.., where H,, (resp. H..) consists of the
functions whose negative (resp. positive) Fourier coefficients vanish, and
we study the way In which the multiplication operators behave with
respect to this decomposition. The idea here comes from quantum field
theory, where H is the space of solutions of a relativistic wave equation
and H, and H_ are the solutions of positive and negative energy: we
examine how an operator in H moves particles from states of positive
energy to ones of negative energy and vice versa.

Our second main techmque is the geometrical study of the fundamen-
tal homOgeneous space’ X of LG. This is LG/G, where G i Is reoarded as

the space QG of based loops in G It has two crucxal propemes Fu'st itis
a comﬁx Tanitold, for it can be identified with the homogeneous space
EGo/L¥ G, where Gy is the complexification of G and L* G, consists of
the loops which are boundary values of holomorphic maps

{zeC:|z| <1} — Ge.
The second property | is that X has a stra; stratiﬁcation by complex manifolds

isms S$'-—» G. This is predsely analocousu 10 the subdmswn of a
Grassmann manifold into its Schubert cells, and also to the Bruhat
decomposition of a“complex semisimple group. Both propertles tocether
amount £ a restatement of the Birkhoff factorization theorem of 1909,
which asserts that a loop ¥ in G can be factorized y=y_ . A. y.., where
¥+ are loops which extend holomorphically inside (resp. outside) the unit
circle, and A:S'— G is a homomorphism.

A more geometrical way of thinking of the stratification of X' = QG is

in terms of the energy function &:Q2G— R, defined by

= [ Ir@lae

The critical points of % are the hormomorphisms y:5'— G, and they fall
into connected components according to their comjugacy class. The
sttatum corresponding to a conjugacy class consists of all loops which
flow to it under the downwards gradient flow of €.

Putting the two ideas together, we observe that because LG acts on the
Hilbert space H it acts on the Grassmann manifold of closed subspaces of
H. The orbit of the subspace H, under this action is a copy of the
homogeneous space X. We shall constantly use this embedding of X' as a
subvariety of the Grassmanmnian.

The importance of the geometry of X in the theory of loop groups is
partly as a tool in proving structural theorems such as the Birkhoff
factorization theorem itself, but more fundamentally is because the
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irreducible representations of LG arise as spaces of holomorphic sections
of lific bunidles on X. (StHictly speaking, we need here the closely related
space Y = LG/T, where T is a maximal torus of G.)

The present book falls roughly into two halves, the first eight chapters
being concerned with the groups and the rest with their representations.
For an introduction to the representation theory we refer the reader to
the beginning of Chapter 9. Indeed one can begin reading the book
there, referring back to the earlier chapters only when they are needed:
Chapter 8 in particular goes into rather more detail than many readers
will find interesting.

We originally intended to devote part of the book to the applications of
loop groups, but in the end we have not felt competent or energetic
enough to do so. Loop groups arise in two dimensional quantum field
theory, as has already been mentioned; more recently they have found
extensive applications in connection with so-called ‘completely integrable
systems’ of partial differential equations. The more combinatorial aspects
of the theory arise in connection with the classification of certain kinds of
singularities in algebraic geometry—a generalization of the classical
correspondence between simple singularities and finite dimensional
simple Lie algebras ([22], [140], [105]). There is the same kind of
correspondence in the classification of systems of subspaces in linear
algebra, generalizing Gabriel's theorem [53]. Finally, the character
formula for representations of loop groups can be used as a fruitful
source of combinatorial identities, as was originally pointed out by
Macdonald [107].

Of all these applications only the first two, to quantum field theory and
to differential equations, appear to involve the groups themselves rather
than just their combinatorial presentation. The quantum field theory
applications are hard to survey, as they consist of scattered instances of a
number of different types. We refer the interested reader to Jacob [80],
Dolan [38], Chau ez al. [26], Witten [155]. The application to differential
equations is more straightforward. It was first worked out by Sato [35],
[126], although the ideas had been implicit in earlier writings on the
subject (cf. especially Zakharov and Shabat [156]). There are now a
number of accounts of the subject in the literature. For an expository
account from the point of view of the present book we refer to [132). The
other applications are not really within our terms of reference, but we
refer to Slodowy [141] for the classification of singularities, and to [85] for
the generalizations of Gabriel’s theory (sometimes called the theory of
‘quivers’). The most extensive work in connection with combinatorial
identities has been done by Lepowsky (cf. [43], [101], [103]).

Apart from applications in the strict sense we should mention one or
two related matters. The central idea in the theory is the Birkhoff
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factorization theorem, which was found in the course of classifying
singularities of ordinary differential equations (see Section 8.2 below).
The related Riemann—Hilbert problem of finding a meromorphic func-
tion with prescribed monodromies about prescribed poles has recently
been given a constructive solution using the kinds of method described in
this book—notably ‘vertex operators’. (Cf. [127].) In a completely
different direction there is the recent work of Fremkel, Lepowsky, and
Meurman [30] in connection with the ‘monster’ group in which once
again the central point is the use of vertex operators. And vertex
operators ar¢ also responsible for the boson-fermion correspondence
which is important in two-dimensional guantum field theory (cf. Coleman
[29], Mandelstam {111], Frenkel [45], and also Section 10.7 below).

The aim of this book is expository, and we have made no attempt to
give a historical account of the evolution of the ideas and theorems we
describe. It would in any case be rather hard to do so objectively, for
many of the ideas have been worked out by a number of people
independently in somewhat different contexts, and have often remained
for some time ‘well known to experts’ without being written down. The
best course for us seems to be to list a fairly representative sample of the
different approaches to the subject. The definitive treatment of the Lie
algebra theory is to be found in Kac’s book [86], which contains an
extensive list of references. Another algebraic approach is due to
Garland and Lepowsky [54], [55], [36]. Goodman and Wallach [64] have
approached the subject from the point of view of Banach Lie groups.
Frenkel’s paper [47] treats the character theory in terms of Wiener
integration on orbits. We should also mention the important papers [49],
[87], [100], and [88].

The representation theory of loop groups is closely related to that of
the group Diff(S") of diffeomorphisms. of the circle;-which acts as-a group
orientation preserving diffeomorphisms—acts projectively on all the
representations of loop groups which we consider, and all the known
representations of Diff"(S') have been constructed in this way-—cf. [131],
[64], [61]. We shall not study Diff*(S') systematically in this book, but
we shall prove the crucial intertwining property.

We have already mentioned twisted loop groups. If « is an automorph-
ism of & then the corresponding twisted loop group L,,,G consists of the
maps v:[R — G such that

7(8 +27) = a(y(6))

for all 8. The theory of loop groups extends essentially without change to
the twisted groups. We have made a few sporadic remarks about the

_—
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twisted case, but for the most part it presents nothing new, and we have
not pursued it.

Let us now outline the contents of the book systematically.

Chapter 2 is a survey of the results about finite dimensional Lie groups
which we shall use. It is included simply to make the book more
self-contained, and—we hope—more accessible to readers with a variety
of different backgrounds.

Chapter 3 introduces infinite dimensional Lie groups, and considers
what can be said about loop groups—and some related groups—ifrom that
point of view, without entering into their more specific and characteristic
properties.

Chapter 4, on the other hand, is devoted to one of the most important
and distinctive features of loop groups, the existence of a natural class of
central extensions by the circle-group T, or equivalently the fact that loop
groups admit non-trivial projective representations. The extended loop
groups play a bigger role in the theory than the loop groups themselves,
and all the representations we shall construct are projective ones. In this
chapter the extensions are constructed by differential-geometric meth-
ods. In fact we find all possible extensions of the group Map(X; G) for
any compact manifold X, though the result shows that only the case
X =§" is important. We notice that the extensions exist only for groups
of smooth (rather than continuous) loops.

Chapter 5 is a brief account of the theory of the Lie algebras of loop
groups, about which we have said only what is needed for our purposes.
We do give the definition of a Kac-Moody algebra, and explain how loop
groups provide examples of them; but we do not mention the question of
their classification.

Chapter 6 considers loop groups as groups of operators in Hilbert
space. We introduce the restricted general linear group GL..(H) of a
Hilbert space H with a polarization, i.e. a decomposition H=H, ® H_.
This group, which consists of the invertible operators in H whose
off-diagonal blocks H,— Hs are Hilbert-Schmidt, is central throughout
the rest of the book. If H, @ H_ is the space of positive and negative
energy solutions of a relativistic wave equation then the elements of
GL..(H) are precisely the transformations of H which are ‘implement-
able’ on the corresponding Fock space. (Cf. Shale [136].)

The group GL...{H) has a basic central extension by C* from which all
the central extensions of loop groups are derived. Roughly speaking, the
extension measures the extent to which the process of associating to an
operator in H its H,— H, component fails to be a homomorphism. We
believe it becomes clear at this point that the direction to be followed if
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one wants to study the group Map(X; G) when dim(X)>1 is the theory
of Connes [32]. We have said a little about that in Section 6.10.

Chapter 7 introduces the Grassmannian Gr(H) of a polarized Hilbert
space, another fundamental concept for our approach. Its most important
property is that one can define a determinant line bundle on it. This is a
holomorphic bundle which is homogeneous under the central extension
of GL(H): in fact it provides a definition of the central extension. The
Grassmannian has a decomposition into Schubert varieties exactly like a
finite dimensional Grassmannian: more precisely, it has a stratification by
manifolds of finite codimension, and a dual decomposition into finjte
dimensional cells. !

Chapter 8 is devoted to the geometry of the fundamental homogeneous
space X of LG, and the theorems about the structure of L& which are
obtained from it. Our basic tool, as we have said, is the embedding of X
in the Grassmannian Gr(H), from which we see that X is a complex
Kihler manifold. We derive the decomposition of X—and hence in
particular the Birkhoff factorization thecrems—from the Schubert de-
composition of Gr(H). (We believe that this geometric point of view is
more perspicuous than the usual treatment of Birkhoff's theorem by
integral equations [63].) Our procedure works in the first instance for the
loop group of U,, and the general case is derived from that. Having
obtained the decomposition by these methods we can then (in Section
8.9) consider the situation anew in the light of the gradient flow of the
energy function. We show that the decomposition is precisely the Morse
decomposition of X corresponding to the energy. In particular we obtain
a very complete and appealing description of the energy flow (Proposi-
tion (8.9.8)).

In Section 8.10 we consider some of the properties X possesses simply
as a complex manifold. Although it is an infinite dimensional homoge-
neous space it has many ‘finite dimensional’ properties. Not only is every
holomorphic function on it constant on each connected component, but
each connected component of the space of (based) maps from any
compact complex manifold to X is of finite dimension. Our treatment
here follows Atiyah {3]-

Besides the homogeneous space X = QG of LG we shall see that there
is a similar space X, associated to any closed Riemann surface M. It has
the homotopy type of the space of principal G-bundles on M.

The relationship between QG and the Grassmannian was first observed
in ‘scattering theory’ in the sense of Lax and Phillips [99], as we explain
in Section 8.12. It is also at the heart of the Bott periodicity theorem (see
Section 8.8).

After Chapter 8 the remainder of the book is devoted to representation
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theory, and we refer to Chapter 9 for a survey of its contents. Qur
approach is on the one hand to imitate the finite dimensional Borel-Weil
theory, and on the other hand to make use of the natural representations
which are well-known from quantum field theory. The character formula
is postponed until the last chapter, where we also show how the
decomposition of X described in Chapter 8 leads directly to the
Bernstein—-Gelfand-Gelfand resolution of a representation of LG by
Verma modules. This is the basis of all the more delicate algebraic and
cohomological analysis of the representations into which we have
refrained from entexing.

This book has taken a long time to write. It began from lectures given
by the second author at Berkeley at the beginning of 1982. A first draft of
the book was written by the first author along the lines of the lectures,
and was subsequently greatly expanded by the second author to produce
the present work. Obviously we have profited greatly from the influence
of many people, and we have tried to acknowledge our indebtedness at
various places in the text. But we should like here to efpress our especial
gratitude to Sir Michael Atiyah, who suggested the whole project and has
constantly given us encouragement and advice, and to Daniel Quillen,
who shaped our approach to the subject in 1978 by teaching us about the
Grassmannian model of QG and its importance, and has been a continual
influence since then. ‘

We hope that some parts of the book, at least, will be of interest to
readers who are not primarily concerned with loop groups. A few
sections, such as the treatment of the spin representation, have indeed
been written with that specifically in mind. We have tried within reason
to make the sections of the book fairly independent, even at the cost of
some repetition, in order to encourage readers to turn at once to the
parts they find interesting. We have also deliberately written different
sections with different levels of mathematical sophistication. We have
tried hard to presuppose very little when dealing with the central parts of
the theory.

PART 1



2
FINITE DIMENSIONAL LIE GROUPS

The purpose of this chapter is to outline and assemble the basic facts
about finite dimensional Lie groups which will be used in the course of
the book, and to establish some notation and terminology. We make no
attempt to provide proofs, referring the reader to any of a number of
standard treatments, of which the nearest in spirit to our approach is
probably Adams [1]. (Cf. also [20], [72], [76].) We have called attention
especially, however to the complex homogeneous spaces and the Borel—-
Weil theorem—see Sections 2.8 and 2.9 below—as they are the basis of
our approach to loop groups.

2.1 The Lie algebra

space R”. It is then automatically a differentiable manifold; in other
words 1t can be covered by 2 collection of coordinate. charts_between
which the transition functions are differentiable—in fact of class C=.

- The tangent space g to G at its identity element 1 is_called. the Lie
algebra of G. For éVery vector & in_g there is a unique one-parameter
subgroup {g}.ce In G which has £ as its tangent vector

ig%no_up"(}_is_a_topologic_al _group which is locally like a Fuclidean

dg,
dt =0

at the identity. The group clement g, is denoted by exp(:€); and the map
E—exp(§) from g to G is called the exponential map. It provides a
bne}_to-one_“_qorrcspondechz between,.a neighbourhood of 0 in g and a
neighbourhood of 1 in G, and is one of the preferred coordinate charts.
" The group which Will be central in this book is the unitary group U,
which consists of all n X n complex matrices u such that w*u = 1. (Here
1" denotes the transpose of the complex conjugate of u.) The Lie algebra
of U/, is the vector space u, of skew-Hermitian matrices (i.e. those such
that £* = --£), and the exponential map is given by ordinary exponentia-
tion of matrices.

For any Lie group G there is an operation g X g— g defined on g,
denoted by (&, %) > [&, ] and called the “bracket’. Tt is defined by~

(5 )= lim % exp™ {exp(sE)exp(en)exp(—sE)exp(~im)).
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We see that it measures, in some sense, the group’s failure to be
commutative. The bracket is bilingar, and has the properties

[E.v 77] = "'[ﬂs 5]

and
(&, [, §11+ [, (€, 8N + &, [& n]]=0.

(The latter is called the ‘Jacobi identity’.) In the case of U, or indeed of
any other matrix group, it is easy to see that the bracket is given in terms
of matrix multiplication by

(& n]=&n —né.

An alternative description of the Lie algebra g is as the space of
left-invariant vector fields on the group G. For a tangent vector to G at
the identity element defines by left-translation a tangent vector at each
point of G, and hence a smooth vector field. Conversely, a left-invanax}t
vector field is completely determined by its value at Te G. From this
point of view the bracket operation g X g—x g is the usual bracket of
vector fields: if £ and 7 are expressed in some local coordinate chart as

3 3
5“2515; and W“Zﬂfax:

i

then in the same chart [£, n] is given by

an;, AN
353w
L} J 7 ‘
In other words if £ and n are regarded as differentiation operators acting
on smooth functions on G then [£, ] = &y — n&.

If the group G is connected then the Lie algebra g, together with its
bracket operation; “determings G completely, up to the possibility of
replacing it by a locally isomorphic.group. The group U,, for example,
has the same Lie algebra as its simply connected covering group U,
which is the subgroup of the product U, X R consisting of pairs (x, r) such
that det(x) = . (In other words, an element of U, is an element of U,
together with a choice of the logarithm of its determinant.) For any finite
dimensional Lie algebra g there is always a simply connected group G
whose Lie algebra is g, and any homomorphism of Lie algebras g— g’,
where g’ is the Lie algebra of a group &', arises from a homomorphism
of groups G— G'.

2.2 Complex groups

If a Lie group G.is.a-complex-manifold-and.the. composition law.
G X G— G is a holomorphic map then G is called a complex Lie group.
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The most obvious example is GL,(C), the group of all invertible n X n
complex matrices. The Lie algebra of 2 complex Lie_group is a complex
vector space, and the bracket. g X g— g is complex-bilinear. Conversely,
such a complex Lie algebra always arises from a complex Lie group.
Any Lie algebra g has a complexification ge = g®gC. If g is the Lie
algebra of a group G then a_complex group G- comesponding to ge
which contains G as a subgroup is called a_complexification. of G. Such a

complexification need not exist.

Example. The group SL,(R) of real 2 X 2 matrices of determinant one
has the complexification SL(C). Now SL,(C) is simply connected, while
the fundamental group of SL,(R) is Z. (A loop in SL.(R) has a winding
number which is the winding number of its first column, which is a
non-zero vector in R?.) Thus there is a simply connected covering group
G of SL,(R) such that the kernel of G— SL,(R) is Z. If G possessed a
compiexification it would necessarily be a covering group of SL,(C),
which is impossible because SL,(C) is simply connected. We can express
the same thing by saying that the kernel of any homomorphism from G to
a complex group must contain the subgroup Z. (In particular, G cannot
possess any faithful finite dimensional representation G— GL,(C).)

If G is a compact group, however, then it does possess a_complexifica~
tion Ge. For G can be embedded in a unitary group U,,_and.Ge can.be
realized as a subgroup of the complexification GL,(C) of U,. This group
G is vnique up to isomorphism, and we shall always refer to it as the
complexification of G. Thus the complexification of T will always mean
C™: other possible complexifications such as C/Z2=T X T cannot arise as

complex subgroups of a general linear group.

2.3 Compact Lie groups

The most important fact about compact Lie groups is the Peter—Weyl
theorem, which is essentially the assertion that any compact Lie » group is
isomorphic to a §_tiBg;oup of some unitary group U,. This is deduced
fairly easily from the most basic property of Tompact groups, the
existence of Haar measure, a probability measure on the group which is
invariant under both left and right translations.

A more obvious application of the existence of Haar measure is to
show that when a compact group G acts linearly on a finite dimensional
vector space V there is always a_positive. definite inner-product-on V
which is fovariant under G. (One can take an arbitrary inner product on
V and make it invariant by averaging it with respect to the action of G.)
The existence of an nvadant inrex product, in turn, implies that V is the

orthogonal direct sum of subspaces on which G acts irreducibly.
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Let us apply the preceding remark when V is the Lie algebra g of G.
The group G acts on g by the adjoint representation.: the adjoint action of
£ €G is defined as the derivative of the map x—>gxg™" at the identity
element x =1. We find

§g=0u® ... Bgo (2.3.1)
where G acts irreducibly on éac“l_x___ g;. It is immediate that the g, are
sub-Lig-algebias, and that [g;, g,] =0 when i . If G; is the subgroup of

‘G corresponding to g; then G i§ Jocally isomorphic to the product

GIXT UK Gy

The groups G; into which we have decomposed G clearly have no
non-irivial connected normal subgroups, Apart from the circle group T
such groups aré usually called simple groups—although the terminology is
not ideal as the groups can possess finite normal subgroups (necessarily
contained in the centre). Thus any compact Lie group is. locally
isomorphic to a product of circles and simple groups..Jf there are no
circles in the decomposition then the group is called semisimple. .

""The simple compact groups have been classified. They consist of the
special unitary groups SU,, the special orthogomal groups SO,, the
symplectic groups Sp,, and five exceptional groups—and, of course,
groups locally isomorphic to these. The traditional notation for the Lie
algebras is: 3u,=A4,_1, 303,418, 8b,=C,, and 80,,=D, The
exceptional groups are called G,, F;, E;, E;, and Eg. In all cases the
subscript gives the rank (see Section 2.4).

In Chapter Four we shall nced to use the following simple result whose
proof can conveniently be given here.

Proposition (2.3.2). If g is the Lie algebra of a compact semisimple group
G then any C-bilinear G-invariant map

B:geXge—>C

is necessarily symmetric.

Proof. Such a map B can be equivalently regarded as a C-linear map B
from g to its dual g¢ which commutes with the action of G.

First suppose G is simple. Then ge is irreducible as a complex
representation of G, so by Schur’s lemma ([1] 3.22) any two choices of B
differ only by multiplication by a complex number. On the other hand
there is a choice of B which corresponds to a symmetric map B, for g
possesses an invariant inner product. It follows that any choice of B is
symmetric.

In general we can decompose g as in (2.3.1). The factors g; are
obviously all non-isomorphic as representations of G, and the same

2.4 THE ROOT SYSTEM 15

applies to their complexifications. So by Schur’s lemrﬁa the map
B:®gc—> @ 8ic

must be of the form @ B, where Bi:iq,c— glc. By the preceding
argument each B; must be symmetric, and so B is symmetric.

2.4 The root system

In studying the structure of a compact connected Lie group G one beging
by choosing a maximal torus 7. Any maximal counnected _abelian
subgroup of G is necessarily a torus, 1.e. a _product T of cixcles, and any

two such subgroups are conjugate in G (cf. [1] 2.32, 4.22}. The dimension
€ of a maximaltorus is called the rank of G. In the case of the unitary

 group U, the diagonal matrices form a maximal torus T*. (In this case it is

elementary that any two maximal tori are conjugate, as any set of
commuting matrices can be simultaneously diagonalized. The general
case, however, is less simple.)

The group G acts linearly on its Lie algebra g by the adjoint
representation; this action induces, of course, a complex-linear action of
G on gc. The crucial step in analysing the structure of G is to decompose
the vector space g under the action_of the maximal torus. 7. Any
complex representation of a"compact abelian §roup such as T breaks up
as a direct sum of one-dimensional representations on each of which 7
acts by wmeans of a bomomorphism 15 ©on each of which .

a:T—TcC™

Of course T_acts trivially on its own complexified Lie algebra e, but no
_other vectors in g¢ are Iefi fixed by T because T is a maximal abelian
subgroup. 'We ¢an write

gc=1c® D g, (2.4.1)

where g, i§ the vector subspace of g on which T acts by the
homomorphism &:T—T. The homomorphisms o which_occur in-this
decomposition are called the roots of . They form a finite subset of the
character group Tof T Ahomomorphism o : T— T 1s determined by its
derivati\.ig & at the identity, which lies in the vector space t* of linear
maps 1= R and is such that T
alexp &) = ¢},

It is usual to think of T as a lattice in t*, and to write it additively. In
other words we shall usually not distinguish in notation between o and &

Notice that if « is a root then so is —a, for g_. = §,. The lattice T is
called the lattice of weights of G.
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In the case of the unitary group U, the Lie algebra g, consists of all
n X n complex matrices, and the roots ¢, are indexed by the ordered
pairs (7, /) with i#j and 1=¢i,j<n. The space g,, consists of the
matrices which are zero except in the (i, /) place, and a; maps the
diagonal matrix with entries (xy, ..., uni to w7t €T, and is identified
with the linear map (&, ..., §.)= & — §lon R™

The centre of & is contained in every maximal torus, and is obviously
the intersection of the kernels of all the roots ¢:T— T. From this it

follows that if G is scm151mple and so has a finite centre then the roots

span the vector space i*.” .

It turns out—cf. [1} 5.5—that the subspaces gn in (2.4.1) are always
one-dimensional. This fact enables one to give a simple description of the
L1e e algebra g in terms of generators and relations.

Let us choose for each TO0t & 2 NOD-Z6ro. Vector. €q-in g8, We shall
assume that €—a= &,. It is easy to see that the bracket

haf - [ecn ew—ix]
belongs to t, and cannot be zero.
"It follows that the three vectors {€w, €—a, 1o} Span a sub-Lie-algebra of

g Which is isomorphic'to the complexification of the Lie algebra of SU.
Ifwe w_'gilgr_rgghze e, .s0_that thé relations take the form

Ry, e, =2ie,
[hnn e—ar] = ‘2ie—-cr
[ew, e~} =ih,,

corresponding to those of the matrices

=0 o) 7=(2 o) #=6 )

then £, is canonically determined by «, and 2/, belongs to the kernel

of the exponential map exp:t—»T.
' The element ki, is called the corogt c:orrespondmcr to &. For any_mot

n«(e' ?) = exp(6h,); (24.2)

this extends canonically to a homomorphism i, : §U>— G. We shall usually
think of the lattice T of all homomorphisms T->T as contained in the
vector space t, just as we regard the lattice 7' = Hom(T; T) as contained
in t*; in other words we sha]l usually not distinguish between the coroot
k. and the homomorphism %,. The lattice T is canonically dual to " over
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the integers by the composition
Tx T-Hom(T; T)=Z.
It is an important fact that for a simply connected group G the coroots 4
generate the lattice 7. ([1]5.47)
The Lie algebra g is clearly generated additively by the root vectors e,

together w1th the elements of t, and ‘the relatlons are necessanly of the
form

o

[€er 8,3] = Roplarp it @+ B is a ToOt,
| = ih, if o+ =0,
=0 otherwise; {2.4.3)
{R, e.]=ia(h)e,.

So far the elements e, have been fixed only up to multiplication by
complex numbers of modulus one. It turns out that they can be chosen so
that the numbers n,z are integers—in fact all n,z are non-zero. Cf. [20]
Chapter 8 Section: 2.4.

2.5 Simply laced groups

There is a class of groups for which the relations (2.4.3) take an
especially simple form: they are the simply laced groups. A group G is
called simply laced if there is a G-invariant inner product - {, Y on.gfor
Which ‘all the coroots &, have_the same length. In that case we shall
normalize the inner product so_that (A, h ) - 2. The resulting. iden-
tification t = t* makes %, comespond to_w. The umtary group U, and the
orthogonal group SO,, are simply laced: the preferred inner product is

(A, B) = ~trace(AB)
for U, and
{A, B) = —% trace(AB)

for §0,,, when the Lie algebras are identified with the algebras of
skew-Hermitian (resp. skew) matrices. The exceptional groups of type E
are also simply laced. In general, a compact group is simply laced if its
Lie algebra has no simple factors of types B, C, F, or G.

For a simply laced group the inper product on t induces an inner
product on t* which i is integral on the Tattice 7

( ) T x T—> Z.
Furthermore (2, 2, l} is even for each Ae T Let us choose a bilinear form
 B:TxT—72
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such that
B{A, \y=%4{4, 1) (mod2).

(This form B canpot be symmetric.) Then A
(i) the roots of G are precisely the set of all vectors & in I such that

(@, a)=2, and

(ii) the first relation in the set {2.4.3) can be taken to be
ew 6= (~D)XPe 2.5.1)

It is easy to see that different ch01oes of B amount simply to changing the
signs of some of the e,.

2.6 The Weyl group and the Weyl chambers: positive roots

For a compact Lie group G with maximal torus T the group of all
antomorphisms of 1 which are obtained by conjugating by elements of G
5 called the Weyl group. W, Thus W =N(T)/T, where _Iy_(:f) is the
normalizer of T in.G. For the unitary group U, the Weyl group 15 ‘the
symmetric group S, which acts on the diagonal matrices by permuting
their entries.

The Weyl group is a finite group of isometries of t: it preserves the
lattice 7, and permutes the_ set of roots in T. For each root « it contains

an element s, of order two represented by exp 37(e, + e_,) in N(T).. The
action of s, on 13§ give givenby T

$u(8) = & — &(E)ha; (2.6.1)

it is the reflection in the hyperplane H of t whose equation is a(£) =0.
The reflections s, gemerate W. T

called Weyl chambers whm]{ are Eg_rmuted simply transitively by W. It 1s
customary 16 select one of the chambers C and call it the positive Weyl
chamber. Then the roots « are classified as positive or negative according
as they take positive or negative values on C, and a positive root o is
called simple if the Hypérplané H, is a wall of C. For a semisimple_group
of rank € there are € simple roots @, ..., &, and the 3¢ clements e,
€ Py generate the Lie algebra gc.
“In the case of U, wé can t“‘ke the positive roots to be the oy with [ <j,

and the simple roots 1o be a; ., for 1=i<n.

2.7 Irreducible representations and antidomicant weights

Every irreducible representation of a compact group is finite dimensional.

If G acts on a finite dimensional complex vector space V then one cein
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find a basis {z;} of V with respect to which the operation of the maximal
torus 7T is diagopal. The torus then acts on & by a_ homomorphism
J4:T=>T called the weight of £, The set of weights is a finite subset of 7
which is invariant under W.

If the representation V is irreducible then it possesses a ‘unique basis
vector £, whose weight Ay is dominated by the other 4,’s: one says 1 that A

'dormnates pif A—pi is positive on the positive chamber. The association

of A, to V defines a one-to-one correspondence between the equivalence

aimdin A

classes of irreduciblé Tepresentations of G and the st 1T-of antidominant
Weights; a weight A e T is called antidominant i / 15 dominated by w. A
for each we W, or equlvalently (from (2.6. 1)) if l(hc,)‘ﬁ(} “for each
Qosmve 100t &. We can identify T_ with the set 7/W of orbits of Won T.

It is with considerable hesitation that we have decided, with loop
groups in mind, to describe representations in terms of lowest weights
rather than highest weights as is usual. That has led us to use the
unattractive compromise term ‘antidominant’. Of course A _is anti-
dominant if and only if —2 is dominant in the usual sense.

" One méthod of ssodiating 4 irreducible” représentation V; to a weight
L e T_ is described in Section 2.9.

2.3 Complex homogeneous spaces

Much of our study of loop groups will be based on the consideration of
their complex homogeneous spaces. We shall outline here the main facts
about the complex homogeneous spaces of compact groups, beginning
with the unitary group U,.

The complex algebraic homogeneous spaces for U, are the Grassman-
nians and flag mamfolds For each ordered partition k of n, i.e.
k=(ky, ks, . .., k) with k;>0 and T k; = n, we define the flag manifold
Fly as the space of rtuples E=(E,, . .., E,) of subspaces of C" such that
EcEe...cE and dm(E) =k, +... +k. If k=(k, n— k) then FI,
IS the Grassmannian Gre(C*) of all k dlmensmnal subspaces of C" If
k=(1,1,....1) we shall write FI(C") for Fl,.

The space Flk is a homogeneous space under the action of U,, and the
isofrOpy group of its natural base-point—the flag E such that £, is the
subspace C***% spanned by the first k;+...+k; vectors of the
standard basis of C"—is U=V, x...x U, < U S0 Fl can be iden-
tified with U,/U. On the other hand Fi, is also a complex algebraic
vanety, and is 2 homogeneous space of the complex group GL,(C). Thus

Fly= U, /U= GLL(C)/B,,

where B is the group of upper echelon matrices of type k. In particular
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FI{C=U,/T=GL,(C)/B", where T is the standard torus of U, and B*
iSthe group of upper triangular matrices.

The spaces Fl are, up to isomorphism, the only homogeneous spaces
of U, which are complex algebraic varieties, and they are the only
compact homogeneous spaces of GL,(C). The subgroups B, are the only
subg:oups of GL.(C) which contain B*. One of the important properties
of Fly is that it possesses a canonical decomposition into complex cells,
ie e subspaces isomorphi¢ 16 some €. The cells are simply the orbits_of

“"on Fli. Their closures are usually called ‘Schubert varieties’ ([116] §6,

[68] p- 196). For example, Gr,(C") is the union of ( k) cells G, indexed by

the sequences m= (m;, . ..
In fact

Co={WeaCdim(WnC)=i when m<j<m.,}, (2.8.1)
and it has dimension X {m; - i). -

,my) such that 1smy<m,<... . <m <n

The situation just described has a precise analogue for any compact Lie
group G. The subgroup of the complexification G which plays the role
of the upper ef triangular matriées is the standard Borel subgroup BY whose
Lie algebra is spanned by te and the root vectors e, correspondmo' to the
positive Toots &. 'We have B* MG =T, and G/T=G/B".

Proposition (2.8.2). There is a one-to-one correspondence between
(i) complex algebraic homogeneous spaces for G,
(i) compact Kihler homogeneous spaces for G,
(iif) subgroups of G containing B™, and
(iv) subsets of the set of simple roots of G.

For the proof see Wang [152] and Serre [133], and also [20] Chapter 4
Section 2.5. To a subset A of the set of simple roots there corresponds
the homogeneous space Gc/P.,. where P, is the ‘subgroup of G whose
Lxe _algebra is generated by the Lie alvebra of B and by the eiements

€u for aocA.

Subgroups of G; which are conjugate to one of the P, are called
parabolic” We have 'Gg/Py=G/(P,1'G), and ¢ach such space has a
canonical decomposition into complex cells which are the orbits of B™:
this is called the Bruhat decomposition ([20] Chapter 6 §2, [72] Chapter 9
§1).

In the case of G¢/B*=G/T one can think of the Weyl group
W = N(T)/T as a'subset of G/T, and there is exactly one element of W in

each cell; in other words thé cell dec composxtlon O GIT I8 £C  ews
where C, =B w. The dimension of C, is the length of w, which is
defined as the number of positive roots @ such that w.a 1s neﬂatxve

—_—
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There is also a dual cell decomposition of G/T provided by the orbits of
the opposite Borel subgroup B™, which is the complex conjugatet of B,
The cells B*w and B~w have complementary dimensions, and intersect
transversally in the single point w.

When G = §0,, the space (/T has a description as a flag manifold like
that for U,/T. It consists of all flags E; < E, ... c E, = C* such that

. dim(E;) =i and each E; is isotropic for the standard bilinear form on C*".

2.9 The Borel-Weil theorem

The importance of the complex homogeneous spaces of G arises from
their role in constructing the irreducible representations. In fact only the
largest one G/ T*G@’B* is needed. Every homomorphism A:7—T
extends uniquely to a _holomorphic  homomorphism B> X
It therefore defines 2 homogeneous bolomorphic lite bundle L, =
GC Xp+Cy on Ge!B*. (The notation GgXz-C, means the quotient of
GcXC by the equivalence relation which identifies (gb, &) with
(g, M(b)E) for all b € B™.) The group G acts on the line bundle L,, and
hence agts on its holomorphic cross-sections.-

Th_o Borel-Weil theorem (cf. Bott [15]) is.

Theorem (2.9.1).

() The line bundle L, has no non-zero holomorphic sections unless A
is an anfidominant weight.

(11) I zs an antzdomzmnr weight then the space._ of holommphzc

It may be worth explaimnc bneﬂy why the space I‘l of thOmOrphlc
sections of L, is an irreducible representation. We first observe that if I';
is expressed as a sum of irreducible representations then each component
contains an element of lowest weight. Now an element of lowest weight is
invariant under the subgroup N~ whose Lie algebra is spanned by the e,
with o <0 (for acting on it with such an ¢, would give an element of
lower weight). So it is enough to show that L, cannot have two linearly
independent N -invariant sections. But N~ acts on the base Go/B™ with
an open dense orbit—the orbit of the base-point. So if 5, and s, were two
N"-invariant sections their ratio would have to be constant on the open
orbit, and so it would be constant on all of Go/B*.

‘We should also mention the relation between holomorphic line bundles
on a manifold X" and holomorphic maps from X to complex projective
space.

1 ‘Complex conjugation’ here means the involution of G whose fixed points are G: thus for
GL,(C) it means A = (A7)~
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In one direction, suppose we have a holomorphic map f:X-» P(V),
where P(V} denotes the projective space of rays in a vector space V.
Then we can define a holomorphic line bundle L, on X whose fibre at x is
the line f(x) of V. Thus L, is a subspace of X XV, and there is a map
7 : Ly~ V which 1s linear on each fibre. A linear form «: V> C therefore
defines by composition with  a section of the dual line bundle Lf, whose
fibre at x is the dual of the fibre of L, at x, and so we have a linear map
V*—T(Lf), where I'(L}) denotes the space of holomorphic sections
of Lf.

Infthe other direction, suppose that L is a line bundle on X, and
suppose that for each x € X there is a section of L which does not vanish
at x. Then there is a canomnical map f; : X— P(I'*), where I is the space
of sections of L. One defines f,(x) as the map I' C given by evaluating
sections at the point x-—one must choose an identification of the fibre of
L at x with C, but the choice affects f;(x) only up to multiplication by an
element of C*. -

In the light of this reinterpretation the proof of another part of the
Borel-Weil theorem is almost obvious. To prove that an irreducible
representation of G on V arises as the sections of a line bundle on
G¢/B™ it is enough to show that there is a ray @ in V* which is stable
under B™. For then considering the orbit of & gives us an equivariant
map f:Ge/B*—P(V*), and hence a line bundle L; and a map
V-=T(Lf). Any vector of highest weight in V* defines a ray stable under
B*,

Example. As an example of the Borel-Weil theorem let us consider the
irreducible representation of U, on the k™ exterior power A*(C").

Perhaps the most obvious of all holomorphic line buadles is the
determinant bundle Det on the Grassmannian Gr,(V) of 4-dimensional
subspaces of a finite dimensional vector space V. This is the bundle
whose fibre at a subspace W <V is the top exterior power A*(W). It has
10 non-zero holomorphic sections, but its dual Det*, whose fibre at W is
the dual line A*(W)*, does possess sections. The following well-known
fact will be crucial for us in Chapter 10, so we shall give a proof of it
here. :

Proposition (2.9.2). The space of holomorphic sections of Det* on
Gr(V) is naturally isomorphic to A*(V*).

Proof. A holomorphic section of Det* is the same thing as a holomor-
phic map s : Det—» C which is linear on each fibre. A typical point of Det
can be represented in the form Av,A...Awv,, where Ael and
{vi, ..., v} is a basis for some W & Gr (V). We can therefore define a
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map
AV *)— T(Det*) (2.9.3)
by
ay A A AU AL AT (A AL A @ AU AL AT ),

where {a3A...AQ, U1 A...AU,) is the determinant of the matrix
(( &, Uj))'

It is clear that the map (2.9.3) is injective. To prove it is surjective, let
U denote the open subspace of V* consisting of k-tuples of linearly
indépendent vectors. There is a natural map 7: U— Det. If s:Det—C is
a section of Det” then what we must show is that the composite s ©
extends to a multiinear map V*—C. To prove that, consider
s(mw(vy, vy, ..., U,)) as a function of v, for fixed vy, ..., v,. The
resulting holomorphic function f is defined on the complement of the
subspace (v, ..., v} of V, and satisfies f(Av,)= Af(vy) for every
A €C¥. The subspace (v, ..., u;) has codimension greater than 1 (for
we can assume that k <), and so f extends to a holomorphic function on
all of V' by Hartogs’s theorem ([68] page 7). We can then expand f in a
Taylor’s series at the origin, and because of the condition f(Av,) = Af(vy)
we find that f must be a linear function on V. Treating the other variables
in the same way shows that s ¢ x is multilinear.



