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Abstract. Let F be a p-adic field, let L be the completion of a maximal unramified extension of F ,
and let � be the Frobenius automorphism of L over F . For any connected reductive group G over F
one denotes by B(G) the set of �-conjugacy classes in G(L) (elements x; y in G(L) are said to be
�-conjugate if there exists g in G(L) such that g�1��(g) = y. One of the main results of this paper
is a concrete description of the set B(G) (previously this was known only in the quasi-split case).
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Let F be a p-adic field, and let G be a connected reductive group over F . We
write L for the completion of the maximal unramified extension F un of F in some
algebraic closure F of F . We write � for the Frobenius automorphism of L over
F ; it induces an automorphism of G(L) which we also denote by �. We say that
two elements x, y in G(L) are �-conjugate if there exists g 2 G(L) such that
g
�1
x�(g) = y, and we write B(G) for the set of �-conjugacy classes in G(L).

In case F is Qp the set B(G) can be identified with the set of isomorphism
classes of isocrystals with G-structure. For example whenG is GLn, the set B(G)
can be identified with the set of isomorphism classes of n-dimensional isocrystals,
a set that can be easily described using the classification (due to Dieudonné and
Manin) of the simple objects in the category of isocrystals.

The set B(G) turns up naturally when one studies Shimura varieties over finite
fields [LR], [K5], and also plays a role in recent work of Rapoport and Zink [RZ]
on period spaces for p-divisible groups and Shimura varieties over p-adic fields.
Thus it is of interest to have a concrete description of B(G) for any connected
reductive group G.

For quasi-split groups such a description is given in [K]. The first step is to
associate to any element b 2 G(L) a homomorphism � : D ! G over L, where D
denotes the diagonalizable group over F with character group Q. The conjugacy
class of � under G(L) depends only on the class of b in B(G), and this conjugacy
class of homomorphisms is fixed by �. Let B be a Borel subgroup (over F ) in the
quasi-split group G, let T be a maximal F -torus in B, and let A be the maximal
F -split torus in T . Let A denote the real vector space obtained by tensoring the
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256 ROBERT E. KOTTWITZ

cocharacter group of A with R, and let C denote the closed Weyl chamber in A

determined by B. The homomorphism � is conjugate under G(L) to a unique
element �� 2 C (a homomorphism from D to A determines a point in the obvious
Q-subspace of A). Following [RR] we refer to the map b 7! �� from B(G) to C as
the Newton map.

The Newton point �� determines a parabolic subgroup P = MN of G over
F . We write B(G)P for the subset of B(G) consisting of all elements for which
the associated parabolic subgroup is equal to P . The first main result of [K] is a
description of the subsetB(G)G (elements in this subset are said to be basic). The
second main result of [K] is a description of B(G)P in terms of basic elements in
B(M), where M is a Levi component for P (see 5.1 for a precise statement).

One of the main results of this paper is a description ofB(H) for any inner form
H of the quasi-split group G. In fact it is best to introduce a set Bs(G), which,
loosely speaking, is the disjoint union of the sets B(H) as H ranges through the
inner forms of G (this point of view is suggested by work of Adams and Vogan
[AV] on representations of inner forms of real groups). It turns out that Bs(G) has
a description (see 5.3) that is entirely analogous to the one for B(G) given in [K].

We continue to let H denote an inner form of G. In Section 6 we introduce a
subset B(H;�) of B(H). Here � denotes a dominant coweight of the maximal
torus T in the quasi-split group G. Pairs (H;�) as above arise naturally in the
study of Shimura varieties. Indeed, to get a (tower of) Shimura varieties one needs
to start with a connected reductive group HQ over Q and a miniscule coweight
�0 of HQ over C . We assume that F is Qp and that HQ is a Q-form of H . Let
E � C be the Shimura field (the field of definition of the conjugacy class of �0).
Fix an embedding � of E in �Qp . Then there is a unique dominant coweight � of T
that is ‘conjugate’ to �0. Thus we obtain a pair (H;�) as above with � miniscule.
Given the conjectural interpretation of our Shimura variety X as a moduli space of
motives with H-structure, we expect the special fiber of any natural integral model
of X to decompose as a disjoint union of pieces indexed by the set B(H;�).

In Section 6 we find all pairs (H;�) for which the set B(H;�) has a unique
element. For pairs (H;�) arising from Shimura varieties it seems plausible that
B(H;�) has a unique element if and only if the Shimura variety admits p-adic
uniformization at the place of E determined by �. The results in Section 6 sup-
port Rapoport’s idea [R] that p-adic uniformization occurs only in very special
circumstances and always involves products of Drinfeld’s spaces 
d.

The last main result of this paper is Proposition 13.4. It is too technical to discuss
in this introduction, but it is probably worthwhile to mention that this proposition
will be needed in order to prove that the transfer factors of [KS] for unramified
cyclic base change (use the Frobenius element as generator for the cyclic Galois
group) have the form given in Section 7 of [K3]. The point is that the transfer factor
in [K3] involves the groupsB(T )while the one in [KS] involves hypercohomology
groups. In order to compare the two it is necessary to introduce a hypercohomology
variant B(T ! U) of B(T ) and prove a number of results about it; this is done
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in Sections 7–13. In particular a duality theorem for B(T ! U) is proved in
Section 11, a valuation mapping from B(T ! U) onto a finitely generated abelian
group is defined in Section 12, and an important compatibility between the duality
theorem and the valuation mapping is proved in 12.6 (this compatibility is needed
to prove Proposition 13.4).

One last point deserves mention as well. Although the setB(G) can be defined
for any linear algebraic groupG overF , it is not the ‘right’ set unlessG is connected.
For disconnected groups one should use instead the variant B(G) defined in 1.4.
The first three sections of the paper develop the elementary properties of B(G)
and also serve as a review of B(G). Following Rapoport and Zink [RZ], in 3.3 we
give a more natural definition of the group J appearing in [K] (the group J was
introduced by Langlands in the appendix to [L]).

It is a pleasure to acknowledge the influence of M. Rapoport, with whom I have
had many stimulating conversations on the material in Sections 1–6.

The following notation is used throughout this paper. We denote by Int(x) the
inner automorphism y 7! xyx

�1. For an abelian group X we denote by XR the
group X 
ZR. For a connected reductive group G we denote by Gder the derived
group of G, by Gsc the simply connected cover of Gder, and by Gad the adjoint
group of G.

1. Preliminaries

1.1. The following notation will be used throughout this paper. Let p be a prime
number and let F be a p-adic field (a finite extension of Qp ). Let

val: F� ! Z

be the usual valuation on F , normalized so that uniformizing elements have valu-
ation 1. Let o denote the valuation ring of F , let p denote its maximal ideal, let k
denote the residue field o=p, and let q denote the number of elements in k.

Let F be an algebraic closure of F , let F un denote the maximal unramified
extension of F in F , let L denote the completion of F un, and let L be an algebraic
closure of L containing F . The Frobenius automorphism � of F un over F (which
induces x 7! x

q on the residue field of F un) extends continuously to an automor-
phism (also denoted �) of L over F . Let � denote the Galois group of F over F ,
and letWF denote the Weil group of F over F (the subgroup of � consisting of all
elements in � whose restriction to F un is an integral power of �). Let IF denote
the inertia subgroup Gal(F=F un) of �. We will often abbreviate WF , IF to W , I .
Of course I is also a subgroup of W , and we regard W as a topological group in
the usual way, by requiring that I , with the Krull topology, be an open subgroup of
W . Thus we have an exact sequence of topological groups

1 ! I ! W ! h�i ! 1; (1.1.1)

where h�i denotes the infinite cyclic group generated by � (we give h�i the
discrete topology). It is not difficult to see that L = L
F un F . Thus I is also equal
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to Gal(L=L), and we may regard elements of W (or even �) as automorphisms of
L over F . Note that the fixed field of W in L is F . For any finite Galois extension
K of F in F there is an exact sequence

1 !WK ! WF ! Gal(K=F ) ! 1: (1.1.2)

1.2. LetA be a group on whichW acts. We assume that theW -groupA is discrete,
by which we mean that the stabilizer of any element of A is open in W . This is
equivalent to the condition that the action map

W �A! A

be continuous when A is given the discrete topology. By a 1-cocycle of W in A
we mean a continuous map � 7! a� from W to A (give A the discrete topology)
satisfying the usual 1-cocycle condition

a�� = a� �(a�) for all �; � 2W:

Note that an abstract 1-cocycle a� is continuous if and only if there exists an open
normal subgroup N of W such that a� = 1 for all � 2 N , in which case a� is the
inflation to W of an (abstract) 1-cocycle of W=N in AN . If a� is a 1-cocycle of
W in A and b is an element of A, then b�1

a��(b) is a 1-cocycle of W in A and is
said to be cohomologous to a� . We define H1(W;A) to be the quotient of the set
of 1-cocycles of W in A by the equivalence relation of being cohomologous. Then

H
1(W;A) = lim

�!
H

1(W=N;A
N );

N

where N runs over the directed set of open normal subgroups of W .

1.3. Let A be a W -subgroup of a discrete W -group B. Then there is an exact
sequence of pointed sets

1 ! A
W ! B

W ! (B=A)W
@
�!H

1(W;A) ! H
1(W;B) (1.1.3)

and ifA is normal inB, this exact sequence can be prolonged by addingH1(W;B=A)
at the right end. Of course the map @ sends �b 2 (B=A)W , represented by b 2 B, to
the class of the 1-cocycle � 7! b

�1
�(b).

1.4. Since the fixed field ofW in L is F , the fixed point set ofW inX(L) isX(F )
for any schemeX over F . Let G be a linear algebraic group over F . ThenG(L) is
a discrete W -group and G(L)W = G(F ). We define a pointed set B(G) by

B(G) := H
1(W;G(L)):

We define another pointed set as follows. Let B(G) be the quotient of G(L) by
the equivalence relation �-conjugacy (two elements x; y 2 G(L) are said to be
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�-conjugate if there exists g 2 G(L) such that y = g
�1
x�(g)). Clearly B(G) can

be identified with the pointed set

H
1(h�i; G(L)) = H

1(W=I;G(L)I);

which can be identified (by inflation) with a subset of B(G); in this way we will
always view B(G) as a subset of B(G). Of course there is an exact sequence of
pointed sets

1 ! B(G)! B(G)! H
1(L;G) (1.4.1)

(here, as always, we denote the Galois cohomology set H1(Gal(L=L); G(L)) by
H

1(L;G)). If G is connected, then H1(L;G) is trivial [St], and the sets B(G),
B(G) are equal. For disconnected groups B(G), B(G) need not coincide, and it is
B(G) that is the more useful notion.

The inflation maps for the surjections W ! Gal(K=F ) appearing in (1.1.2)
yield injections

H
1(K=F;G(K)) ! B(G)

for every finite Galois extension K of F in F , and these fit together to give an
injection

H
1(F;G) ,! B(G): (1.4.2)

1.5. Let

1 ! G1(F )G2(F )G3 ! 1

be an exact sequence of linear algebraic groups over F . Then

1 ! G1(F )! G2(F )! G3(F )! B(G1)! B(G2)! B(G3)

is an exact sequence of pointed sets. The group G3(F ) acts on B(G1) in the
following way. Let g3 2 G3(F ) and let g1 2 B(G1). Pick a 1-cocycle x� of W in
G1(L) lying in the class g1, and pick an element g2 2 G2(L) mapping to g3 under
G2 ! G3. Then the action

G3(F )� B(G1)! B(G1)

sends the pair (g3; g1) to the class of the 1-cocycle g2x��(g2)
�1. It is easy to see

that the orbits of the action ofG3(F ) on B(G1) coincide with the fibers of the map

B(G1)! B(G2):

1.6. Let F 0 be a finite extension of F in F . Let G be a linear algebraic group
over F 0, and let RG denote the F -group obtained from G by Weil’s restriction of
scalars. Then there is a Shapiro bijection

B(RG) ' B(G): (1.6.1)
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2. �-L-spaces

2.1. As in [K] we use the terminology �-L-space to refer to a pair (V;�) consisting
of a finite dimensional vector space V over L and a �-linear bijection � : V ! V

(thus �(�v) = �(�)�(v) for all � 2 L, v 2 V ). There is an obvious tensor
product on the category �-L-spaces of all such objects, and in fact �-L-spaces is
a Tannakian category over F .

Of course in the special case that F is Qp the category �-L-spaces is just the
category of isocrystals. Just as for isocrystals the category �-L-spaces is semi-
simple, and there is a natural bijection from Q to the set of isomorphism classes
of simple objects in �-L-spaces. Thus every object in �-L-spaces has an isotypic
decomposition

V =
M
r2Q

Vr;

and, as for isocrystals, we refer to Vr as the part of V having slope r. If V1, V2 are
isotypic of slopes r1, r2 respectively, then V1 
 V2 is isotypic of slope r1 + r2. If
V is a simple object of slope r, then its endomorphism ring is a central division
algebra over F whose Hasse invariant is the element �r of Q=Z. Note that in this
paper we normalize the Hasse invariant in the same way that Serre does in the
appendix to Section 1 of [S2]. This is also the normalization used in Section 2.6 of
[K], so that for consistency the homomorphisms

Q ! Q=Z

is Section 3 of [K] should all be replaced by their negatives (this inconsistency in
[K] affects none of the results of that paper).

2.2. There is a second way to look at �-L-spaces. By a WF -L-space we mean a
finite dimensional L-vector space V equipped with a semilinear action of the Weil
group WF for which V is a discrete WF -module in the sense of 1.2 (semilinear
means that �(�v) = �(�)�(v) for all � 2WF , � 2 L, v 2 V ). The category WF -
L-spaces of all such objects has an obvious tensor product. There is an obvious

-functor V 7! L
L V from �-L-spaces to WF -L-spaces, the action of WF on
L
L V being given by the formula

�(�
 v) = �(�)
 �j(v)

for all � 2 L, v 2 V and � 2 WF mapping to �j 2 h�i. There is an obvious

-functor V 7! V

I (invariants of inertia) from WF -L-spaces to �-L-spaces, and
by the usual Galois descent theory for L=L this functor is quasi-inverse to the
previous one. Thus both functors are 
-equivalences of 
-categories. We say that
a simple object in WF -L-spaces has slope r if the corresponding simple object in
�-L-spaces has slope r.
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Let F 0 be a finite extension of F in F . Then WF 0 is an open subgroup of
finite index in WF , and any WF -L-space V can be viewed as a WF 0-L-space by
restricting the action of WF to WF 0 . If V is isotypic of slope r as WF -L-space,
then it is isotypic of slope r[F 0 : F ] as WF 0-L-space.

3. �-L-spaces with G-structure

3.1. Now let G be a linear algebraic group over F and let g� be a 1-cocycle of WF

in G(L) (see 1.2). For any representation

� : G! GL(V )

ofG on a finite dimensional vector space V over F we get aWF -L-space structure
on L
F V by letting � 2WF act by the � -linear automorphism

�(g� ) � (� 
 idV ):

In this way we get an F -linear functor � from Rep(G) to WF -L-spaces sending
V to L
F V , and this functor is a 
-functor in an obvious way (we denote by
Rep(G) the Tannakian category of representations of G on finite dimensional F -
vector spaces). The Tannakian categoryWF -L-spaces has an obvious fiber functor
! over L (forget the WF -action). The Tannakian category Rep(G) also has an
obvious fiber functor !G over L, namely the functor V 7! L 
F V . Therefore
there is an obvious 
-isomorphism from ! � � to !G (namely the identity map on
L
F V ).

We can turn this around. Suppose that (�; �) is a pair consisting of a 
-functor
� from Rep(G) to WF -L-spaces and a 
-isomorphism � from ! � � to !G. Then
for every representation V of G the isomorphism � allows us to view �(V ) as a
discrete semilinearWF -module structure on L
F V . Thus for each � 2WF there
is a uniquely determined linear automorphism g� (V ) of V such that the action of
� on L
F V is given by

g� (V ) � (� 
 idV ):

There is a unique element g� 2 G(L) such that

�(g� ) = g� (V )

for every representation (�; V ) of G, and � 7! g� is a 1-cocycle of WF in G(L).
The two constructions above are inverse to each other, so that we get a bijection

from the set of 1-cocycles of WF in G(L) to the set of 
-isomorphism classes of
pairs (�; �) as above. Now suppose that we are given an exact 
-functor � from
Rep(G) to WF -L-spaces (we include F -linearity in the definition of 
-functor).
Then ! � � is a fiber functor on Rep(G) over L, so there exists a 
-isomorphism
� from ! � � to !G. This isomorphism is well-defined up to a 
-automorphism
of !G, or, in other words, up to an element of G(L). Associated to (�; �) is a
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262 ROBERT E. KOTTWITZ

1-cocycle of WF in G(L), and changing � by an element of G(L) replaces the
1-cocycle by a cohomologous one. In this way we get a bijection from the set of

-isomorphism classes of exact 
-functors � as above to the set B(G) defined in
1.4.

3.2. Let G and g� be as above. Let D be the diagonalizable group over F whose
character group X�(D ) is Q (with trivial Galois action). Then, just as in [K, 4.2],
we get from g� a homomorphism � : D ! G over L. Indeed, as we saw above,
for any representation (�; V ) of G the 1-cocycle g� turns L 
F V into a WF -L-
space, so that L
F V acquires a Q-grading (its slope decomposition), which can
also be thought of as a homomorphism �� : D ! GL(V ) over L. The desired
homomorphism � : D ! G over L is the unique one such that

�� = � � � for all (�; V ).

Let x be an element of G(L). It is clear that replacing g� by the cohomologous
1-cocycle xg� �(x)�1 replaces � by Int(x) � �.

Let F 0 be a finite extension of F in F . Then the restriction of g� to WF 0 is a
1-cocycle of WF 0 in G(L) and therefore determines a homomorphism �

0 : D ! G

over L. It follows from 2.2 that

�
0 = �

[F 0:F ]
:

We claim that � is trivial if and only if the cohomology class of g� lies in the
image of the natural injection

H
1(F;G)! B(G):

Indeed, if g� comes from H
1(F;G), then there exists a finite Galois extension

F
0 of F in F such that the restriction of g� to WF 0 is cohomologous to the

trivial 1-cocycle. Therefore �[F
0:F ] is trivial, which implies that � itself is trivial.

Conversely, if � is trivial, then for every representation (�; V ) ofG theWF -L-space
V 
F L has slope 0. Therefore

V 7! (V 
F L)
W

is a fiber functor on Rep(G) over F , and it follows that the functor

� : Rep(G)!WF -L-spaces

determined by g� is 
-isomorphic to one of the form

V 7! !(V )
F L;

where ! is a fiber functor on Rep(G) over F . To such a fiber functor corresponds
an element of H1(F;G), and it is immediate that this element maps to the class of
g� in B(G).
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3.3. We continue with G and g� as above. We will again denote the Weil group
WF simply by W . Since G is defined over F , the action of W on L induces an
action of W on G(L), which we refer to as the standard action. The 1-cocycle g�
determines a twisted action of W on G(L); for � 2 W this twisted action �� is
related to the standard action � by

�
� = Int(g� ) � �: (3.3.1)

We want to define a linear algebraic group J over F such that J(F ) is equal to
G(L)W (the fixed point subgroup of the twisted W -action on G(L)).

First let us define the functor J that we wish to represent by a linear algebraic
group; here we are following Rapoport-Zink [RZ, 1.12]. For any F -algebraR there
is a natural action of W on R 
F L. This yields an action of W on G(R 
F L),
and again the 1-cocycle g� determines a twisted action of W on G(R
F L) (use
(3.3.1), as before). We define the functor J by

J(R) := G(R
F L)
W
: (3.3.2)

When R is an L-algebra, the canonical L-algebra homomorphism

R
F L! R

induces an injection

J(R) = G(R
F L)
W
,! G(R)

(the injectivity of this map follows from Appendix A and the discussion below).
When R is L itself, the injection

J(L) ,! G(L) (3.3.3)

is W -equivariant for the standard W -action on J(L) and the twisted W -action on
G(L). Moreover the injections J(R)! G(R) defined above for eachL-algebraR
identify JL with a closed subgroup scheme of GL, namely the centralizer in G of
the homomorphism � : D ! G defined in 3.2. In particular (3.3.3) identifies J(L)
with the L-points of the centralizer of � in G.

In order to define J we only need the functor � from Rep(G) to WF -L-spaces
determined by g� ; the choice of
-isomorphism � (of fiber functors overL) needed
to determine a particular 1-cocycle serves to identify J(R) withG(R
F L)W . We
proceed as follows. Let R be an F -algebra. For any Tannakian category T over F
we write T R for the category whose objects are the same as those in T and whose
morphisms are given by

HomT R(X;Y ) := HomT (X;Y )
F R:

Then there is an obvious structure of R-linear 
-category on T R, and there is an
obvious 
-functor

T ! T R
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264 ROBERT E. KOTTWITZ

(given on objects by the identity map). We denote by �R the composition of � and
the functor described above fromWF -L-spaces toWF -L-spacesR. We then define
J�(R) to be the group of 
-automorphisms of the 
-functor �R (in particular
J�(F ) is the group of 
-automorphisms of � itself).

It follows from Appendix A that J� is representable by an affine group scheme
over F , and that a choice � of 
-isomorphism of fiber functors over L determines
an isomorphism over L from J� to the centralizer in G of the homomorphism
� : D ! G. Let g� be the 1-cocycle associated to � and �. It remains to show that

J�(R) = G(R
F L)
W
:

By definition an elementx 2 J�(R) is given by a compatible family of elements

xV 2
�
EndWF ;L

(L
F V )
F R
��
;

one for each representationV ofG, where compatible means functorial in V as well
as compatible with all finite tensor products. It is obvious that for anyWF -L-space
U and any F -vector space T we have

U
W 
F T =

�
U 
L (L
F T )

�W
(to prove this choose a basis forT ). Applying this to theWF-L-space EndL(L
FV )
and the F -algebra R (again V is a representation of G), we see that

EndWF ;L
(L
F V )
F R =

�
EndL(L
F V )
L (L
F R)

�W

=
�
EndR
FL(R
F L
F V )

�W
(the second equality follows from the finite dimensionality of V ). Therefore x is a
compatible family of elements

xV 2 AutR
FL(R 
F L
F V )
W
:

Since a compatible family of elements of

AutR
FL(R 
F L
F V )

is the same as an element of

G(R
F L);

we conclude that

J�(R) = G(R
F L)
W

(it is easy to see that the W -action is the twisted one described earlier.

3.4. We continue withG and g� as above. We let � : D ! G be the homomorphism
overL determined by g� (as in 3.2), and we let J be the F -group obtained from g�
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ISOCRYSTALS WITH ADDITIONAL STRUCTURE. II 265

(as in 3.3). As in 3.3 we identify J over L with the centralizer in G of �. Since the
slope decomposition of anyWF -L-space is stable underW , the homomorphism �

satisfies

Int(g� ) � �(�) = � for all � 2W: (3.4.1)

Since D is abelian, the homomorphism � factors through J (and even through the
center of J), yielding a homomorphism

� : D ! J

defined over F (use (3.4.1) to see that it is defined over F ).
Let x� be a 1-cocycle of W in J(L). Then g0� := x�g� is a 1-cocycle of W in

G(L), and the map x� 7! g
0
� on 1-cocycles induces a map

B(J)
�g�
�!B(G): (3.4.2)

Let � 0 : D ! G be the homomorphism over L associated to g0� , and let � : D ! J

be the homomorphism over L associated to x� . Note that since � is central in J ,
the product of � and � is a well-defined homomorphism D ! J , and we claim that

�
0 = ��: (3.4.3)

To check this, pick any faithful representation V ofG. Put V := V 
F L. Then
g� turns V into aWF -L-space, which we still denote by V . Of course g0� also turns
V into a WF -L-space, which we denote by V

0
. Now put

U := EndWF ;L
(V )

an F -vector space. The group J acts on U by left multiplication (note that J(F )
is a subgroup of AutWF ;L

(V ); and, more generally, that for any F -algebra R the

group J(R) is a subgroup of AutWF ;L
R
(V 
F R)). Put

U := U 
F L

= EndD (V );

and use the 1-cocycle x� to turn U into aWF -L-space. The natural evaluation map

EndD (V )
L V ! V ;

sending f 
 v to f(v), yields a surjective map

U 
L V ! V
0

of WF -L-spaces. Let f0 2 U be the identity endomorphism of V , and let v 2 V .
We write v0 instead of v when we regard v as an element of V

0
. Then for x 2 D (L)

we have

�
0(x)v0 = �

0(x)f0(v)

= (�(x)f0)(�(x)v)

= �(x)�(x)v0;
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which shows that � 0 = ��, as desired.

3.5. We continue to use the same notation. Restricting the map (3.4.2) to the subset
H

1(F; J) of B(J), we get a map

H
1(F; J)

�g�
�!B(G): (3.5.1)

We claim that this map is injective and that its image is the set of classes of
1-cocycles g0� (ofW inG(L)) for which the associated homomorphism �

0 : D ! G

is conjugate under G(L) to �. The analogous result for B(G) appears in [RR].
It is clear from 3.2 and 3.4 that (3.5.1) maps H1(F; J) into the subset of B(G)

described above. Now suppose that g0� is a 1-cocycle such that � 0 is conjugate to
�; we must show that the class of g0� lies in the image of (3.5.1). Replacing g0�
by a cohomologous 1-cocycle, we may assume that � 0 = �. For � 2 W define
x� 2 G(L) by g

0
� = x�g� . Applying (3.4.1) to both g� and g

0
� , we see that

Int(x� ) � � = �, which means that x� lies in J(L). Moreover x� is a 1-cocycle of
W in J(L), and from (3.4.3) we see that the homomorphism � : D ! J associated
to x� is trivial. Thus (see 3.2) the class of x� in B(J) lies in the subset H1(F; J),
and this shows that the class of g0� in B(G) lies in the image of (3.5.1), as desired.

It remains to check that (3.5.1) is injective. Suppose that x� , y� are 1-cocycles
of W in J(L) arising as the restrictions of 1-cocycles of � in J(F ), and suppose
further that h is an element of G(L) such that

y�g� = hx� g��(h)
�1
:

It follows from this equation that

� = Int(h) � �;

thus h 2 J(L) and

y� = hx� (g� �(h)g
�1
� )�1

;

which shows that y� is cohomologous to x� .

3.6. Let G be a linear algebraic group over F . Let N be the unipotent radical of
G. We claim that the natural map

B(G)! B(G=N) (3.6.1)

is a bijection. Choosing a Levi factorM inG (see [BS, 5.1]), so thatG =MN , we
see immediately that (3.6.1) is surjective. Now we show that (3.6.1) is injective. Let
g� , g0� be 1-cocycles ofW inG(L)whose images in (G=N)(L) are cohomologous;
we must show that g� , g0� are cohomologous. Without loss of generality we may
assume that the images of g� and g0� in (G=N)(L) are equal. Let �; � 0 : D ! G be the
homomorphisms associated to g� , g0� respectively. Replacing g� by ng��(n)�1 for

comp4011.tex; 18/11/1997; 10:24; v.7; p.12



ISOCRYSTALS WITH ADDITIONAL STRUCTURE. II 267

suitable n 2 N(L) (note that this does not change the image of g� in (G=N)(L)),
we may assume that � factors through M , and in the same way we may assume
that � 0 also factors through M . Since g� , g0� have the same image in G=N 'M , it
follows that � 0 and � are equal. Therefore (see 3.5) there exists a 1-cocycle x� of
W in J(L) such that

g
0
� = x�g� :

Since g0� and g� have the same image in G=N , the 1-cocycle x� takes values in the
unipotent radical of J . Thus we are reduced to proving that B(U) is trivial for any
unipotent group U . Since every homomorphism � : D ! U is trivial, we see that
the natural map

H
1(F;U) ! B(U)

is bijective. It is well-known that H1(F;U) is trivial, and this concludes the proof.

4. B(H) for connected reductive H

Let H be a connected reductive group over F . In this case there is more to be said
about the objects �, J appearing in the previous section. The results in 4.6–4.18
will be used in the next section. We also need to review the notion of basic elements
in B(H). Since H is connected, the sets B(H) and B(H) coincide (see 1.4), and
therefore the results of [K] are valid for B(H).

4.1. Choose a quasi-split group G over F and a �-stable Gad(F )-orbit 	 of
F -isomorphisms

 : G! H:

Thus, for any  2 	 and any � 2 � the automorphism  
�1 � �( ) of G over F

is inner. In other words 	 consists of a Gad(F )-orbit in the set of inner twistings
G! H .

Choose a maximal split torus A in G, let T be the centralizer in G of A (a
maximal torus ofG sinceG is quasi-split), and letB be a Borel subgroup ofG that
contains T and is defined over F . Let N0 denote the unipotent radical of B. Put

AQ = X�(A)
ZQ;

A = X�(A)
ZR:

Let C denote the closed chamber

fx 2 A j h�; xi > 0 for every root � of A in Lie(N0)g

in A, and let CQ denote its intersection with the rational subspace AQ of A. It is an
easy consequence of standard facts about root systems (see [K1, Lemma 1.1.3] for
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example) that there is a canonical bijection from CQ to the set of �-fixed points
in the set of G(L)-conjugacy classes of L-homomorphisms D ! G (view AQ as
Hom(D ; A) in order to obtain a homomorphism D ! G from an element of CQ).

4.2. Let h� be a 1-cocycle ofW inH(L). Let � : D ! H be theL-homomorphism
associated to h� in 3.2. It is obvious from (3.4.1) that the H(L)-conjugacy class
of the homomorphism � is fixed by W (and hence by �). Composing � with the
inverse of any inner twisting  2 	, we get an L-homomorphism

 
�1 � � : D ! G;

whoseG(L)-conjugacy class is fixed by � and independent of the choice of  in	.
Let �� be the element of CQ corresponding to the G(L)-conjugacy class of  �1 � �

under the bijection mentioned above. Clearly �� depends only on the class of h� in
B(H). Following [RR] we call this map

B(H)! A (4.2.1)

(sending the class of h� to ��) the Newton map. We refer to �� as the Newton point
of h� . Of course the Newton map takes values in the subset CQ of A.

4.3. Let h� be a 1-cocycle of W in H(L), let � : D ! H be the associated
L-homomorphism, and let �� 2 CQ be the Newton point of h� . In 3.3 we used the
1-cocycle h� to define a linear algebraic group J over F ; recall that JL can be
identified with the centralizer in H of �. Let M denote the centralizer in G of ��
(view �� as a homomorphism D ! G factoring through A). Since �� is defined over
F , so is M .

We claim that J is an inner form of M . Indeed, let 	J be the set of elements
 in 	 such that  � �� = �. It is evident that 	J is non-empty, and that it forms
a single orbit under the action of the group M(L), where M denotes the image of
M in Gad. Let 	0

J denote the set of F -isomorphisms

 
0
J : M ! J

for which there exists  J 2 	J whose restriction to M is  0J . Then 	0
J is non-

empty and forms a single orbit underMad(F ). Moreover 	0
J is �-stable. Indeed, it

is enough to show that 	0
J is stable underW , and for this one uses that �� is defined

over F , that � is fixed by the twisted W -action (see (3.4.1)) and that the injection
(3.3.3) is W -equivariant. Therefore (J;	0

J ) is an inner form of M .

4.4. Let h� be a 1-cocycle of W in H(L). As in [K] we say that h� is basic if the
associated homomorphism � : D ! H over L factors through the center of H . In
this case the centralizer of � in H is H itself, so that J is an inner form of H (and
of G). If h� is basic, then so is every cohomologous 1-cocycle; we say that a class
in B(H) is basic if it consists of basic 1-cocycles, and we denote by B(H)b the set
of basic elements in B(H).
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Let bG be a (connected) Langlands dual group for G, and let Z( bG) denote its
center. The Galois group � acts on Z( bG), and the fixed point subgroup Z( bG)� is
a diagonalizable group over C . Recall [K, 5.6] that there is a canonical bijection

B(H)b ' X
�(Z( bG)�) (4.4.1)

between B(H)b and the character group of Z( bG)� (of course we have used the
canonical �-equivariant isomorphism between Z( bH) and Z( bG)).

Let AG denote the maximal split torus in the center of G. Then any element
� 2 X�(AG) determines a homomorphism

� : bG! C�

of algebraic groups, which we may restrict to Z( bG)�, obtaining an element in
X
�(Z( bG)�). In this way we get a homomorphism

X�(AG)! X
�(Z( bG)�); (4.4.2)

and by tensoring with R we get from (4.4.2) an isomorphism

AG := X�(AG)R ' X
�(Z( bG)�)R: (4.4.3)

It follows from [K, 4.4, 5.8] that the restriction to B(H)b of the Newton map is
equal to the composition of (4.4.1), the natural map

X
�(Z( bG)�)! X

�(Z( bG)�)R;
and the isomorphism (4.4.3) (we view AG as a subspace of A).

4.5. Let Z be the center of G. Note that 	 allows us to identify Z with the center
of H . There is an obvious action of the abelian group B(Z) on B(H) (the product
of 1-cocycles z� in Z(L) and h� in H(L) is defined to be the 1-cocycle � 7! z�h�

in H(L)).
It is clear that the stabilizer in B(Z) of the base point in B(H) is

ker[B(Z)! B(H)]; (4.5.1)

and this group coincides with

ker[H1(F;Z)! H
1(F;H)]

since the homomorphism � : D ! Z associated to an element in (4.5.1) must be
trivial.

Now let h� be any 1-cocycle of W in H(L), and let h denote its class in B(H).
Let J be the F -group associated to h� in 3.3. We claim that the stabilizer in B(Z)
of h is also the subgroup (4.5.1). Let z� be a 1-cocycle of W in Z(L). Then the
class of z� stabilizes h if and only if there exists x 2 H(L) such that

z�h� = xh� �(x)
�1
: (4.5.2)
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It follows from this equation (use (3.4.3), noting that Z can be identified with a
subgroup of J) that

�� = Int(x) � �; (4.5.3)

where � (respectively, �) is the homomorphism D ! Z (respectively, D ! H)
associated to z� (respectively, h� ). Projecting the equation (4.5.3) into the quotient
of H by its derived group Hder, we see that � factors through Z \ Hder, a finite
group. We conclude that � is trivial; looking back at (4.5.3), we now see that x
centralizes � and hence is an element of J(L). Rewriting (4.5.2) as

z� = x � h��(x)
�1
h
�1
�

= x � ��(x)�1
;

we now see that the stabilizer in B(Z) of h is

ker[B(Z)! B(J)];

which is also equal to

ker[H1(F;Z)! H
1(F; J)]: (4.5.4)

Let �� : D ! G be the image of h� under the Newton map, and let M be the
centralizer of �� in G, a Levi subgroup of G. It is well-known that

H
1(F;M) ! H

1(F;G)

is injective (this is true for any field F , not just p-adic fields). Therefore the group

ker[H1(F;Z)! H
1(F;M)]

is equal to

ker[H1(F;Z)! H
1(F;G)]:

It is a special property of p-adic fields that the group

ker[H1(F;Z)! H
1(F;G)]

is equal to

ker[H1(F;Z)! H
1(F;H)]

for any inner form H of G. Applying this to the inner forms M , J as well, we see
that (4.5.4) coincides with (4.5.1), as desired.

The special property of p-adic fields stated above can be proved easily using the
methods in [K2, Sect. 1]. Indeed, if the derived group of G is simply connected,
then both

ker[H1(F;Z)! H
1(F;G)]
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and

ker[H1(F;Z)! H
1(F;H)]

coincide with

ker[H1(F;Z)! H
1(F;D)];

where

D = G=Gder = H=Hder:

Using z-extensions as in the proof of Theorem 1.2 in [K2], one reduces the general
case to the special case just treated.

4.6. The group Had(F ) acts on H by F -automorphisms and therefore acts on
B(H). We claim that this action is in fact trivial (it is obvious that H(F ) acts
trivially on B(H), but since

H(F )! Had(F )

need not be surjective, it is not obvious that Had(F ) acts trivially on B(H)). Let
�x 2 Had(F ) and pick x 2 H(F ) representing �x. Then

z� := x
�1
�(x) (4.6.1)

is a 1-cocycle of� inZ(F ). The action of �x 2 Had(F ) on B(H) takes the 1-cocycle
h� of W in H(L) into the 1-cocycle

� 7! xh�x
�1
;

and this 1-cocycle is cohomologous to

� 7! h� z� :

Equation (4.6.1) shows that the class of z� in H1(F;Z) lies in

ker[H1(F;Z)! H
1(F;H)]: (4.6.2)

It follows from 4.5 that any element in (4.6.2) acts trivially on B(H). Therefore
h�z� is cohomologous to h� , as desired.

4.7. Let X ! S be a map of sets, and let s 2 S. We write Xs for the fiber of
X ! S over s. Recall that a commutative diagram

X - Y

S

?

f
- T

?
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of sets and maps is said to be cartesian if the natural map from X to the fiber
product S �T Y is an isomorphism (equivalently, if for every s 2 S the natural
map Xs ! Yf(s) is bijective).

Consider a commutative diagram of the following type

X - Y - Z

S

?

f
- T

?

- U:

?

Let us denote by (L) (respectively, (R)) the left-hand (respectively, right-hand)
square, and let us denote by (LR) the outer rectangle. If (L) and (R) are cartesian,
then so is (LR). If (LR) and (R) are cartesian, then so is (L). If (LR) and (L) are
cartesian and if f is surjective, then (R) is cartesian.

4.8. We say that a homomorphism f : H ! H
0 from H to another connected

reductive groupH 0 over F is an ad-isomorphism if f maps the center ofH into the
center of H 0 and the induced map Had ! H

0
ad is an isomorphism (in which case

Hsc ! H
0
sc is also an isomorphism).

4.9. Recall from [K3, Sect. 6] (see also 7.5) that there is a canonical map

B(H)! X
�(Z( bH)�); (4.9.1)

and that the restriction of (4.9.1) to B(H)b coincides with the bijection (4.4.1)
(after identifying Z( bH) with Z( bG)). As Borovoi [B] has observed, the �-module
X
�(Z( bH)) can be identified with

cok[X�(Tsc)! X�(T )]

for any maximal torus T in H (where Tsc denotes the inverse image of T in Hsc),
and since this cokernel is easily seen to be functorial in H , it follows that the
construction H 7! Z( bH) is functorial in H for all connected reductive H and all
F -homomorphisms H ! H

0. It is easy to see that the maps (4.9.1) are functorial
in H as well. Thus, an F -homomorphism f : H ! H

0 gives rise to a commutative
square

B(H) - B(H 0)

X
�(Z( bH)�)

?

- X
�(Z( bH 0)�):

?

(4.9.2)
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PROPOSITION 4.10. If f is an ad-isomorphism, then the commutative square
(4.9.2) is cartesian.

We will prove the proposition in 4.17, after proving Lemmas 4.15 and 4.16. At
the moment we are concerned with two useful corollaries of the proposition.

COROLLARY 4.11. The set B(H) is the fiber product of B(Had) andX�(Z( bH)�)

over X�( bZ�
sc), where bZsc denotes the center of ( bH)sc.

To prove the corollary take H 0 = Had in the proposition.

COROLLARY 4.12. Let � 2 X
�(Z( bH)�) and let h be a basic 1-cocycle of W

in H(L) whose class h in B(H) maps to � under the bijection (4.4.1). Let Jh

denote the inner form (see 4.4) ofH determined by h, and let Jhsc denote the simply
connected cover of its derived group; thus Jhsc is an inner form of Hsc. Then the
composed map

B(Jhsc)! B(Jh)
�h
- B(H)

(see (3.4.2)) induces a bijection

B(Jhsc) ' B(H)�;

where B(H)� denotes the fiber over � of

B(H)! X
�(Z( bH)�):

Consequently B(H) can be written as the disjoint union

B(H) =
a

h2B(H)b

B(Jhsc):

To prove Corollary 4.12 one begins by applying the proposition to the ad-isomor-
phism Hsc ! H in order to conclude that there is a natural bijection

B(Hsc) ' ker[B(H)! X
�(Z( bH)�)]:

This is the special case of the corollary in which � is trivial. Now consider the
diagram

B(Jh) �h
- B(H)

X
�(Z( bH)�)

?

��
- X

�(Z( bH)�):

?
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This diagram commutes (use z-extensions to reduce to the case in which Hder is
simply connected), and both horizontal arrows are obviously bijections. It follows
that

B(H)� ' ker[B(Jh)! X
�(Z( bH)�)]

' B(Jhsc);

as desired.

4.13. Corollary 4.12 gives an even clearer picture of B(H) when it is combined
with the following observation: for any simply connected group H the Newton
map (4.2.1)

B(H)! A

is injective. More generally, for any connected reductive group H the map

B(H)! A�X
�(Z( bH)�) (4.13.1)

is injective (the first component of the map (4.13.1) is the Newton map and the
second component is the map (4.9.1)).

Indeed, let h, h0 be two elements in B(H) having the same image under the
Newton map. Pick a 1-cocycle h lying in the class h and let J be the group
associated to h in 3.3. In 3.5 we saw that h0 lies in the image of

H
1(F; J)

�h
- B(H): (4.13.2)

Let M be the Levi subgroup of G associated to h in 4.3 (recall that J is an inner
form of M ). The diagram

B(J) �h
- B(H)

X
�(Z(cM)�)

?

��
- X

�(Z( bG)�)
?

commutes, where � denotes the image of h inX�(Z( bG)�), and �� denotes the map
obtained by composing the restriction map

X
�(Z(cM)�)

res
- X

�(Z( bG)�)
and the map fromX

�(Z( bG)�) to itself given by multiplication by �. As before one
proves the commutativity of the diagram above by using z-extensions to reduce to
the case in whichHder is simply connected (which implies thatGder,Mder, Jder are
simply connected as well).
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Now suppose that h, h0 also have the same image inX�(Z( bH)�) = X
�(Z( bG)�).

Pick an element x 2 H
1(F; J) that maps to h0 under (4.13.2). It follows that the

image of x under

H
1(F; J) ! X

�(Z(cM)�)
res
- X

�(Z( bG)�) (4.13.3)

is trivial. Recall from [K2, 1.2] that

H
1(F; J) ' X

�
�
�0(Z(cM)�)

�
;

where �0(Z(cM)�) denotes the group of connected components of Z(cM)�. More-
overZ( bG)� meets every connected component ofZ(cM)�, since [Z(cM)=Z( bG)]� is
connected (reduce to the case in which Z( bG) is trivial, and then note that Z(cM) is
a torus whose character group has a basis permuted by �). Therefore the composed
map (4.13.3) is injective, and we conclude that x is trivial. It follows that h = h0,
and this completes the proof that (4.13.1) is injective.

4.14. It remains to prove Proposition 4.10. We say that an ad-isomorphism f is
good if the conclusion of Proposition 4.10 holds for f ; our goal is to prove that
every ad-isomorphism is good. To this end we must first prove two lemmas.

LEMMA 4.15. Let f : H ! H
0 be a surjective ad-isomorphism whose kernel Z

is a torus such that H1(F;Z) is trivial. Then f is good.

Consider the exact sequence

1 ! Z ! H
f
- H

0 ! 1;

as well as the associated exact sequence

1 ! Z( bH 0)! Z( bH)! bZ ! 1:

We must show that the square

B(H) - B(H 0)

X
�(Z( bH)�)

?

- X
�(Z( bH 0)�)

?

is cartesian. Let h0 2 B(H 0) and let �0 denote its image in X�(Z( bH 0)�). We must
show that

B(H)h0 ' X
�(Z( bH)�)�0
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(as before Xs denotes the fiber of X ! S over s 2 S). The group B(Z) acts
transitively on B(H)h0 . Since Z is a subgroup of the center of H the discussion in
4.5 shows that the stabilizer in B(Z) of any point in B(H) is equal to the stabilizer
of the base point in B(H), namely

ker[B(Z)! B(H)];

which is also equal to

ker[H1(F;Z)! H
1(F;H)]:

Since H1(F;Z) is trivial by hypothesis, we see that B(Z) acts simply transitively
on B(H)h0 .

The groupX�( bZ�) acts transitively onX�(Z( bH)�)�0 . SinceH1(F;Z) is trivial,
the group bZ� is connected [K2, 1.2], whence

X
�( bZ�)! X

�(Z( bH)�)

is injective. Therefore X�( bZ�) acts simply transitively on X�(Z( bH)�)�0 . Using
the canonical isomorphism

B(Z) ' X
�( bZ�)

of [K], we see that

B(H)h0 ' X
�(Z( bH)�)�0 ;

as desired.

LEMMA 4.16. Let f : H ! H
0 be an ad-isomorphism, and assume that Hder,

H
0
der are simply connected. Then f is good.

Put D = H=Hder and D0 = H
0
=H

0
der. Recall that bD = Z( bH) and bD0 = Z( bH 0).

The map (4.9.1) can be thought of as the natural map

B(H)! B(D);

using the identifications

B(D) ' X
�( bD�) ' X

�(Z( bH)�):

Thus our problem is to show that the square

B(H) - B(H 0)

B(D)
?

- B(D0)
?
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is cartesian. Let d 2 B(D) and let d0 be its image in B(D0). We must show that

B(H)d ' B(H 0)d0 :

We claim that both of these fibers are in natural one-to-one correspondence with
the set B(Jhsc), where h is a basic 1-cocycle in H(L) whose image in B(D) is d,
and where Jh is the inner form of H obtained from h as in 4.4. Of course this
claim is a special case of Corollary 4.12, but in order to avoid circular reasoning,
we must establish Corollary 4.12 directly in the case thatHder is simply connected.
Looking back at the method used to derive Corollary 4.12 from Proposition 4.10,
we see that it is enough to show that

B(Hsc) ' ker[B(H)! B(D)]:

It follows from the exactness of

1 ! Hsc ! H ! D ! 1

that B(Hsc) maps onto ker[B(H)! B(D)]. The fibers of the map

B(Hsc)! B(H)

coincide with the orbits of D(F ) on B(Hsc) (see 1.5). It follows from the triviality
ofH1(F;Hsc) (see [Kn]) that the map H(F )! D(F ) is surjective. Therefore the
orbits of D(F ) on B(Hsc) coincide with the orbits of H(F ) on B(Hsc). Looking
back at 1.5, we see that the action ofH(F ) on B(Hsc) is induced by the conjugation
action of H(F ) on Hsc. It follows from 4.6 that this action is trivial. We conclude
that B(Hsc)! B(H) is injective, and our proof is complete.

4.17. Now we prove Proposition 4.10. Let f : H ! H
0 be any ad-isomorphism. It

is easy to construct (see [K4, 2.4.4]) a commutative diagram

H1
f1
- H

0
1

H

p

?

f
- H

0

p0

?

in which the two vertical arrows are z-extensions. Clearly f1 is an ad-isomorphism.
By Lemma 4.16 f1 is good. By Lemma 4.15 p0 is good. It is clear that the compo-
sition of two good ad-isomorphisms is good. Therefore p0 � f1 = f � p is good. By
Lemma 4.15 p is good, and moreover

X
�(Z( bH1)

�)! X
�(Z( bH)�)

is surjective. Therefore the fact that f � p is good implies that f is good (see 4.7).
The proof of Proposition 4.10 is complete.
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4.18. Let h� be a basic 1-cocycle of W in H(L), let J be the F -group associated
to h� in 3.3, and let � 2 A denote the Newton point of h� . As we noted in 4.4, J is
an inner form ofH (andG), so that the Newton maps for J andH both take values
in A. It follows from (3.4.3) that the diagram

B(J) �h�
- B(H)

A
?

��
- A
?

(4.18.1)

commutes, where �� denotes translation by � in the abelian groupA and the vertical
arrows are Newton maps. Since h� is basic, it is evident that the map

B(J)
�h�
- B(H)

is bijective. Thus we conclude from (4.18.1) that the image of the Newton map
for H is the translate by � of the image of the Newton map for J . Note that if the
center of H is connected, then the natural map

B(H)b ! B(Had)b = H
1(F;Had)

is surjective, so that every inner form ofH is of the form J for a suitable 1-cocycle.
In particular the Newton maps for inner forms of an adjoint group all have the same
image, since the relevant Newton points � are trivial in this case.

5. Simple description of B(H) for connected reductive H

Let G be a quasi-split connected reductive group over F . For such G a simple,
concrete description of B(G) is given in [K]. Our goal here is to give an analogous
description for all connected reductive groups over F . This is best accomplished
by considering simultaneously all inner forms H of the given quasi-split group G.

5.1. We first need to recall from [K] the description of B(G) in the quasi-split case.
By a parabolic subgroup ofG we mean a parabolic subgroup of G defined over F .
Fix a Borel subgroup B of G over F . As usual we refer to parabolic subgroups of
G containing B as standard parabolic subgroups of G. We fix a maximal torus T
in B over F , and for any standard parabolic subgroup P of G we write P =MN ,
where N is the unipotent radical of P and M is the unique Levi component of P
containing T . We writeAP (orAM ) for the maximal split torus in the center ofM .
Let AP denote the R-vector space X�(AP ) 
ZR. As usual P determines an open
chamber A+

P in AP , defined by

A
+
P = fx 2 AP j h�; xi > 0 for every root � of AP in Lie(N)g:
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We also use the notation A, A, AQ, C and CQ from 4.1 (A is the maximal split
torus in T ).

Any element g in B(G) determines a standard parabolic subgroupPg, as follows.
Let �� 2 C be the image of g under the Newton map (see 4.2). The closed chamber C
in A is the disjoint union

C =
a
P

A+
P ;

where P runs over the standard parabolic subgroups of G (as usual we identify AP
with a subspace of A). By definition Pg is the unique standard parabolic subgroup
P for which �� 2 A

+
P .

For any standard parabolic subgroup P =MN of G, we denote by B(G)P the
subset of B(G) consisting of all elements g for which Pg is equal to P . Thus B(G)
is the disjoint union

B(G) =
a
P

B(G)P ; (5.1.1)

where P runs through the set of standard parabolic subgroups in G. Of course
B(G)G is simply the set B(G)b of basic elements in B(G) (see 4.4). For any basic
element m in B(M), the image of m under the Newton map (for M ) lies in AP .
We write B(M)+b for the subset of B(M)b consisting of all m whose image under
the Newton map lies in the subset A+

P of AP .
It follows from [K, Sect. 6] that the canonical map

B(M)! B(G)

induces a bijection

B(M)+b ' B(G)P : (5.1.2)

There is a natural homomorphism

X
�(Z(cM)�)! AP (5.1.3)

obtained by composing the natural map

X
�(Z(cM)�)! X

�(Z(cM )�)R

with the isomorphism (4.4.3)

AP ' X
�(Z(cM )�)R:

Let X�(Z(cM )�)+ denote the subset of X�(Z(cM)�) consisting of all elements
whose image in AP lies in A+

P . Combining (5.1.2) with the bijection (4.4.1)

B(M)b ' X
�(Z(cM)�);
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we get a bijection An inner form of G is a pair (H;	) consisting of a connected
reductive group H over F and a �-stable Gad(F )-orbit 	 of F -isomorphisms

 : G! H:

Let (H1;	1), (H2;	2) be two inner forms of G. An isomorphism from (H1;	1)
to (H2;	2) is an F -isomorphism � : H1 ! H2 carrying 	1 into 	2. The group of
automorphisms of (H;	) is equal to Had(F ). There is an obvious bijection from
the set of isomorphism classes of inner forms ofG to the setH1(F;Gad), obtained
by sending (H;	) to the class of the 1-cocycle � 7!  

�1 � �( ), where  is any
element in 	.

Consider triples (H;	;h) consisting of an inner form (H;	) of G and an
element h 2 B(H). An isomorphism from one triple (H1;	1;h1) to another
(H2;	2;h2) is an F -isomorphism � : H1 ! H2 carrying 	1 into 	2 and h1 into
h2. Let Bs(G) denote the set of isomorphism classes of triples (H;	;h). Note that
any ad-isomorphismG! G

0 (see 4.8) induces a natural map

Bs(G)! Bs(G0): (5.2.1)

There is an obvious map

Bs(G)! H
1(F;Gad); (5.2.2)

sending (H;	;h) to the element in H
1(F;Gad) determined by the inner form

(H;	) ofG. Let (H;	) be an inner form of G, and let x denote the corresponding
element in H1(F;Gad). Then there is a canonical bijection from B(H) to the fiber
of (5.2.2) over x; to prove this use that Had(F ) acts trivially on B(H) (see 4.6).
Speaking loosely, Bs(G) is the disjoint union of the sets B(H) as H runs through
the inner forms of G.

Let (H;	;h) be a triple as above. The map (4.9.1) for H produces from h an
element � in X

�(Z( bH)�), which we regard as an element of X�(Z( bG)�). We
define a map

Bs(G)! X
�(Z( bG)�) (5.2.3)

by sending (H;	;h) to �.

5.3. We are going to give a simple, concrete description of Bs(G) that is quite
analogous to the one we already have for B(G). Let (H;	;h) be a triple as above.
The Newton map for H produces from h an element �� 2 A. We define a map (still
called the Newton map)

Bs(G)! A (5.3.1)

by sending (H;	;h) to ��. Again the Newton map takes values in the subsetCQ of
A.

Just as in 5.1 we use the Newton map to associate a standard parabolic subgroup
P (H;	;h) to (H;	;h), and for a given standard parabolic subgroup P of G we
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write Bs(G)P for the subset of Bs(G) consisting of all (isomorphism classes of)
triples (H;	;h) such that P (H;	;h) is equal to P .

Let bZsc denote the center of ( bG)sc, the simply connected cover of the derived
group of bG. Of course � operates on bZsc, and as usual we denote by bZ�

sc the group
of fixed points. There is a canonical bijection [K2, 1.2]

H
1(F;Gad)! X

�( bZ�
sc): (5.3.2)

Recall that we have chosen a maximal torus T of G contained in the Borel
subgroup B. Let Tsc (respectively, Tad) denote the inverse image (respectively,
image) of T in Gsc (respectively, Gad). There is a surjective homomorphism

Tsc ! Tad:

Dual to this is the surjective homomorphism

( bT )sc ! ( bT )ad;

whose kernel is bZsc. Thus ( bT )sc is an extension of ( bT )ad by the finite abelian groupbZsc. Since the group X�(( bT )ad) = X�(Tsc) has a basis that is permuted by � (for
example the basis of simple coroots of Tsc), the group ( bT )�ad of �-invariants in
( bT )ad is connected; hence the homomorphism

( bT )�sc ! ( bT )�ad

is also surjective. Thus we get an extension

1 ! bZ�
sc ! ( bT )�sc ! ( bT )�ad ! 1 (5.3.3)

of ( bT )�ad by bZ�
sc.

Dual to Tsc ! T is a surjective homomorphism

bT ! ( bT )ad;

which induces a surjective homomorphism

bT� ! ( bT )�ad: (5.3.4)

Pulling back the extension (5.3.3) by means of the homomorphism (5.3.4), we
obtain an extension

1 ! bZ�
sc !

bT�
s ! bT� ! 1 (5.3.5)

of bT� by bZ�
sc, where we have written bTs for the fiber product of bT and ( bT )sc over

( bT )ad.
For any standard parabolic subgroup P =MN ofG, the group T is a maximal

torus in M , and therefore there is a canonical �-equivariant embedding

Z(cM) ,! bT ;

comp4011.tex; 18/11/1997; 10:24; v.7; p.27



282 ROBERT E. KOTTWITZ

which induces an embedding

Z(cM)� ,! bT�
: (5.3.6)

Pulling back the extension (5.3.5) by means of the homomorphism (5.3.6), we
obtain an extension

1 ! bZ�
sc ! Zs(cM)� ! Z(cM)� ! 1; (5.3.7)

where we have written Zs(cM ) for the inverse image under

bTs ! bT
of the subgroup Z(cM) of bT .

Since Z( bG)� is the kernel of (5.3.4), there is a canonical isomorphism

Zs( bG)� = Z( bG)� � bZ�
sc;

and hence there is a canonical embedding

Z( bG)� ,! Zs( bG)�:
Combining this with the obvious embeddings

Zs( bG)� ,! Zs(cM)�;

we obtain embeddings

Z( bG)� ,! Zs(cM )�: (5.3.8)

Let f : G! G
0 be an ad-isomorphism. There is a unique Levi subgroup M 0 of

G
0 such that f�1(M 0) =M , and there is an obvious cartesian diagram

Zs(cM 0)� - Zs(cM )�

Z(cM 0)�
?

- Z(cM)�:

?

(5.3.9)

Since bZ�
sc is a finite abelian group, we see from (5.3.7) that there is a canonical

isomorphism

X
�(Zs(cM)�)R ' X

�(Z(cM)�)R;

which we compose with the isomorphism (4.4.3)

X
�(Z(cM)�)R ' AP ;
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obtaining an isomorphism

X
�(Zs(cM)�)R ' AP : (5.3.10)

Thus we have a canonical map

X
�(Zs(cM)�)! AP : (5.3.11)

We denote byX�(Zs(cM )�)+ the subset ofX�(Zs(cM )�) consisting of all elements
whose image under (5.3.11) lies in the subset A+

P of AP .

THEOREM 5.4. There is a canonical bijection

Bs(G)P ' X
�(Zs(cM)�)+;

and this bijection is functorial with respect to ad-isomorphisms f : G ! G
0. The

composition of this bijection with the map (5.3.11) coincides with the restriction to
Bs(G)P of the Newton map. The composition of this bijection with the map

X
�(Zs(cM)�)! X

�(Z( bG)�)
dual to (5.3.8) coincides with the restriction to Bs(G)P of the map (5.2.3). The
composition of this bijection with the map

X
�(Zs(cM)�)! X

�( bZ�
sc)

dual to the inclusion of bZ�
sc in Zs(cM )� coincides with the restriction to Bs(G)P of

the map

Bs(G)! H
1(F;Gad) ' X

�( bZ�
sc)

obtained by composing (5.2.2) and (5.3.2). The bijection is characterized by the
last three properties.

It follows from 5.2 and 4.13 that the obvious map

Bs(G)! A�X
�(Z( bG)�)�X

�( bZ�
sc) (5.4.1)

is injective. Therefore there can be at most one bijection satisfying the last three
properties stated in the theorem.

We begin by constructing the desired bijection in the case that G is an adjoint
group. Let (H;	) be an inner form of G. Choose  2 	 and let g� :=  

�1 � �( )
be the associated 1-cocycle of � in Gad(F ) = G(F ). Of course we can restrict g�
to W , obtaining a 1-cocycle of W in G(L). As in (3.4.2) we have the map

B(H)! B(G) (5.4.2)
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sending the class of a 1-cocycle h� of W in H(L) to the class of the 1-cocycle
 
�1(h� )g� . It is obvious that the map (5.4.2) is bijective and independent of the

choice of  in 	. Looking back at (4.18.1), we see that the diagram

B(H) - B(G)

A
?

======== A
?

(5.4.3)

commutes, where the two vertical arrows are Newton maps (from 3.2 we know that
the Newton point of g� is trivial).

Let �H 2 X
�( bZ�

sc) be the image under the map (5.3.2) of the class of g� . We
have already noted (see the proof of Corollary 4.12) that the diagram

B(H) - B(G)

X
�( bZ�

sc)

?

��H
- X

�( bZ�
sc)

?

(5.4.4)

commutes, where the vertical arrows are of type (4.9.1).
Let P be a standard parabolic subgroup of G. Viewing B(H) as a subset of

Bs(G), we define B(H)P to be the intersection of B(H) and Bs(G)P . It follows
from the commutativity of (5.4.3) that the bijection (5.4.2) induces a bijection

B(H)P ! B(G)P : (5.4.5)

Combining the bijections (5.4.5) for varying (H;	), we get a bijection

Bs(G)P ! B(G)P �X
�( bZ�

sc); (5.4.6)

the restriction to B(H)P � Bs(G)P of (5.4.6) being given by

h� 7! ( �1(h� )g� ; �H):

Combining (5.4.6) with the bijection (5.1.4), we get a bijection

Bs(G)P ! X
�(Z(cM)�)+ �X

�( bZ�
sc): (5.4.7)

SinceG is adjoint, there is a canonical splitting of the extension (5.3.5), obtained
as follows: in this special case bT�

s is the fiber product of bT� with itself over ( bT )�ad,
and therefore the diagonal map from bT� to that fiber product provides the desired
splitting. Since the extensions (5.3.7) are obtained as pull-backs from (5.3.5), they
all have canonical splittings as well. Thus

Zs(cM)� = Z(cM)� � bZ�
sc (5.4.8)
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in our special case, and we can view (5.4.7) as a bijection

Bs(G)P ! X
�(Zs(cM)�)+: (5.4.9)

It is easy to check that (5.4.9) has the three desired properties.
Now we consider the general case. There is a commutative square

Bs(G) - Bs(Gad)

X
�(Z( bG)�)
?

- X
�( bZ�

sc);

?

(5.4.10)

where the vertical maps are of type (5.2.3). It follows from Proposition 4.10 that
the square (5.4.10) is cartesian. Let P = MN be a standard parabolic subgroup
of G and let P1, M1 denote the images in Gad of P , M respectively. The inverse
image of Bs(Gad)P1 under

Bs(G)! Bs(Gad)

is Bs(G)P ; therefore the square

Bs(G)P - Bs(Gad)P1

X
�(Z( bG)�)
?

- X
�( bZ�

sc)

?

(5.4.11)

is cartesian as well. Using the bijection (5.4.9), we see that there is a canonical
bijection

Bs(G)P ! X
�(Zs(cM1)

�)+ �Y X
�(Z( bG)�); (5.4.12)

where we have written Y for X�( bZ�
sc). The target of (5.4.12) is a subset of the

abelian group

X
�(Zs(cM1)

�)�Y X
�(Z( bG)�);

and this abelian group can be identified with X�(A), where A is the group

A :=
�
Zs(cM1)

� � Z( bG)��� bZ�
sc

( bZ�
sc is embedded in the product as follows: the first component of the embedding

is the inverse of (5.3.8) for Gad and the second component is the canonical map
from bZ�

sc to Z( bG)�).
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There are natural homomorphisms

Zs(cM1)
� ! Zs(cM)� (5.4.13)

and

Z( bG)� ,! Zs(cM )�; (5.4.14)

the first coming from (5.3.9) and the second from (5.3.8). Together these yield a
homomorphism

Zs(cM1)
� � Z( bG)� ! Zs(cM)�

and this homomorphism yields an isomorphism

A ' Zs(cM )�: (5.4.15)

In this way the target of (5.4.12) can be viewed as a subset of X�(Zs(cM)�) and
this subset is easily seen to be X�(Zs(cM )�)+. Thus we get a canonical bijection

Bs(G)P ' X
�(Zs(cM)�)+; (5.4.16)

as desired. It is routine to check that this bijection satisfies all the properties stated
in the theorem.

6. The Subset B(H;�) of B(H)

In this section we define certain subsets B(H;�) of B(H). Motivation for intro-
ducing these subsets is given in the introduction.

6.1. LetG be a quasi-split connected reductive group over F , and let (H;	) be an
inner form of G. We use the same notation as in the last two sections. In particular
B denotes a Borel subgroup of G over F , and T denotes a maximal F -torus in B.
Let � 2 X�(T ) and suppose that � lies in the closed Weyl chamber in X�(T )R
determined by B. Of course we may also regard � as a character on bT , which we
can restrict to the subgroup Z( bG)� of bT , obtaining an element

�1 2 X
�(Z( bG)�) = X

�(Z( bH)�):

We can also restrict � to bT�; then, applying the homomorphism

X
�( bT�)! A

(a special case of (5.1.3)) to this element of X�( bT�), we obtain an element

�2 2 A:
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Equivalently, viewing A as the subspace of �-invariant elements in X�(T )R, we
have

�2 = [� : ��]
�1

X
�2�=��

�(�); (6.1.1)

where �� denotes the stabilizer of � in �.

6.2. Let B(H;�) denote the subset of B(H) consisting of all h 2 B(H) such that
the image of h under the map (4.9.1) is equal to �1 and such that the image �� 2 A

of h under the Newton map (4.2.1) satisfies

�� 6 �2: (6.2.1)

Here 6 is the usual order on A; thus �� 6 �2 means that �2 � �� is a nonnegative
linear combination of positive coroots in X�(T )R, or, equivalently, a nonnegative
linear combination of positive relative coroots in A. Let 
F be the relative Weyl
group of the maximal split torus A in T ; recall that 
F can be identified with the
fixed points 
� of � in 
, where 
 denotes the absolute Weyl group of T in G. It
is known (see [A]) that (6.2.1) is equivalent to the the following condition:

�� lies in the convex hull of the orbit 
F � �2 of �2 under 
F . (6.2.2)

6.3. Since �1, �2 depend only on the restriction of � to bT�, the subset B(H;�)
depends only on this restriction, or, equivalently, only on the image of � in the
group X�(T )� of coinvariants of � in X�(T ).

6.4. It follows easily from Theorem 5.4 that B(H;�) is a finite set. It is clear that
B(H;�) contains the unique basic element in B(H) whose image under (4.4.1) is
equal to �1, and it is clear that B(H;�) contains no other basic element. We say
that the pair (H;�) is uniform if B(H;�) has exactly one element, namely the basic
element we just described. Again motivation for making this definition is given in
the introduction.

6.5. Let Tad denote the image of T in Gad, and let �ad denote the image of � under

X�(T )! X�(Tad):

Then the natural map B(H)! B(Had) induces a bijection

B(H;�) ' B(Had; �ad): (6.5.1)

Indeed, this follows immediately from Corollary 4.11. In particular (H;�) is uni-
form if and only if (Had; �ad) is uniform.

Suppose that H is a product

H = H1 �H2
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and that �1, �2 are the two components of �. Then there is an obvious bijection

B(H;�) = B(H1; �1)� B(H2; �2): (6.5.2)

In particular (H;�) is uniform if and only if (H1 ; �1) and (H2; �2) are both uniform.
Let E be a finite extension of F in F , and let G0 be a quasi-split connected

reductive group overE. We useR(G0) to denote the F -group obtained fromG0 by
Weil’s restriction of scalars from E to F . Suppose that G = R(G0). By Shapiro’s
lemma every inner form (H;	) is isomorphic to one of the form (R(H0); R(	0)),
where (H0;	0) is an inner form of G0. Of course T , B are of the form R(T0),
R(B0) for a maximal torus T0 and Borel subgroup B0 in G0 containing T0. The
dominant coweight � lies in

X�(T ) = Ind(X�(T0));

where Ind(X�(T0)) denotes the �-module induced by the �E-module X�(T0) (we
denote by �E the Galois group of F overE). Thus� can be thought of as a function

� : �! X�(T0)

satisfying

�(��) = � � �(�) for all � 2 �E , � 2 �:

Pick a set �0 of coset representatives for the cosets �En� and form the sum

�0 =
X
�2�0

�(�) 2 X�(T0);

noting that each �(�) is dominant in X�(T0), so that �0 is dominant as well. Of
course the image of �0 in the group of coinvariantsX�(T0)�E is well-defined. It is
easy to see that there is a canonical bijection

B(H;�) = B(H0; �0): (6.5.3)

6.6. If � = 0, then (H;�) is uniform. Indeed, in this case the Newton point �� of
any h 2 B(H;�) must be 0. Therefore B(H;�) consists of basic elements, and as
we have seen, B(H;�) contains exactly one basic element.

LEMMA 6.7. Suppose H is an F -simple adjoint group, and suppose that � is
nonzero. Suppose further that H is not anisotropic over F . Then (H;�) is not
uniform.

By hypothesis H contains a proper parabolic subgroup Q. Choose a Levi sub-
group L ofQ. Let P =MN be the unique standard parabolic subgroup of G such
that  (P ) is conjugate to Q under H(F ) for all  2 	. Let 	M be the set of
 2 	 such that  (P ) = Q and  (M) = L; then 	M is (the set of F -points of)
an F -torsor under M . In particular L is an inner form of M .
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Now let w be an element of the relative Weyl group 
F of A in G. Restricting
the characterw� on bT to the subgroupZ(cM)�, we get an element ofX�(Z(cM )�),
which by means of the canonical bijection

B(L)b ' X
�(Z(cM)�)

determines a basic element x(w) in B(L). Let h(w) 2 B(H) denote the image of
x(w) under the natural map

B(L)! B(H):

The elements h(w) all belong to B(H;�). Since H is adjoint, the element h(w)
is basic in B(H) if and only if its image under the Newton map is trivial, which
happens if and only if the restriction of w� to the identity component of Z(cM)� is
trivial. Therefore h(w) is basic in B(H) if and only if w�2 lies in the kernel K of
the natural surjection A! AM (dual to Z(cM)� ,! bT�).

Note that our hypothesis that � is nonzero implies that �2 is nonzero (this
is clear from (6.1.1) since � is dominant and � preserves the cone of dominant
coweights). Since G is F -simple and adjoint, the relative root system of A in G
is irreducible (since G is quasi-split its relative Dynkin graph is the quotient by �
of its absolute Dynkin graph [T, 2.5.3]). Therefore the representation of 
F on A

is irreducible, and hence 
F � �2 spans A. We conclude that there exists w 2 
F
such that w�2 =2 K . The corresponding element h(w) in B(H;�) is not basic, and
therefore (H;�) is not uniform.

6.8. Using (6.5.1), (6.5.2), (6.5.3), we see that in order to classify all uniform
pairs (H;�) it suffices to classify the ones for which H is an absolutely simple
adjoint group. By Lemma 6.7 we may further assume that H is anisotropic over
F (otherwise (H;�) is uniform only for � = 0). Any absolutely simple, adjoint,
anisotropic group overF is an inner form ofPGLn [Kn]. Therefore we may assume
that G = PGLn for some n > 2 and that H = D

�
j=n=F

�, where Dj=n denotes a

central division algebra over F having dimension n2 and Hasse invariant j=n (of
course j must be relatively prime to n). We denote the algebraic group D�

j=n=F
�

by Hj=n.
We make the usual choices for T , B (diagonal matrices and upper triangular

matrices, taken modulo scalar matrices), and we represent coweights� 2 X�(T ) as
n-tuples (�1; : : : ; �n) of integers, modulo constant n-tuples (a; : : : ; a). Of course
� is dominant if and only if

�1 > �2 > : : : > �n: (6.8.1)

For any integer k between 1 andnwe write �(k) for the n-tuple (1; : : : ; 1; 0; : : : ; 0)
in which 1 is repeated k times and 0 is repeated n� k times.

LEMMA 6.9. The pairs (H1=n; �(1)) and (H(n�1)=n; �(n�1)) are uniform. There
are no other uniform pairs of the form (Hj=n; �) except those for which � is 0.
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It is more convenient to work with GLn and D�
j=n rather than their adjoint groups,

and by (6.5.1) it is harmless to do so. We must show that the only uniform pairs
(D�

j=n
; �) with � nonconstant (in other words, not of the form (a; : : : ; a)) are

obtained by taking j = 1 and � of the form

(1; 0; : : : ; 0) + (a; : : : ; a)

or by taking j = n� 1 and � of the form

(1; : : : ; 1; 0) + (a; : : : ; a):

6.10. We begin the proof of the lemma by working out the image of the Newton
map for D�

j=n
. Of course CQ consists of all n-tuples � = (�1; : : : ; �n) of rational

numbers satisfying

�1 > �2 > : : : > �n: (6.10.1)

For such an n-tuple and a rational number x we say that the multiplicity of x in �
is the number of indices i for which �i is equal to x, and we write m�(x) for this
multiplicity.

It follows from 5.1 that the image of the Newton map for GLn is the set E
consisting of all elements � 2 CQ such that

m�(�i) � �i 2 Z for i = 1; : : : ; n:

Let g� be a basic 1-cocycle of W in GLn(L) whose image under the Newton map
is

(�j=n;�j=n; : : : ;�j=n):

Let J be the inner form of G associated to g� (see 4.4). Then J is isomorphic to
D
�
j=n (see 2.1). It follows from 4.18 that the imageEj of the Newton map forD�

j=n

satisfies

(�j=n;�j=n; : : : ;�j=n) +Ej = E:

Therefore Ej consists of all elements in CQ of the form

(j=n; j=n; : : : ; j=n) + �

for some element � in E.
Let (�1; : : : ; �n) be a dominant coweight for the diagonal torus in G = GLn.

Thus � satisfies (6.8.1). We assume that � is nonconstant, so that �1 > �n. Since
Z( bG)� = C� , the group X�(Z( bG)�) is torsion-free. Therefore the Newton map

B(D�
j=n)! Ej ' E
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is bijective, and under this bijection the subset B(D�
j=n; �) corresponds to the subset

of E consisting of all elements � such that

� + (j=n; : : : ; j=n) 6 �: (6.10.2)

Recall the explicit form of the order 6 on A = Rn : x = (x1; : : : ; xn) and y =
(y1; : : : ; yn) satisfy x 6 y if and only if

x1 6 y1;

x1 + x2 6 y1 + y2;

...

x1 + x2 + : : :+ xn�1 6 y1 + y2 + : : :+ yn�1;

x1 + x2 + : : :+ xn�1 + xn = y1 + y2 + : : :+ yn�1 + yn:

The unique basic element in B(D�
j=n
; �) corresponds to the constant solution

� = (a; : : : ; a)

of (6.10.2), where a is determined by the condition

na+ j = �1 + : : :+ �n:

In order to prove the lemma we must show that the inequality (6.10.2) has a noncon-
stant solution � 2 E except in the two special cases specified in the statement of the
lemma. We can simplify this task considerably by means of the following remark.
If (6.10.2) admits a nonconstant solution � 2 E, then it admits a nonconstant
solution in E of the special form

�
0 = (a=r; : : : ; a=r; b=s; : : : ; b=s); (6.10.3)

where r, s are integers between 1 and n� 1 such that r + s = n, and where a=r
is repeated r times and b=s is repeated s times. Indeed, if � = (�1; : : : ; �n) 2 E is
nonconstant and satisfies (6.10.2), we let r be the multiplicity of �1 in � and define
a; b 2 Z by

a = r�1 = : : : = r�r;

b = �r+1 + : : :+ �n:

It is easy to see that � 0 2 E, and that � 0 6 �; thus � 0 is a nonconstant solution of
(6.10.2) of the desired form.

An n-tuple � 0 of the form (6.10.3) is nonconstant and lies in E if and only if

as > br; (6.10.4)
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and it satisfies (6.10.2) if and only if

a+ b+ j = �1 + : : : + �n (6.10.5)

and

an+ rj 6 n(�1 + : : :+ �r): (6.10.6)

Using (6.10.5) to eliminate b, we see that (6.10.2) has a nonconstant solution of the
form (6.10.3) if and only if there exists a 2 Z satisfying

r(�1 + : : :+ �n)� rj < an 6 n(�1 + : : :+ �r)� rj: (6.10.7)

It is obvious that (6.10.7) has a solution whenever the difference between

n(�1 + : : :+ �r)� rj

and

r(�1 + : : :+ �n)� rj

is greater than or equal to n. Therefore, if (6.10.7) has no solutions we conclude
that

n(�1 + : : :+ �r)� r(�1 + : : :+ �n) < n: (6.10.8)

Now suppose that (6.10.2) has no nonconstant solutions in E. Then (6.10.8)
holds for each r between 1 and n � 1. Adding the inequalities (6.10.8) for r = 1
and r = n� 1, we find that

�1 � �n < 2:

Since �1, �2 are integers satisfying �1 > �n, we conclude that �1 � �n = 1. Up
to the addition of a constant vector (which is of no importance), � must be equal
to �(k) for some k between 1 and n� 1. Taking r = k in (6.10.8), we find that

nk � k
2
< n

which is equivalent to

(k � 1)(k � n+ 1) > 0

and implies that k = 1 or k = n� 1. Thus � is equal to �(1) or �(n � 1) (up to
constant vectors).

Suppose that � = �(1). Then (6.10.7) reduces to

r � rj < an 6 n� rj: (6.10.9)

If (6.10.2) has no nonconstant solutions in E, then (6.10.9) has no solution for
r = 1, which can happen only if j is congruent to 1 modulo n. Conversely, if
j = 1, then (6.10.9) reduces to

0 < an 6 n� r;
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which has no solutions (no matter what r is). Similarly, if � = �(n � 1), then
(6.10.2) admits nonconstant solutions in E except when j is congruent to n � 1
modulo n. The proof of the lemma is now complete.

6.11. Now we classify all uniform pairs (H;�) with � nonzero andH adjoint and
F -simple. By Lemma 6.7 H is necessarily anisotropic over F , and hence we may
assume that there exists a finite extension E of F and a central division algebra D
over E such that H = R(H0) (as in 6.5 we use R to denote Weil’s restriction of
scalars fromE to F ), whereH0 is the E-groupD�

=E
�. Write the Hasse invariant

of D as j=n with 1 6 j 6 n � 1 and (j; n) = 1. Of course G0 = PGLn(E) is a
quasi-split inner form of H0, and R(G0) is a quasi-split inner form of H .

Giving a dominant coweight � for R(G0) is the same as giving a family of
dominant coweights �(�) for G0, one for each embedding � : E ! F over F . We
saw in 6.5 that (H;�) is uniform if and only if (H0; �0) is uniform, where

�0 =
X
�

�(�):

Clearly �0 is nonzero if and only if � is nonzero. Therefore, by Lemma 6.9 either
j = 1 and �0 = �(1), or j = n� 1 and �0 = �(n� 1).

Suppose that j = 1 and �0 = �(1). Since there is no nontrivial way to decom-
pose �(1) as a sum of dominant coweights, the coweights �(�) must be 0 except
for one embedding �0, for which �(�0) = �(1). Similarly, if j = n � 1, then the
coweights�(�)must be 0 except for one embedding �0, for which�(�0) = �(n�1).

7. The map wG : G(L)! X
�(Z( bG)I)

7.1. LetH be a connected reductive group over L. Recall from 1.1 that we denote
by I the group Gal(L=L). In this section we are going to construct a natural
surjective homomorphism

wH : H(L)! X
�(Z( bH)I): (7.1.1)

We will also see that when H is defined over F , the map wG can be used to
construct the map (4.9.1)

B(H)! X
�(Z( bH)�):

7.2. We begin by constructingwH in the case of tori. Let T be a torus overL. Then
the natural map

X�(T ) = X
�( bT ) res

- X
�( bT I)

identifiesX�( bT I) with X�(T )I , the group of coinvariants of I in X�(T ). Thus we
seek to define a functorial surjection

wT : T (L)! X�(T )I : (7.2.1)
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Of course there is a natural surjection

qT : X�(T )I ! Hom(X�(T )I ;Z) (7.2.2)

(an element � inX�(T ) determines a homomorphism � 7! h�; �i from X
�(T )I to

Z, where h�; �i denotes the canonical pairing betweenX�(T ) andX�(T )). There is
an obvious functorial map

vT : T (L)! Hom(X�(T )I ;Z); (7.2.3)

sending t 2 T (L) to the homomorphism

� 7! val(�(t))

from X
�(T )I to Z. Here val denotes the usual valuation on L, normalized so that

uniformizing elements have valuation 1. We are going to define wT in such a way
that

qT � wT = vT : (7.2.4)

Note that vT is always surjective. Indeed, let Ta denote the maximal anisotropic
subtorus of T and put S = T=Ta. Consider the commutative diagram

T (L) - S(L)

Hom(X�(T )I ;Z)

vT

?

- Hom(X�(S)I ;Z):

vS

?

The bottom arrow is an isomorphism, and the top arrow is surjective sinceH1(L; Ta)
is trivial. Moreover vS is obviously surjective, since S is split. Therefore vT is sur-
jective.

The map qT is an isomorphism whenever X�(T )I is torsion-free, and in this
case we define wT to be the unique map satisfying (7.2.4); since vT is surjective,
so is wT . Of course wT is functorial in T for such T . Recall that a torus T over L
is said to be induced if X�(T ) has a Z-basis that is permuted by I . If T is induced,
then X�(T )I is torsion-free, so that wT has been defined.

For any torus T there exists an induced torus R and a surjective map

X�(R)! X�(T )

of I-modules. Moreover there exists another induced torus S and an I-module map

X�(S)! X�(R)

such that

X�(S)! X�(R)! X�(T )! 0
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is exact. In this way we get an exact sequence

S
f
- R

g
- T ! 1

in which the kernels of f and g are tori. The diagram

S(L) - R(L) - T (L) - 1

X�(S)I

wS

?

- X�(R)I

wR

?

- X�(T )I - 0

(7.2.5)

is commutative and has exact rows (use that H1(L; ker f) and H1(L; ker g) are
trivial). We define wgT to be the unique map from T (L) to X�(T )I making

R(L) - T (L)

X�(R)I

wR

?

- X�(T )I

w
g

T

?

(7.2.6)

commute (the existence and uniqueness of wgT follow from (7.2.5)).
Let T ! U be a map of tori. Choose an induced torus Q and a surjection

X�(Q)! X�(U)

of I-modules, and let h : Q! U be the corresponding map of tori. We claim that

T (L) - U(L)

X�(T )I

wg
T

?

- X�(U)I

wh
U

?

(7.2.7)

commutes. Indeed, it is easy to construct an induced torus R0, a surjective I-map

X�(R
0)! X�(R)

and an I-map

X�(R
0)! X�(U)

such that
R
0

- R - T

R
0

wwwwwwwwwwww
- Q - U

?
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commutes. The surjectivity of R0(L)! T (L) together with the functoriality of w
for the maps R0 ! R and R0 ! Q of induced tori establishes the commutativity
of (7.2.7).

It follows from the commutativity of (7.2.7) thatwgT is independent of the choice
of g. Thus we may define wT to be any one of the maps wgT . The commutativity
of (7.2.7) further implies that wT is functorial in T . The map wT is surjective and
satisfies (7.2.4) (use (7.2.5) to deduce these statements from the corresponding
ones for the induced torus R).

7.3. LetL0 be a finite extension ofL inL, and let I 0 denote the subgroup Gal(L=L0)
of I . Then the diagrams

T (L0)
w
- X�(T )I0

T (L)

N

?

w
- X�(T )I

�

?

(7.3.1)

and

T (L0)
w
- X�(T )I0

T (L)

�

6

w
- X�(T )I

N

6

(7.3.2)

both commute. In (7.3.1) N is the norm map from T (L0) to T (L) and � is the
obvious surjection (induced by the identity map onX�(T )). In (7.3.2) � is induced
by the embedding L ,! L

0 and N is given by

N(��) =
X

�2I0nI

��

for an element �� 2 X�(T )I represented by an element � 2 X�(T ). It is easy to
prove the commutativity of these diagrams by reducing to the case in which T is
an induced torus and then using (7.2.4).

Diagram (7.3.1) suggests a shorter way to define the map w, as the referee
pointed out. Choose a finite Galois extension L

0 of L in L that splits T . The
norm mapN identifies T (L) with the coinvariants of Gal(L0=L) on T (L0) (see the
appendix to Chapter 1 in [S1]). It is clear how to define w for T (L0), and we define
w for T (L) to be the unique map making the diagram (7.3.1) commute. It is easy
to see that the resulting map is independent of the choice of L0.
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7.4. Now we define the surjection wH for any connected reductive group H . We
begin with the case in which the derived group Hder of H is simply connected.
Then we put

D = H=Hder:

Recall that

bD = Z( bH):

We define wH to be the unique map making the diagram

H(L)
wH
- X

�(Z( bH)I)

D(L)
?

wD
- X

�( bDI)

wwwwwwwwwww
(7.4.1)

commute. Note that wH is surjective since wD and the map

H(L)! D(L)

are both surjective.
Now consider the general case. Pick a z-extensionH 0 ! H with kernel Z . The

map wH0 has already been defined. We define wH to be the unique map making

H
0(L)

w
H0
- X

�(Z( bH 0)I)

H(L)
?

wH
- X

�(Z( bH)I)

?

(7.4.2)

commute. Of course uniqueness follows from the surjectivity of H 0(L) ! H(L)
and existence follows from the commutativity of

Z(L) - X
�( bZI)

H
0(L)
?

- X
�(Z( bH 0)I):

?

The map wH is surjective since the maps wH0 and

X
�(Z( bH 0)I)! X

�(Z( bH)I)
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are surjective. Using [K4, 2.4.4], one sees easily that wH is independent of H 0 and
that wH is functorial in H .

There is an obvious homomorphism

vH : H(L)! Hom(X�(Z( bH))I ;Z); (7.4.3)

sending h 2 H(L) to the homomorphism

� 7! val(�(h))

fromX�(Z( bH))I to Z (we view elements ofX�(Z( bH))I as homomorphisms from
H to Gm defined over L). There is an obvious surjective homomorphism

qH : X�(Z( bH)I)! Hom(X�(Z( bH))I ;Z); (7.4.4)

whose kernel is the torsion subgroup of X�(Z( bH)I). It is not hard to check that

qH � wH = vH (7.4.5)

(reduce first to the case in which Hder is simply connected and then to the case of
tori).

7.5. Now suppose thatH is a connected reductive group overF . Then the surjection
wH commutes with the action of the Frobenius element �. Therefore wH induces
a map

B(H)! X
�(Z( bH)I)h�i; (7.5.1)

where the subscript h�i indicates that we are taking coinvariants for the group
h�i. Since X�(Z( bH)I) can be identified with the group of coinvariants of I in
X
�(Z( bH)), we see that

X
�(Z( bH)I)h�i = X

�(Z( bH))�

= X
�(Z( bH)�):

Moreover B(H) can be identified with B(H). Thus (7.5.1) can also be viewed as
a map

B(H)! X
�(Z( bH)�): (7.5.2)

We claim that the map (7.5.2) coincides with the map (4.9.1). As usual one uses
z-extensions to reduce to the case in which H is a torus. Then by [K, 2.2(b)] one
reduces to the case H = Gm , which is easy to treat directly.

7.6. Let T be a torus over F . We write T (L)0 for the kernel of

vT : T (L)! Hom(X�(T )I ;Z)
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and we write T (L)1 for the kernel of

wT : T (L)! X�(T )I :

Obviously T (L)1 is a subgroup of finite index in T (L)0. Moreover T (L)1 is equal
to T (L)0 ifX�(T )I is torsion-free, which happens wheneverT is an induced torus.

We claim that

H
1(h�i; T (L)1) = f1g: (7.6.1)

Choose induced tori R, S over F and an exact sequence

X�(S)! X�(R)! X�(T )! 0

of �-modules. The diagram

S(L) - R(L) - T (L) - 1

X�(S)I

wS

?

- X�(R)I

wR

?

- X�(T )I

wT

?

- 0

is commutative with exact rows, and all the vertical arrows are surjective. Therefore
the map

R(L)1 ! T (L)1

is surjective, and hence the map

H
1(h�i; R(L)1)! H

1(h�i; T (L)1)

is surjective as well. Therefore it suffices to prove (7.6.1) for induced tori T .
We may assume that T = RE=F Gm for a finite extension E of F in F . Then

T (L) =M
� � : : :�M

�
;

where M is the compositum of E and L in F , and

T (L)1 = o�M � : : :� o�M ;

where oM denotes the valuation ring in M . By Shapiro’s lemma we reduce to the
case in which there is only one factor M� (this occurs when E is totally ramified
over F ), and then by replacing L, F by M , E we reduce to the case in which T is
Gm . Thus we must show that the map

� � 1: o�L ! o�L

is surjective. This is an easy exercise (see the proof of Proposition 2.3 in [K]). We
are done proving the claim.
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Now consider the exact sequence

1 ! T (L)1 ! T (L)
w
- X�(T )I ! 1:

We see from the associated long exact cohomology sequence of h�i-cohomology
that

T (F )! (X�(T )I)
h�i (7.6.2)

is surjective, and that

B(T )! X�(T )�

is an isomorphism. We already knew the second fact, but this alternative proof
provides additional insight.

7.7. Again let H be a connected reductive group over F . The restriction of wH to
H(F ) provides a homomorphism

H(F )! X
�(Z( bH)I)h�i: (7.7.1)

We claim that (7.7.1) is surjective.
For tori (7.7.1) can be thought of as (7.6.2), which we already know is surjective.

If the derived group Hder of H is simply connected, the surjectivity of (7.7.1)
follows from the surjectivity of the map (7.6.2) for the torus H=Hder. For arbitrary
H choose a z-extension

1 ! Z ! H
0 ! H ! 1:

Consider the commutative square

H
0(F )

(7:7:1)0
- X

�(Z( bH 0)I)h�i

H(F )
?

(7:7:1)
- X

�(Z( bH)I)h�i:

?

We know that (7.7.1)0 is surjective. Moreover, since bZI is connected, the sequence

1 ! X
�( bZI)! X

�(Z( bH 0)I)! X
�(Z( bH)I)! 1

is exact. Taking invariants under h�i, we find that

X
�(Z( bH 0)I)h�i ! X

�(Z( bH)I)h�i
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is surjective; here we used that the group

H
1(h�i;X�( bZI)) = X

�( bZI)h�i
= X

�( bZ)�
is torsion-free. We see from the commutative square above that (7.7.1) is surjective,
as desired.

8. Algebraic 1-cocycles

Let T be a torus over F and let K be a finite Galois extension of F in F that
splits T . Let WK=F be the Weil group associated to K=F (see B.3 for a review of
WK=F ). In this section we will define a group

H
1
alg(WK=F ; T (K))

and a canonical isomorphism

H
1
alg(WK=F ; T (K)) ' B(T ):

8.1. Let � 7! t� be an abstract 1-cocycle ofWK=F in T (K) (of courseWK=F acts
on T (K) in the obvious way, through its quotient Gal(K=F )). We say that t� is an
algebraic 1-cocycle if there exists an element � 2 X�(T ) such that

tx = �(x)

for all x in the subgroup K� of WK=F . The cocharacter � is uniquely determined
by the 1-cocycle and is fixed by �. We write Z1

alg(WK=F ; T (K)) for the group of
algebraic 1-cocycles of WK=F in T (K). Any abstract 1-coboundary � 7! t

�1
�(t)

is obviously algebraic (the associated � is trivial). We define H1
alg(WK=F ; T (K))

to be the quotient of Z1
alg(WK=F ; T (K)) by the subgroup of 1-coboundaries.

Let E1
K=F be the extension of � by K� obtained from the extension WK=F of

Gal(K=F ) by K� by pulling back along the surjection

�! Gal(K=F );

thus E1
K=F is the fiber product of WK=F and � over Gal(K=F ). As in B.3, we let

EK=F denote the extension of � by F
�

obtained from E1
K=F by pushing out along

the injection

K
�
,! F

�
:

Thus E1
K=F and F

�
can be identified with subgroups of EK=F ; the product of

these two subgroups is EK=F and their intersection is K�. Recall that EK=F is a
topological group (see B.3).
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Let t� be an abstract 1-cocycle of EK=F in T (F ). We say that t� is an algebraic
1-cocycle if the map � 7! t� is continuous for the discrete topology on T (F ) and
there exists � 2 X�(T ) such that

tx = �(x)

for all x in the subgroupF
�

of EK=F . Again� is uniquely determined and invariant
under �, and again 1-coboundaries are algebraic. We write

Z
1
alg(EK=F ; T (F ))

for the group of algebraic 1-cocycles of EK=F in T (F ), and

H
1
alg(EK=F ; T (F ))

for its quotient by the subgroup of 1-coboundaries.
There is an obvious map

Z
1
alg(WK=F ; T (K))! Z

1
alg(EK=F ; T (F )); (8.1.1)

defined as follows. Let t� be an algebraic 1-cocycle of WK=F in T (K), and let �
be the associated cocharacter. We inflate t� using the canonical surjection

E1
K=F !WK=F ;

obtaining a 1-cocycle t0� of E1
K=F in T (K) whose restriction to the subgroup K�

of E1
K=F is given by �. We let t00� be the unique 1-cocycle of EK=F in T (F ) whose

restriction to E1
K=F is equal to t0� and whose restriction to F

�
is given by �. Note

that t00� is algebraic. The map t� 7! t
00
� is the desired map (8.1.1).

Let �K denote the subgroup Gal(F=K) of �. We use the canonical splitting of
the extension

1 ! F
�
! EK=F ! �! 1

over the subgroup �K to identify �K with an (open) subgroup of EK=F . Since T
splits overK , the groupH1(K;T ) is trivial. Therefore the restriction to �K of any
algebraic 1-cocycle a� of EK=F in T (F ) is a 1-coboundary. Therefore there exists
a cohomologous 1-cocycle b� whose restriction to �K is trivial. It then follows
easily that (8.1.1) induces an isomorphism

H
1
alg(WK=F ; T (K))! H

1
alg(EK=F ; T (F )): (8.1.2)

8.2. Put s = [K : F ]. Choose a uniformizing element � in F . Recall from B.2
that the choice of � determines an extension Ds of � by F

�
. We define the notion

of algebraic 1-cocycle of Ds in T (F ) in the same way we did for EK=F (impose
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continuity and the existence of an appropriate cocharacter � of T ); in this way we
get groups

Z
1
alg(Ds; T (F ));

H
1
alg(Ds; T (F )):

The isomorphisms (B.3.2) induce isomorphisms

Z
1
alg(Ds; T (F )) ' Z

1
alg(EK=F ; T (F ));

and the induced isomorphisms

H
1
alg(Ds; T (F )) ' H

1
alg(EK=F ; T (F ))

all coincide.
Let t� be an algebraic 1-cocycle of Ds in T (F ). For any representation � : T !

GL(V ) of T on a finite dimensional vector space V over F we get a representation
of Ds on F 
F V by letting � 2 Ds act on F 
F V by the � -linear automorphism

�(t� ) � (� 
 idV )

(we are also denoting the image of � in � by � ). Recall (see Appendix B) that
giving a representation of Ds is the same as giving an object in Ts, the category of
�-L-spaces whose slopes lie in the subgroup 1

sZ of Q. In this way t� determines
a 
-functor � from Rep(T ) to Ts. Let !T denote the obvious fiber functor (over
F ) V 7! F 
F V on Rep(T ), and let !F� be the fiber functor (over F )) on Ts

constructed in B.2. There is an obvious 
-isomorphism from !
F
� � � to !T .

As in 3.1 this construction yields a bijection from Z
1
alg(Ds; T (F )) to the set of


-isomorphism classes of pairs (�; �), where � is an exact
-functor from Rep(T )
to Ts, and � is a 
-isomorphism from !

F
� � � to !T . This in turn yields a bijection

from H
1
alg(Ds; T (F )) to the set of 
-isomorphism classes of exact 
-functors �

from Rep(T ) to Ts.
We claim that any exact
-functor� from Rep(T ) to�-L-spaces factors through

the full Tannakian subcategory Ts. In other words we claim that the image of the
Newton map

B(T )! X�(T )
� 
 Q

is contained in the subgroup X�(T )
� 
 (1

sZ). Since this image is the same (see
[K]) as that of the map

X�(T )! X�(T )
� 
 Q

sending � to

1
s

X
�2Gal(K=F )

�(�);
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we see that the claim is true. Therefore we get a bijection from H
1
alg(Ds; T (F ))

to the set of 
-isomorphism classes of exact 
-functors � from Rep(T ) to WF -
L-spaces. Comparing this with what was proved in 3.1, we obtain a canonical
isomorphism

H
1
alg(Ds; T (F )) ' B(T ): (8.2.2)

Let t� be an algebraic 1-cocycle of Ds in T (F ). Composing � 7! t� with the map
(B.2.5) from WF to Ds, we get a (continuous) 1-cocycle of WF in T (F ), which
we can regard as a 1-cocycle of WF in T (L). This map on 1-cocycles induces the
map (8.2.2).

Let t be a positive integer such that s divides t. Recall from B.2 that there is a
canonical surjection

Dt ! Ds;

which gives rise to an inflation map

H
1
alg(Ds; T (F ))

i
- H

1
alg(Dt; T (F )): (8.2.3)

It is easy to check the commutativity of the diagram

H
1
alg(Ds; T (F ))

i
- H

1
alg(Dt; T (F ))

B(T )
?

============ B(T );
?

(8.2.4)

in which the vertical arrows are isomorphisms of type (8.2.2).

8.3. Combining (8.2.1) and (8.2.2), we get an isomorphism

H
1
alg(EK=F ; T (F )) ' B(T ): (8.3.1)

Let t� be an algebraic 1-cocycle of EK=F in T (F ). Then by composing � 7! t�

with the map (B.3.3) from WF to EK=F , we get a (continuous) 1-cocycle of WF

in T (F ), which we view as a 1-cocycle of WF in T (L). This map on 1-cocycles
induces the isomorphism (8.3.1). It follows from the discussion at the end of B.3
that the isomorphism (8.3.1) is independent of the choice of uniformizing element
�.

8.4. Combining (8.3.1) and (8.1.2), we get a canonical isomorphism

H
1
alg(WK=F ; T (K)) ' B(T ): (8.4.1)
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It is easy to see that the diagram

H
1(K=F; T (K)) - H

1
alg(WK=F ; T (K))

H
1(F; T )

?

(1:4:2)
- B(T )

(8:4:1)

?

(8.4.2)

commutes, where the top arrow is the inflation map for the surjection

WK=F ! Gal(K=F )

and the left vertical arrow is the inflation map for the surjection

�! Gal(K=F )

(the second inflation map is an isomorphism since H1(K;T ) is trivial).

9. Hypercohomology

Let f : T ! U be a map of F -tori. We regard T ! U as a complex of length 2,
concentrated in degrees 0 and 1. Let K be a finite Galois extension of F in
F that splits T and U , and put s = [K : F ]. In this section we will define
hypercohomology groups B(T ! U) andH1

alg(WK=F ; T (K)! U(K)) and show
that they are canonically isomorphic.

9.1. First we define B(T ! U). By a 1-hypercocycle of WF in T (L) ! U(L)
we mean a pair (t; u) consisting of a 1-cocycle t of WF in T (L) and an element
u 2 U(L) such that f(t) = @u (here @u denotes the coboundary of u, namely the
1-cocycle � 7! u

�1
�(u)). By a 1-hypercoboundary we mean a pair of the form

(@t; f(t)), where t is an element of T (L). We let

B(T ! U)

denote the group of 1-hypercocycles modulo 1-hypercoboundaries.
There is an exact sequence

1 ! cok[T (F )! U(F )]! B(T ! U)

! ker[B(T )! B(U)] ! 1: (9.1.1)

Let C (respectively, W ) denote the kernel (respectively, cokernel) of f : T ! U .
Of course W is a torus, but C need not be. There is a second exact sequence

1 ! B(C)! B(T ! U)!W (F ); (9.1.2)

and if C is connected then the map

B(T ! U)!W (F )
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is surjective.

9.2. Now we define H1
alg(WK=F ; T (K) ! U(K)). By a 1-hypercocycle we now

mean a pair (t; u) consisting of an algebraic 1-cocycle t of WK=F in T (K) and an
element u 2 U(K) such that f(t) = @u. By a 1-hypercoboundary we mean a pair
of the form (@t; f(t)), where t is an element of T (K). We let

H
1
alg(WK=F ; T (K)! U(K))

denote the group of 1-hypercocycles modulo 1-hypercoboundaries.

9.3. There are also hypercohomology groups

H
1
alg(EK=F ; T (F )! U(F ));

H
1
alg(Ds; T (F )! U(F ))

(define these in the obvious way, using algebraic 1-cocycles). There are canonical
isomorphisms

H
1
alg(WK=F ; T (K)! U(K)) ' H

1
alg(EK=F ; T (F )! U(F ))

' H
1
alg(Ds; T (F )! U(F ))

' B(T ! U) (9.3.1)

analogous to (8.1.2), (8.2.1), (8.2.2). Indeed, the maps on 1-cocycles defining
(8.1.2), (8.2.1), (8.2.2) can be used to define maps between the hypercohomology
groups above, and these maps on hypercohomology are all isomorphisms since the
maps (8.1.2), (8.2.1), (8.2.2) are isomorphisms (use the exact sequence (9.1.1) and
its analogs for the other hypercohomology groups). The resulting isomorphism

H
1
alg(WK=F ; T (K)! U(K)) ' B(T ! U) (9.3.2)

is independent of the choice of �.

9.4. The diagram analogous to (8.4.2)

H
1(K=F; T (K) ! U(K)) - H

1
alg(WK=F ; T (K)! U(K))

H
1(F; T ! U)

?

- B(T ! U)

(9:3:2)

?

(9.4.1)

commutes, where we have written H1(K=F; T (K) ! U(K)) for

H
1(Gal(K=F ); T (K) ! U(K))
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and H1(F; T ! U) for H1(�; T (F ) ! U(F )), as in [KS]. Note that the left
vertical arrow in (9.4.1) is an isomorphism since T andU split overK . The bottom
arrow is analogous to (1.4.2).

10. Hyperhomology

As in Section 9 let f : T ! U be a map of F -tori and let K be a finite Galois
extension of F in F that splits T and U . Let X , Y denote the cocharacter groups
X�(T ), X�(U) respectively. We regard

X
f�
- Y

as a complex of length 2 placed in degrees 0 and 1. In this section we will define
an isomorphism

H0(WK=F ;X ! Y ) ' H
1
alg(WK=F ; T (K)! U(K)):

10.1. The group H0(WK=F ;X ! Y ) is the hyperhomology group studied in
Section A.3 of [KS], and our discussion here closely parallels the one there. For
m > 0 we write Cm(X) for the group of (abstract) m-chains of WK=F in X , so
that Hm(WK=F ;X) is the m-th homology group of the complex

: : :! C2(X)
@
- C1(X)

@
- C0(X):

We then get a double complex

� � � - C2(X)
@
- C1(X)

@
- C0(X)

� � � - C2(Y )
?

@
- C1(Y )

?

@
- C0(Y ) ?

with vertical maps induced by f� : X ! Y , and from this double complex we get
the complex

: : :! C1(X)� C2(Y )
�
- C0(X)� C1(Y )

�
- C0(Y );

with � given by

�(x1; y2) = (@x1; f�x1 � @y2)

and � given by

�(x0; y1) = f�x0 � @y1:
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Then H0(WK=F ;X ! Y ) is the quotient

ker(�)=im(�)

and we refer to elements of ker(�) as 0-hypercycles.
We write C0(T ) for the group of 0-cochains of WK=F in T (K) and Z1

alg(T )

for the group Z1
alg(WK=F ; T (K)) of algebraic 1-cocycles of WK=F in T (K); of

course

C
0(T ) = T (K):

We are going to define maps

� : C1(X)! C
0(T );

 : C0(X) ! Z
1
alg(T );

making the diagram

C2(X)
@
- C1(X)

@
- C0(X)

0
?

- C
0(T )

�

?

@
- Z

1
alg(T )

 

?

(10.1.1)

commute. Both � and  will be functorial in T . Just as in [KS], we will use �,  
to define a homomorphism

H0(WK=F ;X ! Y )! H
1
alg(WK=F ; T (K)! U(K)) (10.1.2)

sending the class of the 0-hypercycle (x0; y1) to the class of the 1-hypercocycle
( (x0); �(y1)).

It remains to define �,  . We fix a (set-theoretic) section

s : Gal(K=F ) !WK=F

of the canonical surjection

WK=F ! Gal(K=F ):

As usual this section gives us a 2-cocycle a�;� of Gal(K=F ) in K�, defined by the
equation

s(�)s(�) = a�;�s(��):

We now define � exactly as in [KS, A.3]. It sends a 1-chain w 7! xw of WK=F

in X to the element

 =
Y
�;�;a

�(xas(�))(a
�1
�;��(a)

�1); (10.1.3)
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of T (K), where the product is taken over all

(�; �; a) 2 Gal(K=F ) � Gal(K=F ) �K
�
:

We define  as follows. Let

� 2 C0(X) = X

and put

� =
X

�2Gal(K=F )

�(�):

Define a map

t : WK=F ! K
�

by the equation

w = t(w)s(�);

where � denotes the image of w 2WK=F under

WK=F ! Gal(K=F ):

Then  sends � to the algebraic 1-cocycle

w 7! �(t(w)) �
Y

�2Gal(K=F )

��(�)(a�;� ) (10.1.4)

ofWK=F in T (K), where w 2WK=F and � denotes the image of w in Gal(K=F ).
A direct calculation [L, A.1] shows that the 1-cocycle condition is satisfied, and it is
obvious that this 1-cocycle is algebraic. It is not hard to check that the cohomology
class of the 1-cocycle is equal to the corestriction of the element of

H
1(K�

; T (K)) = Hom(K�
; T (K))

determined by �.
If � = 0, or, in other words, if � lies in the subgroup C0(X)0 of C0(X) (the

notation C0(X)0 comes from [KS]), then the first factor in (10.1.4) is 1, and the
second factor coincides with the one used to define the map

 : C0(X)0 ! Z
1(T )

in [KS]. Thus the map  used in this paper extends the one in [KS]. In particular
(10.1.1) commutes, since @ maps C1(X) into C0(X)0 and the analogous diagram
in [KS] commutes.

10.2. The maps �,  have all the desired properties, and thus the map (10.1.2) has
now been defined. However we chose a section s of

WK=F ! Gal(K=F )
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in order to define �,  , and we need to check that the map (10.1.2) is independent
of this choice.

Let s0 be another section and let �0,  0 be the corresponding maps. Let b� be the
1-cochain of Gal(K=F ) in K� defined by

s
0(�) = b�s(�)

for � 2 Gal(K=F ). Define a homomorphism

k : C0(X) ! C
0(T )

by sending an element � 2 X to the element

k(�) :=
Y

�2Gal(K=F )

(��)(b� )

of T (K) (this map is the obvious extension of the one in [KS]). Clearly k is
functorial in T , and a routine calculation shows that

�
0 � � = k@

and

 
0 �  = @k:

It then follows easily that the homomorphism (10.1.2) does not change when s is
replaced by s0.

10.3. We now show that the homomorphism (10.1.2) is an isomorphism. Using the
5-lemma as in [KS], we see it is enough to prove that (10.1.2) is an isomorphism in
the special case in which either T or U is trivial. Thus we must show that the maps

H1(WK=F ;X) ! T (F )

and

X� ! H
1
alg(WK=F ; T (K))

are isomorphisms. The first map is the usual Langlands isomorphism (see [KS]
for a review). Composing the second map with the isomorphism (8.4.1), we get a
functorial homomorphism

X� ! B(T ); (10.3.1)

which we must show is an isomorphism.
In fact (10.3.1) is equal to the isomorphism [K, 2.4.1]. By [K, 2.2(b)] it is

enough to prove that (10.3.1) coincides with the map in [K] in the special case
T = Gm (more precisely we use the obvious variant of [K, 2.2(b)] that applies to
the category of tori over F that are split by K).
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In order to prove that (10.3.1) coincides with the map in [K] in the special
case T = Gm , we need to introduce some homomorphisms taking values in
Q. Put s = [K : F ] and consider the extensions Ds, EK=F of � by F

�
. Let

vD (respectively, vE ) denote the unique continuous homomorphism from Ds
(respectively, EK=F ) to Q extending the valuation map

val: F
�
! Q

on the subgroup F
�

(we normalize the valuation on F so that it takes the value 1
on uniformizing elements for F ). The existence and uniqueness of vD, vE follow
from the triviality of Hi(�;Q) for i > 1. Clearly the isomorphisms (B.3.2)

Ds ' EK=F

carry vD into vE . Looking back at the definition of the homomorphism (B.2.5), we
see that the composition

WF
(B:2:5)
- Ds

vD
- Q (10.3.2)

sends � 2WF to j=s, where j is the unique integer such that the restriction of � to
F

un is equal to �j ; of course the composed map (10.3.2) is also equal to

WF
(B:3:3)
- EK=F

vE
- Q: (10.3.3)

Now let � 2 X�(Gm) be the identity map on Gm . Let cw be the corresponding
algebraic 1-cocycle of WK=F in K� (defined by the formula (10.1.4)), and let c0w
be the algebraic 1-cocycle of EK=F in F

�
obtained from cw by means of (8.1.1).

The map w 7! val(c0w) is a continuous homomorphism from EK=F to Q extending

the homomorphism s � val on the subgroup F
�

of EK=F , and therefore

val(c0w) = s � vE (w):

Let c00� be the 1-cocycle ofWF in F
�

obtained from c
0
w by means of the homomor-

phism (B.3.3). It follows from the discussion above that

val(c00� ) = s � (j=s) = j;

where j is the unique integer such that the restriction of � 2WF to F un is equal to
�
j . Pick a cocycle c000� of h�i in (F un)� whose inflation to WF is cohomologous to
c
00
� . Then

val(c000� ) = 1:

Of course c000� is an element of T (L) whose class in B(T ) = B(T ) is equal to the
image of � 2 X�(Gm) under (10.3.1). Comparing with [K, 2.4], we see that this
class in B(T ) is also the image of � under the isomorphism

X� ! B(T )
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defined in [K]. This completes our proof.

10.4. Combining the isomorphisms (9.3.2) and (10.1.2), we obtain an isomorphism

H0(WK=F ;X ! Y ) ' B(T ! U): (10.4.1)

11. Duality for B(T ! U)

We let f : T ! U , f� : X ! Y and K=F be as in Section 10. In this section we
use (10.4.1) to prove a duality theorem for B(T ! U).

11.1. First we must topologize B(T ! U). Recall the exact sequence (9.1.1). We
put the unique topology on B(T ! U) for which B(T ! U) is a topological group
and the canonical map

U(F )! B(T ! U)

is open. We write

Homcont(B(T ! U); C�)

for the group of continuous homomorphisms from B(T ! U) to C� .

11.2. Dual to f : T ! U is a homomorphism

bf : bU ! bT :
The hypercohomology groups H1(WF ;

bU ! bT ) and H
1(WK=F ;

bU ! bT ) are

defined in [KS, A.3], using continuous 1-cocycles of WF and WK=F in bU . The
inflation map

H
1(WK=F ;

bU ! bT )! H
1(WF ;

bU ! bT ) (11.2.1)

is an isomorphism. Recall from [KS, (A.3.8)] that there is a canonical isomorphism

Hom
�
H0(WK=F ;X ! Y ); C�

�
' H

1
abs(WK=F ;

bU ! bT );
where the subscript abs indicates that we regard WK=F as an abstract group
when forming the hypercohomology group. Combining this with the isomorphism
(10.4.1), we get an isomorphism

Hom
�
B(T ! U); C�

�
' H

1
abs(WK=F ;

bU ! bT );
and it is clear that this isomorphism restricts to an isomorphism

Homcont
�
B(T ! U); C�

�
' H

1(WK=F ;
bU ! bT );
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which we combine with (11.2.1) to get an isomorphism

Homcont
�
B(T ! U); C�

�
' H

1(WF ;
bU ! bT ): (11.2.2)

In 11.5 below we will prove that the isomorphism (11.2.2) is independent of the
choice of K . Combining (11.2.2) with the canonical injection

H
1(F; T ! U)! B(T ! U)

(the bottom arrow in (9.4.1)), we recover the surjection

H
1(WF ;

bU ! bT )! Homcont
�
H

1(F; T ! U); C�
�

of [KS, Lemma A.3.B].

11.3. We are going to prove a rather technical lemma that will be used in 11.5
to prove that (11.2.2) is independent of the choice of K . The lemma will be used
again in Section 12.

Let R denote the torus RK=F Gm obtained from Gm by Weil’s restriction of
scalars from K to F . The group G(K=F ) := Gal(K=F ) acts on (the left of) R

by F -automorphisms; for � 2 G(K=F ) we write �� for the corresponding F -
automorphism of R. Put

R1 :=
Y

�2G(K=F )

R;

and consider the homomorphism

R
�
- R1 (11.3.1)

whose projection to the factorR indexed by � 2 G(K=F ) is given by ��1
� � idR 2

End(R).
Of course X�(R) is the left regular representation of G(K=F ) on the group

ring Z[G(K=F )]. We write �K for the element ofX�(R) corresponding to the unit
element 1 2 Z[G(K=F )]. Then (R;�K) represents the functor T 7! X�(T ) on the
category of F -tori split by K . Note that

�(�K) = �
�1
� (�K)

for any � 2 G(K=F ). It follows that the class of �K in X�(R)� lies in the kernel
of

X�(R)�
��
- X�(R1)�:

Now let CK denote the category whose objects are homomorphisms

f : T ! U
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of F -tori split by K and whose morphisms are given by commutative diagrams

T
f
- U

T
0
?

f 0
- U

0
:

?

Let f : T ! U be an object in CK . Then giving a morphism from � : R ! R1 to
f : T ! U is the same as giving an element � 2 X�(T ) and a family of elements
�� 2 X�(U), one for each � 2 G(K=F ), satisfying

f�(�) =
X

�2G(K=F )

(� � 1)(�� ): (11.3.2)

The class of � 2 X�(T ) in X�(T )� lies in the kernel of

X�(T )�
f�
- X�(U)�:

Moreover, it is clear that for any element � 2 X�(T ) whose class in X�(T )� lies
in the kernel of

X�(T )�
f�
- X�(U)�

there exists a morphism from � : R! R1 to f : T ! U that carries �K 2 X�(R)
into � 2 X�(T ).

We are almost ready to state the technical lemma. For any object T ! U in CK
put

H(T ! U) := H0(WK=F ;X ! Y )

(as usual X = X�(T ), Y = X�(U)). Of course H is an additive functor from the
additive category CK to the category of abelian groups. Suppose that we are given
an additive functor I from CK to the category of abelian groups, and that we are
also given two natural transformations �; � from H to I .

LEMMA 11.4. Suppose that the maps

�; � : H(T ! U)! I(T ! U)

are equal whenever T is trivial or U is trivial. Suppose further that the obvious
map

I(R! R1)! I(R! 1)� I(1 ! R1=�(R))

is injective. Then � is equal to �.
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First we note that the maps

�; � : H(R! R1)! I(R! R1)

are equal. Indeed, this follows immediately from the hypotheses of the lemma
(apply the first hypothesis to both R ! 1 and 1 ! R1=�(R)). It follows that the
maps

�; � : H(T ! U)! I(T ! U) (11.4.1)

are equal on all elements of H(T ! U) that arise as the image of an element in
H(R! R1) for some morphism from R! R1 to T ! U .

There is an obvious exact sequence

� � � ! H(1 ! T )! H(1 ! U)! H(T ! U)

! X� ! Y� ! � � � (11.4.2)

Let x 2 H(T ! U). We want to show that �(x) = �(x). It follows from the
discussion in 11.3 that there is a morphism � from R ! R1 to T ! U and
an element y 2 H(R ! R1) such that x and �(y) have the same image in
ker[X� ! Y�]. Since we have already seen that �, � have the same value on �(y),
we are reduced to the case in which x lies in the image of H(1 ! U). Therefore
the first hypothesis of the lemma, applied to 1 ! U , implies that �(x) = �(x).

11.5. Now we use the lemma to prove that the isomorphism (11.2.2) is independent
of the choice of K . As in [KS, A.3] the only nontrivial fact that we need is the
commutativity of

H0(WK0=F ;X ! Y ) - B(T ! U)

H0(WK=F ;X ! Y )

p�

?

- B(T ! U):

wwwwwwwwwww
(11.5.1)

Here K 0 is a finite Galois extension of F in F containing K , and the map p� is
induced by the canonical surjection

p : WK0=F !WK=F :

The horizontal maps are of type (10.4.1).
Note that the map p� is an isomorphism (use the exact sequence (11.4.2)).

Therefore (11.5.1) gives us two natural transformations �, � from H to I , where I

comp4011.tex; 18/11/1997; 10:24; v.7; p.61



316 ROBERT E. KOTTWITZ

denotes the functor on CK that sends T ! U to B(T ! U). We claim that �, �, I
satisfy the hypotheses of Lemma 11.4. The first point to check is that

H1(WK0=F ;X) - T (F )

H1(WK=F ;X)
?

- T (F )

wwwwwwwwwww
(11.5.2)

commutes. This is standard (and also follows from the commutativity of (A.3.11)
in [KS]). The second point to check is that

X�
- B(T )

X�

??

- B(T )

wwwwwwwwwww

commutes. This follows from the fact, proved in 10.3, that both horizontal maps
agree with the canonical map

X� ! B(T )

defined in [K]. The third point to check is that the natural map

B(R! R1)! B(R! 1)� B(1 ! R1=�(R))

is injective.
More generally let us find a sufficient condition for the injectivity of

B
�
T

f
- U

�
! B(T ! 1)� B(1 !W ); (11.5.3)

where W = U=f(T ). It follows from (9.1.1) that the kernel of (11.5.3) is equal to
the kernel of

cok[T (F )! U(F )] !W (F );

which is equal to V (F )=f(T (F )), whereV is the subtorus f(T ) ofU . LetC denote
the kernel of T ! U . Then T (F ) ! V (F ) is surjective if H1(F;C) is trivial.
Therefore we conclude that (11.5.3) is injective wheneverH1(F;C) is trivial. This
condition is satisfied by � : R! R1, since C is Gm in this case.

12. A valuation map on B(T ! U)

We let f : T ! U , f� : X ! Y and K=F be as in Section 10. In this section we
are going to define a surjection

B(T ! U)! H
1(h�i;XI ! YI)
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and study its properties.

12.1. We need to review group cohomology and homology for the infinite cyclic
group h�i. Let Z[h�i] denote the integral group ring of h�i. There is an exact
sequence

0 ! Z[h�i]
��1
- Z[h�i

�
- Z! 0;

where � � 1 denotes multiplication by � � 1 and � is defined by

�

�X
j

mj�
j

�
=
X
j

mj:

Thus we get a projective resolution

Z[h�i]
��1
- Z[h�i]

of the trivial h�i-module Z.
LetA be an abelian group on which h�i acts. ThenH�(h�i; A) is the cohomol-

ogy of the complex

A
��1
- A

andH�(h�i; A) is the homology of the same complex. ThereforeHm(h�i; A) and
Hm(h�i; A) vanish for m > 2 and

H
0(h�i; A) = A

h�i = H1(h�i; A);

H
1(h�i; A) = Ah�i = H0(h�i; A);

(as usual the superscript h�i indicates invariants and the subscript h�i indicates
coinvariants).

Now let � : A! B be a map of h�i-modules. From � we get a double complex

A
��1

- A

B

�

?

��1
- B;

?

�

which in turn gives rise to a complex

A
(��1;�)

- A�B
��(��1)

- B:

The cohomology (respectively, homology) of this complex is the hypercohomology
(respectively, hyperhomology) of A! B. Therefore

H1�m(h�i; A! B) ' H
m(h�i; A! B) (12.1.1)
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for all m 2 Z. Moreover Hm(h�i; A! B) vanishes unless m = 0; 1; 2, and

H
0(h�i; A! B) = ker[Ah�i ! B

h�i];

H
1(h�i; A! B) = ker(�� (� � 1))=im(� � 1; �); (12.1.2)

H
2(h�i; A! B) = cok[Ah�i ! Bh�i]:

We refer to elements of ker(�� (��1)) as simplified 1-hypercocycles (and also as
simplified 0-hypercycles), and we refer to elements of im(� � 1; �) as simplified
1-hypercoboundaries (and also as simplified 0-hyperboundaries).

There is an exact sequence

1 ! cok[Ah�i ! B
h�i]! H

1(h�i; A! B)

! ker[Ah�i ! Bh�i]! 1 (12.1.3)

generalizing (9.1.1), and there is an exact sequence

1 !
�
ker[A! B]

�
h�i

! H
1(h�i; A! B)

!
�
cok[A! B]

�h�i
! 1 (12.1.4)

analogous to (9.1.2) (it generalizes (9.1.2) in case C is connected).

12.2. We define B(T ! U) to be the hypercohomology group

B(T ! U) := H
1(h�i; T (L) ! U(L)): (12.2.1)

The inflation map for the surjection WF ! h�i yields an isomorphism

B(T ! U) ' B(T ! U): (12.2.2)

Recall the canonical surjection (7.2.1)

wT : T (L)! XI :

Together the maps wT and wU induce a map of complexes from [T (L) ! U(L)]
to [XI ! YI ], and this in turn induces a map

B(T ! U) = B(T ! U)! H
1(h�i;XI ! YI): (12.2.3)

We claim that the map (12.2.3) is surjective. Since wT , wU are surjective, it
suffices to show that

H
2(h�i; T (L)1 ! U(L)1) (12.2.4)

is trivial, where T (L)1 denotes the kernel of wT . But (12.2.4) is equal to

cok
��
T (L)1

�
h�i !

�
U(L)1

�
h�i

�
;
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which is indeed trivial (see (7.6.1)).

12.3. Consider the canonical surjection q : WK=F ! h�i. There is a natural map
(analogous to inflation for hypercohomology)

H0(WK=F ;X ! Y )! H0(h�i;XI ! YI) (12.3.1)

obtained as the composition of

H0(WK=F ;X ! Y )! H0(WK=F ;XI ! YI)

and

H0(WK=F ;XI ! YI)@ > q� >> H0(h�i;XI ! YI):

12.4. Consider the diagram

H0(WK=F ;X ! Y )
(10:4:1)

- B(T ! U)

H0(h�i;XI ! YI)
?

(12:3:1)

(12:1:1)
- H

1(h�i;XI ! YI):

?

(12:2:3) (12.4.1)

We are going to use Lemma 11.4 to prove that (12.4.1) commutes. We take I to be
the functor sending T ! U to H1(h�i;XI ! YI), and we take �, � to be the two
natural transformations fromH to I given by the two paths in the diagram (12.4.1).

Let V denote the image f(T ) of T in U , let W denote the quotient torus U=V ,
and let C denote the kernel of f . We are interested in the kernel of the map

H
1(h�i;XI ! YI)! H

1(h�i;XI )� (X�(W )I)
h�i
; (12.4.2)

since we must check that (12.4.2) is injective for � : R! R1. It is easy to see that
the kernel of (12.4.2) is equal to

�
im[X�(V )I ! YI ]

�h�i�im[X
h�i
I ! Y

h�i
I ]: (12.4.3)

Now suppose that C is connected. Then X�(T ) ! X�(V ) is surjective, as is the
induced map on I-coinvariants, so that in this case (12.4.3) is equal to

�
im[XI ! YI ]

�h�i�im[X
h�i
I ! Y

h�i
I ]: (12.4.4)

The group (12.4.4) is trivial if

H
1�h�i; ker[XI ! YI ]

�
(12.4.5)

is torsion-free.
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Now suppose that f : T ! U is � : R ! R1. Then C is Gm , so that the kernel
of (12.4.2) is equal to (12.4.4). It is easy to see that the kernel of XI ! YI is Z
(with trivial action of h�i). Therefore the group (12.4.5) is torsion-free (isomorphic
to Z), and we conclude that (12.4.2) is injective for � : R! R1, as desired.

The next point to check is that

X�
(10:4:1)

- B(T )

H0(h�i;XI )
?

(12:3:1)

(12:1:1)
- H

1(h�i;XI )

?

(12:2:3)

commutes. We identify H1(h�i;XI ) with X�. Then we must show that the com-
posed map

X�
(10:4:1)
- B(T )

(12:2:3)
- X�

is the identity map on X�. This follows from 7.5 and 10.3 (see the discussion of
the map (10.3.1)).

The final point to check is that

H1(WK=F ;X)
(10:4:1)

- T (F )

H1(h�i;XI)
?

(12:3:1)

===== (XI)
h�i

?

(7:6:2) (12.4.6)

commutes. Let

� : T (F )! (XI)
h�i

be the homomorphism obtained by going the long way around (12.4.6) (remember
that (10.4.1) is an isomorphism). We want to show that � is equal to (7.6.2).

Observe that � is independent of the field K (use that the diagram (11.5.2)
commutes). Of course � is functorial in T . Let E be a finite unramified extension
of F in F . Let RE denote the F -torus RE=F (TE), obtained by Weil’s restriction
of scalars from the torus TE overE. The map � for the torus RE can be thought of
as a map

T (E)! (XI)
h�Ei; (12.4.7)

where h�Ei denotes the Frobenius automorphism of F
un over E (we used that

X�(RE)I is the h�i-module induced by the h�Ei-module XI).
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Suppose that E0 is a finite unramified extension of F in F containing E. Then
there is a canonical embedding

RE ,! RE0

and the functoriality of � implies that the diagram

T (E) - (XI)
h�Ei

T (E0)
?

- (XI)
h�
E0
i

?

commutes. Thus these maps fit together to give a functorial map

ewT : T (F un)! XI :

We must show that ewT is the restriction to T (F un) of the map

wT : T (L)! XI

defined in 7.2.
Choose an induced torus R over F and a surjection

X�(R)! X�(T )

of �-modules. Then there is an exact sequence

1 ! C ! R! T ! 1;

where C is a torus. Since H1(F un
; C) is trivial, the map

R(F un)! T (F un)

is surjective. Therefore it is enough to prove that wT restricts to ewT in the case that
T is an induced torus. Then XI is torsion-free, and by using elements of X� we
reduce to the case in which T is Gm .

Thus we must show that for T = Gm the map (12.4.7)

E
� ! Z

is the usual valuation map on E. Using the norm map RE=F Gm ! Gm , we see
that it is enough to show that the map

� : F� ! Z

for Gm is the usual valuation map on F .
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Thus it is enough to show that the diagram

H1(F
�
;Z) - F

�

H1(h�i;Z)

q�

?

- Z
?

val (12.4.8)

commutes, where q is the canonical surjection F� ! h�i (uniformizing elements
in F

� map to �). Let x be an element in H1(F
�
;Z). Choose a 1-cycle a 7! xa

of F� in Z representing x. Then (see (10.1.3)) the top horizontal arrow maps x to
the element

Y
a2F�

a
�xa 2 F�

and the valuation of this element is
X
a2F�

�val(a) � xa: (12.4.9)

The map q� sends x to the class of the 1-cycle

�
n 7!

X
val(a)=n

xa (12.4.10)

of h�i in Z (the sum is taken over all a 2 F� satisfying the stated condition).
Let A be any abelian group on which h�i acts. Let Cm(A) be the group of

standardm-chains of h�i in A, so thatH�(h�i; A) is the homology of the complex

: : :! C2(A)
@
- C1(A)

@
- C0(A):

The diagram

C2(A)
@
- C1(A)

@
- C0(A)

0
?

- A

?

��1
- A

wwwwwwwwwww

commutes, where the vertical arrow C1(A) ! A sends a 1-chain �n 7! an to the
element

X
n2Z

n(an) 2 A;
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where n denotes the unique element in the integral group ring of h�i satisfying
the equation

n � (� � 1) = �
�n � 1:

Therefore the bottom horizontal arrow in (12.4.8) maps the 1-cycle (12.4.10) to the
integer

X
n2Z

n

X
val(a)=n

xa: (12.4.11)

The element n acts by multiplication by �n on Z. Therefore (12.4.11) is equal to
(12.4.9), and we are done.

12.5. We return for a moment to the cohomology of the group h�i. Let X1, X2

be finitely generated abelian groups on which h�i acts and let h : X1 ! X2 be a
homomorphism. Dual to X1, X2 are diagonalizable C -groups

Di := Hom(Xi; C
�) (i = 1; 2)

on which h�i acts. Of course Xi is equal to X�(Di). There is a map bh : D2 ! D1

dual to h. Since C� is an injective abelian group, there is a canonical isomorphism

Hom
�
H0(h�i;X1 ! X2); C

�� ' H
1(h�i;D2 ! D1); (12.5.1)

analogous to [KS, (A.3.8)]. This gives us a C� -valued pairing between

H0(h�i;X1 ! X2)

and

H
1(h�i;D2 ! D1):

As in [KS] we have the following explicit formula for this pairing in terms
of standard chains and cochains. Consider a 0-hypercycle (x1; x2(w)) and a 1-
hypercocycle (d2(w); d1). Thus x1 2 X1, and x2 is a 1-chain of h�i in X2 such
that

h(x1) =
X
w2h�i

�
w
�1
x2(w)� x2(w)

�
;

similarly d1 2 D1, and d2 is a 1-cocycle of h�i in D2 such that

bh(d2(w)) = d
�1
1 w(d1)

for all w 2 h�i. Then the value of the pairing on the classes of these two elements
is given by

hx1; d1i
Y

w2h�i

hx2(w); d2(w)i
�1
: (12.5.2)
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In 12.4 we saw how to convert from standard 1-chains for h�i to the simplified
1-chains we used in 12.1. Of course it is obvious how to convert a standard 1-
cocycle of h�i to a simplified 1-cocycle: take the value of the 1-cocycle at � 2 h�i.
Converting (12.5.2) into the language of simplified chains and cochains, we find the
following alternative description of our pairing. Consider a simplified 0-hypercycle
(x1; x2) and a simplified 1-hypercocycle (d2; d1). Thus x1 2 X1 and x2 2 X2

satisfy

h(x1) = (� � 1)x2;

similarly d1 2 D1 and d2 2 D2 satisfy

bh(d2) = (� � 1)(d1):

Then the value of the pairing on the classes of these two elements is given by

hx1; d1ih�(x2); d2i: (12.5.3)

Recall the canonical isomorphism (12.1.1)

H0(h�i;X1 ! X2) ' H
1(h�i;X1 ! X2):

Using this isomorphism, we get a pairing between

H
1(h�i;X1 ! X2)

and

H
1(h�i;D2 ! D1):

It is also given by the formula (12.5.3) (recall that a simplified 0-hypercycle is the
same as a simplified 1-hypercocycle).

12.6. We return to f : T ! U and the canonical surjection (12.2.3)

B(T ! U)! H
1(h�i;XI ! YI): (12.6.1)

There is an injective inflation map

H
1(h�i; bU I ! bT I) ,! H

1(WF ;
bU ! bT ): (12.6.2)

There is a C� -valued pairing (see (11.2.2)) between

B(T ! U)

and

H
1(WF ;

bU ! bT );
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and by applying 12.5 to XI ! YI we get a C� -valued pairing between

H
1(h�i;XI ! YI)

and

H
1(h�i; bU I ! bT I):

We claim that these two pairings are compatible, in the sense that

hb; x0i = hb0; xi

for any b 2 B(T ! U) and x 2 H1(h�i; bU I ! bT I), where b0 denotes the image of
b under (12.6.1) and x0 denotes the image of x under (12.6.2). The only nontrivial
fact needed to prove this claim is the commutativity of the diagram (12.4.1), which
we have already established.

13. Canonical splittings

Let E be a finite unramified extension of F in F and put r = [E : F ]. Thus �r is
the Frobenius automorphism of F un over E.

13.1. We return once again to the cohomology of the group h�i. Let A be an
abelian group on which h�i acts. Restricting A to the subgroup h�ri of h�i and
then inducing back up to h�i, we obtain a h�i-module

I(A) := Indh�i
h�ri(A):

We can identify I(A) with the r-fold product A� : : : � A (as an abelian group).
The action of � on an r-tuple (a1; : : : ; ar) 2 I(A) is given by

�(a1; : : : ; ar) = (�(a2); : : : ; �(ar); �(a1)): (13.1.1)

There is a canonical automorphism � of the h�i-module I(A), given by

�(a1; : : : ; ar) = (ar; a1; : : : ; ar�1): (13.1.2)

There is an obvious injective h�i-map i : A! I(A), defined by

i(a) = (a; : : : ; a) (13.1.3)

and an obvious surjective h�i-map m : I(A) ! A defined by

m(a1; : : : ; ar) = a1 � � � ar: (13.1.4)

The sequence

1 ! A
i
- I(A)

1��
- I(A)

m
- A! 1
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is exact, and therefore the exact sequence (12.1.4) for the complex I(A)
1��
- I(A)

becomes

1 ! Ah�i ! H
1�h�i; I(A) 1��

- I(A)
�
! A

h�i ! 1: (13.1.5)

We claim that there is a canonical splitting of the exact sequence (13.1.5). We
write J(A) for the subgroup

A
h�i � : : :�A

h�i

of I(A). On the subgroup J(A) the automorphisms � and � of I(A) are inverse to
one another. Recall from 12.1 that a simplified 1-hypercocycle of h�i in

I(A)
1��
- I(A)

is a pair (x; y) 2 I(A)� I(A) satisfying

(1 � �)(x) = (� � 1)(y):

For any x 2 J(A) the pair (�(x); x) is a simplified 1-hypercocycle of h�i in

I(A)
1��
- I(A):

We denote by

H
1�h�i; I(A) 1��

- I(A)
�
J

the subgroup ofH1�h�i; I(A) 1��
- I(A)

�
consisting of the classes of all simplified

1-hypercocycles of this special form. We claim that the surjection

H
1�h�i; I(A) 1��

- I(A)
�
! A

h�i (13.1.6)

induces an isomorphism

H
1�h�i; I(A) 1��

- I(A)
�
J ! A

h�i
: (13.1.7)

This will provide the desired splitting. Let x 2 J(A). The map (13.1.7) sends the
class of (�(x); x) to m(x). Since m maps J(A) onto Ah�i, we see that (13.1.7) is
surjective. Suppose that the class of (�(x); x) maps to the identity element ofAh�i.
Then there exists y 2 J(A) such that x = (1 � �)(y); therefore (�(x); x) is equal
to the simplified 1-hypercoboundary

�
(� � 1)(y); (1 � �)(y)

�
;

and we see that (13.1.7) is injective as well.
We also need the following variant of the discussion above. Now we consider

the complex

I(A)
1���1
- I(A):

comp4011.tex; 18/11/1997; 10:24; v.7; p.72



ISOCRYSTALS WITH ADDITIONAL STRUCTURE. II 327

The sequence

1 ! A
i
- I(A)

1���1
- I(A)

m
- A! 1

is exact, so that we get an exact sequence

1 ! Ah�i ! H
1�h�i; I(A) 1���1

- I(A)
�
! A

h�i ! 1: (13.1.8)

This exact sequence also has a canonical splitting. As the complementary subgroup

H
1�h�i; I(A) 1���1

- I(A)
�
J

we now take all classes that can be represented by simplified 1-hypercocycles of
the form (x�1

; x) for some x 2 J(A).

13.2. We continue to use the notation of 13.1. We now letX be a finitely generated
abelian group on which h�i acts, and letDX = Hom(X; C�) be the diagonalizable
C -group dual to X . There is a canonical isomorphism of h�i-modules

DI(X) ' I(DX ); (13.2.1)

where I denotes the induction functor Indh�ih�ri, as in 13.1. We denote the automor-
phism � of 13.1 for the group I(X) (respectively, I(DX)) by �X (respectively,
�D). Dual to

�X : I(X)! I(X)

is the automorphism

b�X : DI(X) ! DI(X):

Since the functor X 7! DX is contravariant, the isomorphism (13.2.1) identifiesb�X with the inverse of �D.
From 13.1 we get an exact sequence

1 ! Xh�i ! H
1�h�i; I(X)

1��X
- I(X)

�
! X

h�i ! 1 (13.2.2)

and a subgroup

H
1�h�i; I(X)

1��X
- I(X)

�
J (13.2.3)

complementary to Xh�i. We also get an exact sequence

1 ! (DX)h�i ! H
1�h�i;DI(X)

1�b�X
- DI(X)

�
! (DX)

h�i ! 1 (13.2.4)

and a subgroup

H
1�h�i;DI(X)

1�b�X
- DI(X)

�
J (13.2.5)
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complementary to (DX)h�i (since b�X = �
�1
D , we are using the variant discussed at

the end of 13.1).
Recall from 12.5 the canonical pairing h�; �i between the groups

H
1�h�i; I(X)

1��X
- I(X)

�

and

H
1�h�i;DI(X)

1�b�X
- DI(X)

�
:

The pairing is given by the formula (12.5.3). We claim that the subgroups (13.2.3)
and (13.2.5) annihilate each other under this pairing. In other words we claim that

h(�(x); x); (d�1
; d)i = 1 (13.2.6)

for any x 2 J(X) and any d 2 J(DX). By (12.5.3) the left-hand side of (13.2.6)
is equal to

h�(x); dih�(x); d�1i = 1;

which proves the claim.

13.3. Now let T be a torus overF , and putX := X�(T ). LetR denote the F -torus
RE=F (TE) obtained from TE by Weil’s restriction of scalars. The Galois group
Gal(E=F ) acts naturally (on the left of)R by F -automorphisms, and we denote by
� the F -automorphism of R by which the Frobenius element �E=F in Gal(E=F )
acts. Under the canonical isomorphism

R(F ) = T (E);

the action of � on R(F ) goes over to the action of �E=F on T (E).
There is a canonical isomorphism of h�i-modules

R(L) = I(T (L)); (13.3.1)

obtained as follows. We have

R(L) = T (E 
F L);

I(T (L)) = T (L)� : : :� T (L)

= T (L� : : :� L);

and with these identifications (13.3.1) becomes the map

T (E 
F L)! T (L� : : :� L)

induced by the L-algebra isomorphism

E 
F L! L� : : : � L
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sending e
 l to the r-tuple

(�r(e)l; : : : ; �2(e)l; �(e)l):

Note that (13.3.1) carries the automorphism of R(L) induced by � 2 AutF (R)
over to the automorphism of I(T (L)) denoted by � in 13.1.

Consider the exact sequence

1 ! B(T )! B
�
R

1��
- R

�
! T (F )! 1 (13.3.2)

(a special case of both (13.1.5) and (9.1.2)). From 13.1 we get a canonical subgroup

B
�
R

1��
- R

�
J

of B
�
R

1��
- R

�
, complementary to the subgroup B(T ).

Consider the Langlands dual complex

bR 1�b�
- bR:

There is an obvious identification (of C -groups) of bR with the r-fold product

bT � : : :� bT :
Let � 2 � and suppose that the restriction of � to F un is equal to �. Then

�(bt1; : : : ; btr) = (�(bt2); : : : ; �(btr); �(bt1)):
Moreover the action of b� is given by

b�(bt1; : : : ; btr) = (bt2; : : : ; btr; bt1):
The sequence

1 ! bT i
- bR 1�b�

- bR m
- bT ! 1 (13.3.3)

is exact, where i is defined by

bt 7! (bt; : : : ; bt)
and m is defined by

(bt1; : : : ; btr) 7! bt1 � � � btr:
Let f : T ! U be a map of F -tori, let C be the kernel of f , let W be the

cokernel of f , and let V be the image of f . Assume that C is connected. There is
an exact sequence

1 ! [T ! V ]! [T ! U ]! [1 !W ]! 1 (13.3.4)
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and the obvious map from [C ! 1] to [T ! V ] is a quasi-isomorphism. Applying
B to (13.3.4) we get the exact sequence (9.1.2)

1 ! B(C)! B(T ! U)!W (F )! 1: (13.3.5)

Dual to (13.3.4) is the exact sequence

1 ! [cW ! 1]! [ bU ! bT ]! [ bV ! bT ]! 1: (13.3.6)

Since C is connected, the map bV ! bT is injective with cokernel bC , and hence
the obvious map from [ bV ! bT ] to [1 ! bC] is a quasi-isomorphism. Applying the
functor H�(WF ; �) of [KS, A.3] to (13.3.6), we get an exact sequence

1 ! H
1(WF ;

cW )! H
1(WF ;

bU ! bT )! bC� ! 1 (13.3.7)

(use thatH2(WF ;
cW ) vanishes), and this exact sequence is obtained from (13.3.5)

by applying the functor Homcont(�; C
�) (see Section 11).

Taking T
f
- U to be R

1��
- R, the exact sequence (13.3.7) becomes

1 ! H
1(WF ;

bT )! H
1�
WF ;

bR 1�b�
- bR�! bT� ! 1; (13.3.8)

and this sequence is obtained by applying Homcont(�; C
�) to (13.3.2).

There is a commutative diagram with exact rows

1 - H
1(h�i; bT I) - H

1�h�i; bRI 1�b�
�! bRI� - bT�

- 1

1 - H
1(WF ;

bT )
?

- H
1�
WF ;

bR 1�b�
�! bR�
?

- bT�

wwwwwwwwwww
- 1

(13:3:9)

in which the vertical maps are inflation maps for the canonical surjection WF !

h�i. Note that

bT I = Hom(XI ; C
�);

and hence that the top row in (13.3.9) is the exact sequence (13.2.4) for the finitely
generated abelian group XI . Therefore 13.2 gives us a subgroup

H
1�h�i; bRI 1�b�

- bRI�J
of

H
1�h�i; bRI 1�b�

- bRI�
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complementary to the subgroup H1(h�i; bT I). By inflation we identify

H
1�h�i; bRI 1�b�

- bRI�J
with a subgroup of

H
1�
WF ;

bR 1�b�
- bR�;

obviously this subgroup is complementary toH1(WF ;
bT ), so that we have produced

a canonical splitting of the exact sequence occurring as the bottom row in (13.3.9).

PROPOSITION 13.4. The subgroup B
�
R

1��
- R

�
J of B

�
R

1��
- R

�
and the

subgroup H1�h�i; bRI 1�b�
- bRI�J of H1�

WF ;
bR 1�b�

- bR� annihilate each other

under the C� -valued pairing between B
�
R

1��
- R

�
and H1�

WF ;
bR 1�b�

- bR�
obtained from (11.2.2).

We have the following commutative diagram with exact rows

1 - B(T ) - B
�
R

1��
�!R

�
- T (F ) - 1

1 - (XI)h�i

?

- H
1�h�i; YI 1��

�!YI

�?

- (XI)
h�i

?

- 1;

(13:4:1)

where Y denotes the cocharacter group X�(R). The vertical maps are of type
(12.2.3), and the bottom row is of type (13.2.2) (for the finitely generated abelian
group XI); of course we are using the obvious identification

YI = Indh�i
h�ri(XI):

In 12.6 we proved the compatibility of two pairings. This compatibility implies
that the diagram (13.3.9) is obtained by applying Homcont(�; C

�) to the diagram
(13.4.1).

Since H1�h�i; bRI 1�b�
- bRI�J is a subgroup of H1�h�i; bRI 1�b�

- bRI� it is

enough to show thatH1�h�i; bRI 1�b�
- bRI�J annihilates the image of B

�
R

1��
- R

�
J

in

H
1�h�i; YI 1��

- YI

�
: (13.4.2)
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But this image is contained in the canonical subgroup of (13.4.2) complementary
to (XI)h�i. Therefore the desired annihilation was proved in 13.2 (apply 13.2 to
the finitely generated abelian group XI).

Appendix

A. Automorphism groups of 
-functors

A.1. Let k be a commutative ring with 1. Let G = Spec(A), X = Spec(B) be
affine schemes over k, and suppose that we are given a morphism

a : G�X ! X

of schemes over k (the product is taken over Spec(k)). We think of G, X as set-
valued functors on the category of k-algebras and define a subfunctor XG of X as
follows: for any k-algebra R the set XG(R) consists of all elements x 2 X(R)
such that

a(g; xS) = xS

for every R-algebra S and every g 2 G(S) (we use xS to denote the image of x
in X(S)). If G is a group scheme and a is an action of G on X , then we refer to
points in XG(R) as GR-fixed points in X(R) (GR denotes the group scheme over
R obtained from G by extension of scalars).

Now assume that k is a field. Then we claim thatXG is represented by a closed
subscheme of X . Let

a
� : B ! A
k B

be the k-algebra map induced by a. The set XG(R) can be identified with the set
of k-algebra homomorphisms f : B ! R such that the map

idA 
 f : A
k B ! A
k R

vanishes on the subset M of A 
k B consisting of all elements of the form
a
�(b) � 1A 
 b for some b 2 B. Pick a basis faigi2I for A as k-vector space.

Any element x 2 A
k B can be written uniquely as
P
i2I ai 
 bi(x) and idA 
 f

vanishes on x if and only if f(bi(x)) = 0 for every i 2 I . It follows that idA 
 f

vanishes on M if and only if f vanishes on the setN of elements in B of the form
bi(x) for some x 2M and some i 2 I . ThereforeXG is represented by the closed
subscheme of X defined by the ideal in B generated by N .

A.2. Let k be a field, and let T , U be Tannakian categories over k (see [D], [Sa]).
Let � : T ! U be an exact 
-functor. For any k-algebra R we define an R-linear

-category UR as in 3.3. Recall that UR has the same objects as U , and that for
objects X , Y in U one has

HomUR(X;Y ) = HomU(X;Y )
k R:
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As in 3.3 there is an obvious 
-functor

U ! UR:

Composing this functor with �, we get a 
-functor

�
R : T ! UR:

We then let J�(R) denote the group of 
-automorphisms of �R.
We claim that the functor J� is representable by an affine group scheme over

k. Suppose that U has a fiber functor !U over a nonzero k-algebra S. We define a
fiber functor !T on T by

!T := !U � �:

Then!T , !U determine k-groupoids G,H acting transitively on Spec(S) (see [D]),
and the pullbacks of G, H along the diagonal map

Spec(S)! Spec(S)�Spec(k) Spec(S)

are affine group schemesG,H over S. The
-functor � induces a homomorphism

� : H ! G

over S, and we denote by G� the centralizer of � in G, by which we mean the
subfunctor of H-fixed points in G (see A.1) for the conjugation action of H on G.
We claim further that there is a canonical isomorphism

(J�)S ' G� ;

where (J�)S is the group scheme over S obtained from J� by extension of scalars.
In fact the first claim follows from the second. Indeed, U has a fiber functor

over some field S containing k. It is easy to see that J� is a sheaf for the faithfully
flat topology (on the category of affine schemes over k). Therefore it is enough
to prove that (J�)S is representable by an affine group scheme over S, and this
follows from A.1 (assuming the truth of the second claim).

Now we prove the second claim. Let R be any S-algebra. From !T , !U we get
fiber functors !RT , !RU on T , U over R, and the corresponding groupoids GR, HR

(respectively, group schemes) GR, HR are obtained from G, H (respectively, G,
H) by extending scalars from S 
k S to R
k R (respectively, from S to R).

Giving an element a 2 J�(R) is the same as giving a compatible family of
elements

aX 2
�
EndHR

(!RU �X)
k R
��
;

one for each object X in T (compatible means functorial and compatible with all
finite tensor products). But !RU �X = !

R
TX and

EndHR
(!RTX)
k R = EndHR(!

R
TX);
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since the action of the groupoid HR on !RTX determines descent data (from R to
k) on EndHR(!

R
TX), and EndHR

(!RTX) is equal to the k-vector space obtained
from EndHR(!

R
TX) by descent. Moreover EndHR(!

R
TX) can be identified with

the fixed points of the action of HR on the R-module EndR(!RTX). Therefore
giving a 2 J�(R) is the same as giving an HR-fixed point in the set of compatible
families of elements

a
0
X 2 EndR(!RTX)�

and this in turn is the same as giving anHR-fixed point in G(R). Therefore J�(R)
is equal to GH(R), where H acts on G by conjugation, which proves the second
claim.

B. The Galois gerbs Ds

B.1. Let T be a Tannakian category over F (see [D], [Sa]). We suppose that T
admits a fiber functor over F , and we fix such a fiber functor !. Then in the usual
way ! determines an affine group scheme G over F . We assume further that G is
of finite type over F , so thatG is a linear algebraic group over F . Of courseG(F )
is equal to the group of 
-automorphisms of the fiber functor !.

Let � 2 �. By a � -linear 
-automorphism of ! we mean a family of � -linear
isomorphisms

gX : !(X) ! !(X);

one for each object X in T , functorial in X and compatible with finite tensor
products. Let G� be the set of all � -linear 
-automorphisms of !, and let G be the
disjoint union

G :=
a
�2�

G� :

Then G is a group (under composition) and there is an exact sequence

1 ! G(F )! G@ > q >> �! 1; (B.1.1)

the fiber of q over � 2 � being G� (to prove that the map G ! � is surjective use
that any two fiber functors for T over F are isomorphic).

The extension G of � by G(F ) is called the Galois gerb associated to T and !
(see [LR]). There is a natural topology on G making G into a topological group.
The induced topology on the subgroupG(F ) is discrete, and the induced topology
on the quotient group � is the usual Krull topology. The topology is defined as
follows. There exists a finite Galois extension K of F in F and a fiber functor
!0 on T over K . Choose a 
-isomorphism between ! and the fiber functor !F0
obtained from !0 by extension of scalars fromK to F . Let�K denote the subgroup
Gal(F=K) of �. Our choices determine a section of G ! � over the subgroup �K
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of � (since each !(X) has acquired a K-structure and hence a canonical � -linear
automorphism for each � 2 �K). Any two sections of this type become conjugate
under G(F ) after restricting to a suitably small open subgroup of �. Using our
chosen section we express q�1(�K) as the semidirect product

q
�1(�K) = G(F )� �K :

We put the discrete topology on G(F ), the Krull topology on �K , and the product
topology on q�1(�K). We give G the unique topology for which it is a topological
group and the inclusion

q
�1(�K) ,! G

is an open mapping. It is easy to see that this topology is independent of the choices
we made.

By a representation � of G we mean a discrete, semilinear, algebraic action of
G on a finite dimensional F -vector space V (discrete means that the stabilizer in
G of any vector in V is an open subgroup of G, semilinear means that elements in
G� act by � -linear automorphisms of V , and algebraic means that the restriction
of � to G(F ) is a representation of the algebraic group G). For any object X in
T there is an obvious representation of G on !(X), and the resulting 
-functor
X 7! !(X) from T to the 
-category of representations of G is a 
-equivalence
of 
-categories.

B.2. Let T be the Tannakian category �-L-spaces (see Section 2). Let s be a
positive integer. We denote by Ts the full Tannakian subcategory of T consisting
of all �-L-spaces (V;�) whose slopes lie in the subgroup 1

sZ of Q.
Let Fs denote the fixed field of �s on F un; of courseFs is the unique unramified

extension of F in F having degree s. The Tannakian category Ts has fiber functors
over Fs, and any two such fiber functors are isomorphic. We can single out one
such fiber functor by choosing a uniformizing element � for F . Then the desired
fiber functor !� is given by

!�(V;�) :=
M
n2Z

V
��n�s (B.2.1)

together with the obvious isomorphism

!�

�O
i2I

Vi

�
=
O
i2I

!�(Vi):

The group of automorphisms of !� is Gm(Fs) (an element x 2 Gm(Fs) acts on
V
��n�s by xn).
By considering semilinear
-automorphisms of !� as well, we get an extension

1 ! Gm(Fs)! D0
s ! Gal(Fs=F ) ! 1: (B.2.2)
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Extending scalars from Fs to F we get a fiber functor !F� on Ts over F , and thus
we also have the extension

1 ! Gm(F )! Ds ! �! 1; (B.2.3)

whereDs denotes the Galois gerb associated to T and !F� . Of course the extension
(B.2.3) is obtained from the extension (B.2.2) by pulling back along the canonical
surjection

�! Gal(Fs=F )

and then pushing out along the canonical injection

Gm (Fs) ,! Gm (F ):

For any �-L-space (V;�) the �-linear automorphism � preserves the subspace
!�(V;�) of V . Since the resulting �-linear automorphism of!�(V;�) is functorial
and compatible with tensor products, there is a canonical element 's 2 D0

s lying
over the Frobenius element in Gal(Fs=F ), namely the unique element that acts by
� on!�(V;�) for all (V;�). Note that the s-th power of's is equal to � 2 Gm (Fs).
The element 's 2 D0

s determines a homomorphism

h�i ! D0
s; (B.2.4)

namely the unique one that sends the generator � of the infinite cyclic group h�i
to the element 's in D0

s . We now define a continuous homomorphism

WF ! Ds (B.2.5)

as follows. Let �s denote the group Gal(Fs=F ). Then the fiber product

D0
s ��s �

is a subgroup ofDs, and the homomorphism (B.2.5) factors through this subgroup,
its first component being the map

WF ! h�i ! D0
s

obtained by composing the canonical surjection WF ! h�i with the map (B.2.4)
from h�i to D0

s , and its second component being the canonical injection

WF ,! �:

It is clear that the map (B.2.5) is a section of

Ds ! �

over the subgroupWF of �. The pair consisting of the extensionDs of � by Gm (F )
and the section (B.2.5) overWF has no nontrivial automorphisms.
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Now suppose that t is a positive integer such that s divides t, say t = su. For
any object (V;�) in Ts (which also can be regarded as an object in Tt) there is a
canonical isomorphism

Ft 
Fs

�M
n2Z

V
��n�s

�
!
M
m2Z

V
��m�t (B.2.6)

(to prove this use descent theory for Ft=Fs). The isomorphism (B.2.6) determines
a map of extensions

1 - G m(F ) - Dt - � - 1

1 - G m(F )

u

?

- Ds

?

- �

wwwwwwwwwwww
- 1;

(B.2.7)

where the left vertical arrow is the map x 7! x
u. It is easy to see that the diagram

WF
- Dt

WF

wwwwwwwwwwww
- Ds

?

commutes, where the horizontal maps are of type (B.2.5).

B.3. Now let K be any finite Galois extension of F in F . Put s = [K : F ].
Let WK=F denote the Weil group of K=F . Recall that WK=F is the subgroup of
Gal(Kab

=F ) consisting of elements that induce on F un an integral power of �
(here Kab denotes the maximal abelian extension of K in F ). Obviously WK=F is
a quotient of WF , and there is an exact sequence

1 ! K
� !WK=F ! Gal(K=F ) ! 1; (B.3.1)

in which we use the reciprocity isomorphism forK to identifyK� with a subgroup
of Gal(Kab

=K). We normalize the reciprocity isomorphism in the same way Serre
does [S2], so that Frobenius elements in Gal(Kab

=K) correspond to uniformizing
elements in K�.

Pulling back the extension (B.3.1) along the canonical surjection

�! Gal(K=F )

and then pushing it out along the canonical injection

Gm (K) ,! Gm(F );
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we get an extension EK=F of � by Gm (F ). The surjection EK=F ! � has a
canonical section over the subgroup �K := Gal(F=K) of �. We use this section
to topologize EK=F in the same way that we topologized G in B.1. The induced
topology on the subgroup Gm(F ) of EK=F is discrete, and the induced topology
on the quotient group � is the Krull topology.

The extensions EK=F and Ds are isomorphic (both correspond to 1
s 2 Q=Z

under the canonical isomorphism from H
2(F; Gm) to Q=Z), and the isomorphism

between them is unique up to an inner automorphism of EK=F coming from an
element in Gm (F ) (since H1(F; Gm) is trivial). Using one of these isomorphisms

Ds ' EK=F ; (B.3.2)

the map (B.2.5) gives us a section

WF ! EK=F (B.3.3)

of

EK=F ! �

over the subgroup WF of �, and if we make a different choice of isomorphism
(B.3.2) the section (B.3.3) is replaced by a conjugate under some element of
Gm (F ). Suppose that we make a different choice of uniformizing element �.
Then the section (B.3.3) is multiplied by a 1-cocycle of WF in Gm(F ) that is
cohomologous to one obtained by inflation from a 1-cocycle of h�i in the group of
units in F�

s . Note that the isomorphism (B.3.2) is an isomorphism of topological
groups and hence that the map (B.3.3) is continuous.
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