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Abstract. Let F be ap-adicfield, let L be the completion of a maximal unramified extension of F,
and let o be the Frobenius automorphism of L over F'. For any connected reductive group G over F
one denotes by B(G) the set of o-conjugacy classesin G(L) (elements z,y in G(L) are said to be
o-conjugate if there exists g in G(L) such that g~ ko (g) = y. One of the main results of this paper
isaconcrete description of the set B(G) (previoudly thiswas known only in the quasi-split case).
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Let F' be a p-adic field, and let G be a connected reductive group over F. We
write L for the completion of the maximal unramified extension F''" of F' in some
algebraic closure F' of F. We write o for the Frobenius automorphism of L over
F'; it induces an automorphism of G/(L) which we aso denote by o. We say that
two elements z, y in G(L) are o-conjugate if there exists ¢ € G(L) such that
g lzo(g) =y, and we write B(G) for the set of o-conjugacy classesin G(L).

In case F' is Q, the set B(G) can be identified with the set of isomorphism
classes of isocrystals with G-structure. For examplewhen G isGL,,, the set B(G)
can be identified with the set of isomorphism classes of n-dimensional isocrystals,
a set that can be easily described using the classification (due to Dieudonné and
Manin) of the simple objectsin the category of isocrystals.

The set B(G) turns up naturally when one studies Shimura varieties over finite
fields[LR], [K5], and also plays arole in recent work of Rapoport and Zink [RZ]
on period spaces for p-divisible groups and Shimura varieties over p-adic fields.
Thus it is of interest to have a concrete description of B(G) for any connected
reductive group G.

For quasi-split groups such a description is given in [K]. The first step is to
associate to any element b € G(L) ahomomorphism»: D — G over L, where D
denotes the diagonalizable group over F' with character group Q. The conjugacy
classof v under G(L) dependsonly ontheclassof b in B(G), and this conjugacy
class of homomorphismsisfixed by o. Let B beaBorel subgroup (over F) inthe
quasi-split group G, let T be a maximal F-torusin B, and let A be the maximal
F-split torus in T'. Let 21 denote the real vector space obtained by tensoring the
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cocharacter group of A with R, and let C' denote the closed Weyl chamber in 2
determined by B. The homomorphism v is conjugate under G(L) to a unique
element 7 € C (a homomorphism from D to A determines a point in the obvious
Q-subspace of 2). Following [RR] we refer to the map b — 7 from B(G) to C' as
the Newton map.

The Newton point 7 determines a parabolic subgroup P = M N of G over
F. We write B(G)p for the subset of B(G) consisting of all elements for which
the associated parabolic subgroup is equal to P. The first main result of [K] isa
description of the subset B(G) ¢ (elementsin this subset are said to be basic). The
second main result of [K] isadescription of B(G)p interms of basic elementsin
B(M), where M isaLevi component for P (see 5.1 for a precise statement).

One of the main results of this paper isadescription of B(H ) for any inner form
H of the quasi-split group G. In fact it is best to introduce a set B,(G), which,
loosely speaking, is the disjoint union of the sets B(H) as H ranges through the
inner forms of G (this point of view is suggested by work of Adams and Vogan
[AV] on representations of inner forms of real groups). It turns out that B, (G) has
adescription (see 5.3) that is entirely analogous to the one for B(G) givenin [K].

We continue to let H denote an inner form of G. In Section 6 we introduce a
subset B(H, i) of B(H). Here 1 denotes a dominant coweight of the maximal
torus 7' in the quasi-split group G. Pairs (H, i) as above arise naturally in the
study of Shimuravarieties. Indeed, to get a (tower of) Shimura varieties one needs
to start with a connected reductive group Hg over Q and a miniscule coweight
po of Hg over C. We assume that F' is Q, and that Hg is a Q-form of H. Let
E C C bethe Shimura field (the field of definition of the conjugacy class of ).
Fix an embedding . of E in Q,. Then there is a unique dominant coweight ;. of 7'
that is ‘ conjugate’ to 10. Thuswe obtain apair (H, i) as above with x miniscule.
Given the conjectural interpretation of our Shimuravariety X asamoduli space of
motiveswith H-structure, we expect the special fiber of any natural integral model
of X to decompose as a digjoint union of piecesindexed by the set B(H, ).

In Section 6 we find all pairs (H, 1) for which the set B(H, ;1) has a unique
element. For pairs (H, ;1) arising from Shimura varieties it seems plausible that
B(H, ;1) has a unique element if and only if the Shimura variety admits p-adic
uniformization at the place of £ determined by .. The results in Section 6 sup-
port Rapoport’s idea [R] that p-adic uniformization occurs only in very special
circumstances and always involves products of Drinfeld’s spaces Q.

Thelast mainresult of thispaper is Proposition 13.4. It istoo technical to discuss
in this introduction, but it is probably worthwhile to mention that this proposition
will be needed in order to prove that the transfer factors of [KS] for unramified
cyclic base change (use the Frobenius element as generator for the cyclic Galois
group) havetheform givenin Section 7 of [K3]. The point isthat the transfer factor
in [K3] involvesthe groups B(T') whilethe onein [KS] involves hypercohomol ogy
groups. In order to comparethetwo it is necessary to introduce ahypercohomol ogy
variant B(T' — U) of B(T') and prove a number of results about it; this is done
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in Sections 7-13. In particular a duality theorem for B(T" — U) is proved in
Section 11, avaluation mapping from B(T" — U') onto afinitely generated abelian
group is defined in Section 12, and an important compatibility between the duality
theorem and the valuation mapping is proved in 12.6 (this compatibility is needed
to prove Proposition 13.4).

One last point deserves mention aswell. Although the set B(G) can be defined
for any linear algebraic group G over F, itisnot the‘right’ set unlessG isconnected.
For disconnected groups one should use instead the variant B(G) defined in 1.4.
The first three sections of the paper develop the elementary properties of B(G)
and also serve asareview of B(G). Following Rapoport and Zink [RZ], in 3.3 we
give a more natural definition of the group J appearing in [K] (the group J was
introduced by Langlands in the appendix to [L]).

It isapleasure to acknowledgethe influence of M. Rapoport, with whom | have
had many stimulating conversations on the material in Sections 1-6.

The following notation is used throughout this paper. We denote by Int(z) the
inner automorphism y — zyz 1. For an abelian group X we denote by X the
group X ®;z R. For a connected reductive group G we denote by G e the derived
group of G, by G« the simply connected cover of G, and by Gy the adjoint
group of G.

1. Preliminaries

1.1. The following notation will be used throughout this paper. Let p be a prime
number and let F' be ap-adic field (afinite extension of Q,). Let

val: F* = 7Z
be the usual valuation on F', normalized so that uniformizing elements have valu-
ation 1. Let o denote the valuation ring of F', let p denote its maximal ideal, let &
denote the residuefield o /p, and let ¢ denote the number of elementsin k.

Let F be an algebraic closure of F, let FU" denote the maximal unramified
extensionof F in F, let L denote the completion of F'", and let L be an algebraic
closure of L containing F. The Frobenius automorphism o of FU" over F (which
induces z — z7 on the residue field of F''") extends continuously to an automor-
phism (also denoted o) of L over F. Let ' denote the Galois group of F over F,
and let W denote the Weil group of F over F (the subgroup of I" consisting of all
elementsin I whose restriction to F'" is an integral power of o). Let I denote
the inertia subgroup Gal (F'/F'") of I". We will often abbreviate Wy, I to W, I.
Of course I is also a subgroup of W, and we regard W as a topological group in
the usual way, by requiring that I, with the Krull topology, be an open subgroup of
W. Thus we have an exact sequence of topological groups

1-1—-W —=(0) =1, (2.1.2)

where (o) denotes the infinite cyclic group generated by o (we give (o) the
discrete topology). It isnot difficult to seethat L = L ® pun F'. Thus I isalso equal
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to Gal(L/L), and we may regard elements of W (or even I') as automorphisms of
L over F. Note that the fixed field of W in L is F. For any finite Galois extension
K of Fin F thereis an exact sequence

1 Wik — Wy — Ga(K/F) — 1. (1.1.2)

1.2. Let A beagroup onwhich W acts. We assumethat the W -group A isdiscrete,
by which we mean that the stabilizer of any element of A isopenin W. Thisis
equivalent to the condition that the action map

WxA—A

be continuous when A is given the discrete topology. By a 1-cocycle of W in A
we mean a continuous map 7 — a, from W to A (give A the discrete topology)
satisfying the usual 1-cocycle condition

arp = a;7(ay) foral r,peW.

Note that an abstract 1-cocycle a, is continuousif and only if there exists an open
normal subgroup N of W suchthat a, = 1for all = € N, inwhich casea, isthe
inflation to W of an (abstract) 1-cocycle of W/N in AV . If a, is a 1-cocycle of
W in A and b isan element of A, then b=1a,7(b) isal-cocycleof W in A andis
said to be cohomologousto ... We define H(W, A) to be the quotient of the set
of 1-cocyclesof W in A by the equivalencerelation of being cohomologous. Then

HY W, A) = Ii_r)nHl(W/N, AN,
N

where N runs over the directed set of open normal subgroups of W.

1.3. Let A be a W-subgroup of a discrete W-group B. Then there is an exact
sequence of pointed sets

1 AW = BY - (B/A)Y L HY(W, A) — HY(W, B) (1.1.3)

andif Aisnormal in B, thisexact sequence can be prolonged by adding HYW,B/A)
at the right end. Of coursethe map 0 sendsb € (B/A)", represented by b € B, to
the class of the 1-cocycle 7 — b~17(b).

1.4. Sincethefixedfield of W in L is F, thefixed point set of W in X (L) is X (F)
for any scheme X over F. Let G bealinear algebraic group over F. Then G(L) is
adiscrete W-group and G(L)" = G(F). We define a pointed set B(G) by

B(G) := HY (W, G(L)).

We define another pointed set as follows. Let B(G) be the quotient of G(L) by
the equivalence relation o-conjugacy (two elements z,y € G(L) are said to be
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o-conjugate if there exists g € G(L) suchthat y = g~ 1zo(g)). Clearly B(G) can
be identified with the pointed set

H'((0),G(L)) = HY(W/I,G(L)"),

which can be identified (by inflation) with a subset of B(G); in this way we will
aways view B(G) as a subset of B(G). Of course there is an exact sequence of
pointed sets

1— B(G) — B(G) —» HY(L,G) (1.4

(here, as always, we denote the Galois cohomology set H*(Gal(L/L),G(L)) by
HY(L,@)). If G is connected, then H(L, G) is trivial [St], and the sets B(G),
B(G) are equal. For disconnected groups B(G), B(G) need not coincide, and it is
B(G) that is the more useful notion.
The inflation maps for the surjections W — Gal(K/F') appearing in (1.1.2)

yield injections

HY(K/F,G(K)) = B(G)
for every finite Galois extension K of F in F, and these fit together to give an
injection

HYF,G) — B(G). (1.4.2)

15. Let
1= Gi(F)G2(F)Gz — 1
be an exact sequence of linear algebraic groupsover F'. Then
1— G1(F) = G2(F) — G3(F) — B(G1) — B(G2) — B(G3)

is an exact sequence of pointed sets. The group G3(F') acts on B(G;) in the
following way. Let g3 € G3(F) and let g, € B(G1). Pick al-cocyclez, of W in
G1(L) lyingin the class g;, and pick an element g, € G2(L) mapping to g3 under
G2 — G3. Thenthe action

G3(F) x B(G1) — B(G1)

sends the pair (g3, g;) to the class of the 1-cocycle goz,7(g2) 2. It is easy to see
that the orbits of the action of G3(F') on B(G1) coincide with the fibers of the map

B(G1) — B(G2).
1.6. Let F’ be afinite extension of ' in F. Let G be a linear algebraic group

over F', and let RG denote the F'-group obtained from G by Weil’s restriction of
scalars. Then there is a Shapiro bijection

B(RG) ~ B(G). (16.2)
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2. o-L-spaces

2.1. Asin[K] weusetheterminology o- L-spacetorefer toapair (V, ®) consisting
of afinite dimensional vector space V' over L and ac-linear bijection ®: V' — V
(thus ®(aw) = o(a)®(v) for dl a € L, v € V). There is an obvious tensor
product on the category o-L-spaces of all such objects, and in fact o-L-spaces is
a Tannakian category over F'.

Of course in the special case that £ is Q, the category o-L-spaces is just the
category of isocrystals. Just as for isocrystals the category o-L-spaces is semi-
simple, and there is a natural bijection from Q to the set of isomorphism classes
of simple objectsin o-L-spaces. Thus every object in o-L-spaces has an isotypic
decomposition

VZ@W?

reQ

and, asfor isocrystals, we refer to V,. asthe part of V' having sloper. If V1, V> are
isotypic of slopes r1, > respectively, then V1 ® V5, isisotypic of slope ry + 7. If
V isasimple object of slope r, then its endomorphism ring is a central division
algebraover F' whose Hasse invariant is the element —r of Q/Z. Note that in this
paper we normalize the Hasse invariant in the same way that Serre does in the
appendix to Section 1 of [S2]. Thisisalso the normalization used in Section 2.6 of
[K], so that for consistency the homomorphisms

Q—Q/z

is Section 3 of [K] should al be replaced by their negatives (this inconsistency in
[K] affects none of the results of that paper).

2.2. Thereis a second way to look at o-L-spaces. By a Wr-L-space we mean a
finite dimensional L-vector space V' equipped with a semilinear action of the Weil
group Wy for which V' is a discrete W -module in the sense of 1.2 (semilinear
meansthat 7(av) = 7(a)7(v) foral 7 € Wg, a € L, v € V). The category W--
L-spaces of al such objects has an obvious tensor product. There is an obvious
®-functor V — L ®;, V from o-L-spacesto Wp-L-spaces, the action of W on
L ®1, V being given by the formula

7(a®v) = 7(a) ® ¢/ (v)

foral « € L,v € V and 7 € Wp mappingto o/ € (o). There is an obvious
®-functor V +— V! (invariants of inertia) from W r-L-spaces to o-L-spaces, and
by the usual Galois descent theory for L/L this functor is quasi-inverse to the
previous one. Thus both functors are ®-equivalences of ®-categories. We say that
asimple object in Wy-L-spaces has slope r if the corresponding simple object in
o-L-spaceshas sloper.
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Let ' be a finite extension of F in F. Then W is an open subgroup of
finite index in W, and any Wp-L-space V can be viewed as a W - L-space by
restricting the action of Wy to Wy If V isisotypic of slope r as Wy-L-space,
theniit isisotypic of sloper[F' : F] as Wy -L-space.

3. o-L-spaceswith G-structure

3.1. Now let G bealinear algebraic group over F and let g, bea1-cocycleof Wy
in G(L) (see 1.2). For any representation

p:G— GL(V)

of G on afinite dimensional vector space V over F' wegetaWp - L-space structure
onL ®p V by letting 7 € W act by the 7-linear automorphism

p(gr) o (T @idy).

In this way we get an F-linear functor 3 from Rep(G) to W-L-spaces sending
V to L ®p V, and this functor is a ®-functor in an obvious way (we denote by
Rep(G) the Tannakian category of representations of G on finite dimensional F'-
vector spaces). The Tannakian category W - L-spaces has an obvious fiber functor
w over L (forget the Wi-action). The Tannakian category Rep(G) also has an
obvious fiber functor wg over L, namely the functor V' — L ®p V. Therefore
thereis an obvious ®-isomorphism from w o 3 to wg (nhamely the identity map on

We can turn this around. Supposethat (3, «) isapair consisting of a ®-functor
3 from Rep(G) to We-L-spaces and a ®-isomorphism o from w o 3 to wg. Then
for every representation V' of G the isomorphism « allows us to view (V') asa
discrete semilinear Wx-module structureon L @ V. Thusfor each 7 € W there
is auniquely determined linear automorphism g (V') of V' such that the action of
7onL ®p V isgiven by

gr(V) o (T ®idy).
Thereisaunique element g, € G(L) such that

p(gT) = gT(V)

for every representation (p, V) of G, and 7 +— ¢, isal-cocycleof W in G(L).
Thetwo constructions above are inverse to each other, so that we get a bijection
from the set of 1-cocyclesof Wy in G(L) to the set of ®-isomorphism classes of
pairs (3, «) as above. Now suppose that we are given an exact ®-functor 5 from
Rep(G) to We-L-spaces (we include F-linearity in the definition of ®-functor).
Thenw o B isafiber functor on Rep(G) over L, so there exists a ®-isomorphism
a from w o 8 t0 w¢. This isomorphism is well-defined up to a ®-automorphism
of wg, or, in other words, up to an element of G(L). Associated to (3, ) is a
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1-cocycle of Wy in G(L), and changing « by an element of G(L) replaces the
1-cocycle by a cohomologous one. In this way we get a bijection from the set of
®-isomorphism classes of exact ®-functors 3 as aboveto the set B(G) defined in
14.

3.2. Let G and g, be as above. Let D be the diagonalizable group over F' whose
character group X * (D) is Q (with trivial Galois action). Then, just asin [K, 4.2],
we get from g, a homomorphism v: D — G over L. Indeed, as we saw above,
for any representation (p, V') of G the 1-cocycle g, turns L @ V into a W-L-
space, so that L ® V' acquires a Q-grading (its slope decomposition), which can
also be thought of as a homomorphism v, : D — GL(V) over L. The desired
homomorphismv: D — G over L isthe unique one such that

vy=pov fordl (p,V).

Let 2 be an element of G(L). It is clear that replacing g, by the cohomologous
1-cocycle zg, 7(x) ! replaces v by Int(z) o v.

Let ' be afinite extension of F in F'. Then the restriction of ¢, to Wy isa
1-cocycle of Wy in G(L) and therefore determines ahomomorphism': D — G
over L. It follows from 2.2 that

!

- V[F’:F}.

We claim that v is trivia if and only if the cohnomology class of g, liesin the
image of the natural injection
HYF,G) — B(G).

Indeed, if g, comes from H(F,G), then there exists a finite Galois extension
F' of F in F such that the restriction of g, to W is cohomologous to the
trivial 1-cocycle. Therefore "'l js trivial, which implies that v itself is trivial.
Conversely, if v istrivial, then for every representation (p, V') of G the W - L-space
V ®F L hasslope 0. Therefore

V= (VerL)V

isafiber functor on Rep(G) over F, and it follows that the functor
B: Rep(G) — Wr-L-spaces

determined by ¢ is ®-isomorphic to one of the form
Vi w(V)®r L,

where w is afiber functor on Rep(G) over F. To such afiber functor corresponds
an element of H1(F, G), and it isimmediate that this element maps to the class of
g- INB(G).
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3.3. We continue with G and g, as above. We will again denote the Weil group
Wr simply by W. Since G is defined over F, the action of W on L induces an
action of W on G(L), which we refer to as the standard action. The 1-cocycle g,
determines a twisted action of W on G(L); for 7 € W this twisted action 7* is
related to the standard action 7 by

7" =1Int(g;) o 7. (3.3.1)

We want to define a linear algebraic group J over F' such that J(F') is equal to
G(L)" (the fixed point subgroup of the twisted I/ -action on G(L)).

First let us define the functor J that we wish to represent by a linear algebraic
group; herewe are following Rapoport-Zink [RZ, 1.12]. For any F-algebra R there
isanatural action of W on R ® L. Thisyields an action of W on G(R ® L),
and again the 1-cocycle g, determines atwisted action of W on G(R ®y L) (use
(3.3.1), as before). We define the functor J by

J(R) := G(Rer L)". (33.2)
When R is an L-algebra, the canonical L-algebra homomorphism

R®rL— R
induces an injection

J(R) = G(R®r L)V — G(R)
(the injectivity of this map follows from Appendix A and the discussion below).
When R is L itself, the injection

J(L) = G(L) (3.3.3)

is W-equivariant for the standard W -action on J (L) and the twisted W -action on
G(L). Moreover theinjections J(R) — G(R) defined abovefor each L-algebra R
identify J— with a closed subgroup scheme of G, namely the centralizer in G of
the homomorphism v : D — G defined in 3.2. In particular (3.3.3) identifies J (L)
with the L-points of the centralizer of v in G.

In order to define J we only need the functor 3 from Rep(G) to W - L-spaces
determined by ¢, ; the choice of ®-isomorphism « (of fiber functors over L) needed
to determine aparticular 1-cocycle servesto identify J(R) with G(R®p L)V . We
proceed asfollows. Let R be an F-algebra. For any Tannakian category 7 over F
we write 7% for the category whose objects are the same asthosein 7~ and whose
morphisms are given by

H0m7-R (X, Y) = HomT(X, Y) RF R.

Then there is an obvious structure of R-linear ®-category on 7%, and there is an
obvious ®-functor

T Tk
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(given on objects by the identity map). We denote by 3 the composition of 3 and
the functor described above from W .- L-spacesto W .- L-spaces’®. We then define
Js(R) to be the group of ®-automorphisms of the ®-functor 8% (in particular
J3(F) isthe group of ®-automorphismsof 3 itself).

It follows from Appendix A that J is representable by an affine group scheme
over I, and that a choice « of ®-isomorphism of fiber functors over L determines
an isomorphism over L from J; to the centralizer in G of the homomorphism
v: D — G. Let g, bethe 1-cocycle associated to 5 and «. It remains to show that

Js(R) = G(Rer L)"V.
By definition an element z € Jg(R) isgiven by acompatiblefamily of elements
Ty € (EndWF,f(f RF V) QF R)X,

onefor eachrepresentation V' of ¢, where compatible meansfunctorial in V aswell
as compatible with all finite tensor products. It is obviousthat for any W - L-space
U and any F-vector spaceT we have

0" orT = (Uer (Torn)"”

(to provethischooseabasisfor T'). Applying thistothe W - L-space End- (L& g V')
and the F-algebra R (again V' is arepresentation of ), we see that

EndWFI(E ®rV)®r R = (Endf(f QpV) S (Z RF R))W

= (EndR®FZ(R Qr L ®p V))W

(the second equality follows from the finite dimensionality of V). Thereforez isa
compatible family of elements

zv € At 7(R®rLorV)"W.
Since a compatible family of elements of
Aut,, T(R®F LR V)
is the same as an element of
G(R®r L),
we conclude that
J3(R) = G(Rer L)V
(it is easy to see that the W -action is the twisted one described earlier.

3.4. Wecontinuewith G and g, asabove. Welet v: D — G bethehomomorphism
over L determined by g (asin 3.2), and welet J be the F'-group obtained from g,
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(asin 3.3). Asin 3.3 weidentify J over L with the centralizer in G of v. Since the
slope decomposition of any W .- L-space is stable under W, the homomorphism v
satisfies

Int(g;)o7(v) =v fordl 7€ W. (34.1)

Since D is abelian, the homomorphism v factors through J (and even through the
center of J), yielding a homomorphism

v:D—J

defined over F (use (3.4.1) to seethat it is defined over F).
Let 2, beal-cocycleof W in J(L). Then g, := ;g isal-cocycle of W in
G(L), and themap z, — g, on 1-cocyclesinduces a map

B(J) L B(Q). (34.2)

Let': D — G be the homomorphism over L associatedto g/, and let 2 D — J
be the homomorphism over L associated to z,. Note that since v is centra in J,
the product of 1, and v is awell-defined homomorphismD — .J, and we claim that

V= . (34.3)

To check this, pick any faithful representation V of G. Put V := V ® L. Then
g- turns V' into aW - L-space, which we still denoteby V. Of course ¢ also turns
V into a W - L-space, which we denote by V. Now put

U :=Endy, z(V)

an F-vector space. The group J acts on U by left multiplication (note that J(F')
is a subgroup of Auty, Z(V), and, more generally, that for any F-algebra R the

group J(R) isasubgroup of Auty, 7. .(V ®r R)). Put
U:=UQ®rL
= Endy(V),
and usethe 1-cocyclez, toturn U into a Wx-L-space. The natural evaluation map
Endy(V) @7V =V,
sending f ® v to f(v), yields a surjective map
Ueor V-V
of Wr-L-spaces. Let fo € U bethe identity endomorphismof V, andletv € V.

We write v’ instead of v when we regard v asan element of V'. Thenfor z: € (L)
we have

V(@) = v'(z)fo(v)
= (u(z)fo) (v (x)v)
= p(z)v(z)v,
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which showsthat v/ = v, asdesired.

3.5. We continueto use the same notation. Restricting the map (3.4.2) to the subset
HY(F,J) of B(J), we get amap

HYF,J) 25 B(G). (35.1)

We claim that this map is injective and that its image is the set of classes of
1-cocyclesg’. (of W in G(L)) for which the associated homomorphism': D — G
is conjugate under G(L) to v. The analogous result for B(G) appearsin [RRY].

Itis clear from 3.2 and 3.4 that (3.5.1) maps H*(F, .J) into the subset of B(G)
described above. Now suppose that ¢! is a 1-cocycle such that v/ is conjugate to
v; we must show that the class of ¢/ lies in the image of (3.5.1). Replacing ¢
by a cohomologous 1-cocycle, we may assume that v/ = v. For 7 € W define
z, € G(L) by ¢ = z.g9.. Applying (3.4.1) to both g, and ¢, we see that
Int(z,) o v = v, which meansthat z, liesin J(L). Moreover ., is a 1-cocycle of
W in J(L), and from (3.4.3) we see that the homomorphism z.: D — J associated
to «, istrivial. Thus (see 3.2) the class of =, in B(.J) liesin the subset H(F, .J),
and this showsthat the class of ¢_ in B(G) liesin theimage of (3.5.1), as desired.

It remainsto check that (3.5.1) isinjective. Suppose that =, y, are 1-cocycles
of Win J(L) arising asthe restrictions of 1-cocyclesof I in J(F), and suppose
further that / is an element of G (L) such that

Yrgr = thgTT(h)_l'

It follows from this equation that
v = Int(h) ov;

thush € J(L) and
yr = har (g 7(h)gr )",

which showsthat v, is cohomologousto z.

3.6. Let G bealinear algebraic group over F'. Let N be the unipotent radical of
G. We claim that the natural map

B(G) — B(G/N) (36.1)

isabijection. Choosing aLevi factor M in G (see[BS, 5.1]), sothat G = M N, we
seeimmediately that (3.6.1) issurjective. Now we show that (3.6.1) isinjective. Let
g-» g~ be 1-cocyclesof W in G(L) whoseimagesin (G /N)(L) are cohomologous;
we must show that g,, g. are cohomologous. Without loss of generality we may
assumethat theimagesof g, and g’ in (G/N)(L) areequal. Letv, v’ : D — G bethe
homomorphisms associated to g, g/ respectively. Replacing g, by ng,7(n)~! for
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suitablen € N(L) (note that this does not change the image of g, in (G/N)(L)),
we may assume that v factors through A, and in the same way we may assume
that +/ also factorsthrough M. Since g,, ¢g. havethe sameimagein G/N ~ M, it
followsthat v/ and v are equal. Therefore (see 3.5) there exists a 1-cocycle z of
W in J(L) such that

gfr = Zrgr-

Since g/, and g, havethe sameimagein G /N, the 1-cocycle z. takesvaluesin the
unipotent radical of J. Thuswe are reduced to proving that B(U) istrivial for any
unipotent group U. Since every homomorphismv: D — U istrivial, we see that
the natural map

HY(F,U) = B(U)

isbijective. It iswell-known that H(F, U) istrivial, and this concludes the proof.

4. B(H) for connected reductive H

Let H be aconnected reductive group over F'. In this case thereis more to be said
about the objects v, J appearing in the previous section. The results in 4.6-4.18
will be used in the next section. We also need to review the notion of basic elements
in B(H). Since H is connected, the sets B(H) and B(H ) coincide (see 1.4), and
therefore the results of [K] are valid for B(H).

4.1. Choose a quasi-split group G' over F and a I'-stable G (F)-orbit ¥ of
F-isomorphisms

.G — H.

Thus, for any ¢y € ¥ and any 7 € T the automorphism ¢! o 7(1)) of G over F’
isinner. In other words ¥ consists of a G o(F')-orbit in the set of inner twistings
G— H.

Choose a maximal split torus A in G, let T' be the centralizer in G of A (a
maximal torus of G since G isquasi-split), and let B be aBorel subgroup of G that

contains T and is defined over F'. Let Ny denote the unipotent radical of B. Put

Ap = X4 (4) ®2Q,

Let C' denote the closed chamber
{z € A| (o, z) > O0for every root « of AinLie(No)}

in 2L, and let Cy, denoteitsintersection with the rational subspace 2l of 2. Itisan
easy conseguence of standard facts about root systems (see [K1, Lemma1.1.3] for
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example) that there is a canonical bijection from C to the set of I'-fixed points
in the set of G/(L)-conjugacy classes of L-homomorphismsD — G (view 2lq as
Hom(D, A) in order to obtain ahomomorphismD — G from an element of C').

4.2. Leth, beal-cocycleof Win H(L).Letv : D — H bethe L-homomorphism
associated to k., in 3.2. It is obvious from (3.4.1) that the H (L)-conjugacy class
of the homomorphism v is fixed by W (and hence by I'). Composing v with the
inverse of any inner twisting 1y € ¥, we get an L-homomorphism

Y lov:iD— G,

whose G (L)-conjugacy classisfixed by I and independent of the choiceof v in .
Let & be the element of C'y, corresponding to the G/(L)-conjugacy classof ¢y~ o v
under the bijection mentioned above. Clearly 7 depends only on the class of £, in
B(H). Following [RR] we call this map

B(H) — 2 4.2.1)

(sending the class of &, to 7) the Newton map. We refer to  as the Newton point
of h,. Of course the Newton map takes valuesin the subset C', of 2.

4.3. Let h, be a 1-cocycle of W in H(L), let v: D — H be the associated
L-homomorphism, and let 7 € C, be the Newton point of /.. In 3.3 we used the
1-cocycle i, to define a linear algebraic group J over F; recall that .J; can be
identified with the centralizer in H of v. Let M denote the centralizer in G of
(view v asahomomorphismD — G factoring through A). Since v is defined over
F,s0isM.

We claim that J is an inner form of M. Indeed, let ¥ ; be the set of elements
1 in ¥ such that ¢ o v = v. It isevident that ¥ ; is non-empty, and that it forms
asingle orbit under the action of the group M (L), where M denotes the image of
M in Gg. Let ' denote the set of F-isomorphisms

M —J

for which there exists ¢»; € ¥ ; whose restriction to M is ¢/;. Then ¥/} is non-
empty and forms asingle orbit under Mq(F'). Moreover ¥/, isI-stable. Indeed, it
is enough to show that ¥'; is stable under 177, and for this one usesthat » is defined
over F, that v isfixed by the twisted W -action (see (3.4.1)) and that the injection
(3.3.3) is W-equivariant. Therefore (J, ';) isan inner form of M.

4.4. Let h, beal-cocycleof W in H(L). Asin [K] wesay that h. isbasicif the
associated homomorphism v : D — H over L factors through the center of H. In
this case the centralizer of v in H is H itself, sothat J isan inner form of H (and
of G). If h, isbasic, then so is every cohomologous 1-cocycle; we say that a class
inB(H) isbasicif it consists of basic 1-cocycles, and we denote by B(H ), the set
of basic elementsin B(H).
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Let G be a (connected) Langlands dual group for G, and let Z(G) denote its
center. The Galois group I actson Z(G), and the fixed point subgroup Z(G)" is
adiagonalizable group over C. Recall [K, 5.6] that there is a canonical bijection

B(H), ~ X*(Z(@)") (4.4.2)
between B(H ), and the character group of Z(G ) (of course we have used the
canonical I'-equivariant isomorphism between Z(H) and Z(G)).

Let A denote the maximal split torus in the center of G. Then any element
v € X, (Aq) determines a homomorphism

v: G — C*
of algetlraic groups, which we may restrict to Z (@)F, obtaining an element in
X*(Z(G)1). In this way we get a homomorphism

X.(Ag) = X*(Z(G)Y), (4.4.2)
and by tensoring with R we get from (4.4.2) an isomorphism

Ag = Xu(Ac)z = X*(Z(G))e. (4.43)

It follows from [K, 4.4, 5.8] that the restriction to B(H ), of the Newton map is
equal to the composition of (4.4.1), the natural map

XH(Z(@") = X*(Z(G)")s,
and the isomorphism (4.4.3) (we view 2l; as a subspace of 21).

4.5. Let Z bethe center of G. Notethat W allows us to identify Z with the center
of H. Thereisan obvious action of the abelian group B(Z) on B(H) (the product
of 1-cocycles z, in Z(L) and h, in H(L) is defined to bethe 1-cocycle T + z,h.,
in H(L)).

Itisclear that the stabilizer in B(Z) of the base pointin B(H) is

ker[B(Z) — B(H)], (4.5.1)
and this group coincides with

ker[HY(F, Z) — HY(F,H)]
s nce the homomorphism . : D — Z associated to an element in (4.5.1) must be
trIVII\Ialovw let b, beany 1-cocycleof W in H(L), and let h denoteitsclassin B(H).
Let J bethe F-group associated to k., in 3.3. We claim that the stabilizer in B(Z)

of h is also the subgroup (4.5.1). Let z, be a 1-cocycle of W in Z(L). Then the
classof z, stabilizesh if and only if there exists z € H (L) such that

zrhr = zhe7(z) L. (4.5.2)
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It follows from this equation (use (3.4.3), noting that Z can be identified with a
subgroup of .J) that

pr = Int(z) o v, (4.5.3)

where 1 (respectively, v) is the homomorphism D — Z (respectively, D — H)
associated to z, (respectively, i ). Projecting the equation (4.5.3) into the quotient
of H by its derived group Hger, We see that p factors through Z N Hyer, afinite
group. We conclude that . is trivial; looking back at (4.5.3), we now see that x
centralizes v and henceis an element of .J(L). Rewriting (4.5.2) as

z; = x-hy7(z) a7t
= o 7(2)7Y
we now see that the stabilizer in B(Z) of h is
ker[B(Z) — B(J)],
which isalso equal to
ker[HY(F,Z) — HY(F, J)]. (4.5.4)

Let v: D — G be the image of h, under the Newton map, and let M be the
centralizer of v in G, aLevi subgroup of G. It iswell-known that

HYF,M) - HY(F,G)
isinjective (thisistrue for any field F', not just p-adic fields). Therefore the group
ker[HY(F,Z) — HY(F,M)]
isequal to
ker[HY(F,Z) — HY(F,Q)].
It isaspecia property of p-adic fields that the group
ker[HY(F,Z) — HY(F, Q)]
isequal to
ker[HY(F,Z) — HY(F, H)]

for any inner form H of G. Applying thisto the inner forms M, J aswell, we see
that (4.5.4) coincides with (4.5.1), as desired.

The special property of p-adic fields stated above can be proved easily using the
methods in [K2, Sect. 1]. Indeed, if the derived group of G is simply connected,
then both

ker[HY(F, Z) — HY(F,Q)]
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and

ker[HY(F,Z) — HY(F, H)]
coincide with

ker[HY(F,Z) — HY(F,D)],
where

D = G/Gaer = H/Hyer.

Using z-extensions asin the proof of Theorem 1.2in[K2], onereducesthe general
case to the special casejust treated.

4.6. The group Hy(F') acts on H by F-automorphisms and therefore acts on
B(H). We claim that this action is in fact trivial (it is obvious that H (F') acts
trivially on B(H), but since

H(F) = He(F)
need not be surjective, it is not obvious that Hy(F') actstrivialy on B(H)). Let

Z € Hy(F) and pick z € H(F') representing z. Then
2 =z 11 (x) (4.6.1)

isal-cocycleof I'in Z (F'). Theactionof Z € Ha(F') onB(H ) takesthe 1-cocycle
h, of W in H(L) into the 1-cocycle

T zhyz L
and this 1-cocycle is cohomologous to
T hrz,.
Equation (4.6.1) showsthat the class of z, in H*(F, Z) liesin
ker[HY(F, Z) — HY(F, H)]. (4.6.2)

It follows from 4.5 that any element in (4.6.2) acts trivially on B(H). Therefore
h.z; iscohomologousto b, as desired.

47. Let X — S beamap of sets, and let s € S. We write X for the fiber of
X — S over s. Recall that acommutative diagram
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of sets and maps is said to be cartesian if the natural map from X to the fiber
product S x; Y is an isomorphism (equivalently, if for every s € S the natural
map X — Yy, isbijective).

Consider acommutative diagram of the following type

X Y VA

s—1 . U.
Let us denote by (L) (respectively, (R)) the left-hand (respectively, right-hand)
square, and let us denote by (LR) the outer rectangle. If (L) and (R) are cartesian,
then so is (LR). If (LR) and (R) are cartesian, then sois(L). If (LR) and (L) are
cartesian and if f issurjective, then (R) is cartesian.

4.8. We say that a homomorphism f: H — H' from H to another connected
reductivegroup H' over F isan ad-isomorphismif f mapsthe center of H into the
center of H' and the induced map Hay — H] is an isomorphism (in which case
Hg — H{. isaso anisomorphism).

4.9. Recall from [K3, Sect. 6] (see also 7.5) that there is a canonical map
B(H) — X*(z(H)"), (4.9.1)

and that the restriction of (4.9.1) to B(H), coincides with the bijection (4.4.1)
(after identifying Z (H) with Z(G)). As Borovoi [B] has observed, the I'-module

~

X*(Z(H)) can beidentified with
cok[ X, (T) — X, (T)]

for any maximal torus T" in H (where T, denotesthe inverseimage of T'in Hg),
and since this cokernel is easily seen to be functorial in H, it follows that the
construction H — Z(H) is functorial in H for all connected reductive H and all
F-homomorphisms H — H'. It is easy to see that the maps (4.9.1) are functorial
in H aswell. Thus, an F-homomorphism f: H — H' givesriseto acommutative
square

B(H) B(H')

4.9.2)

Iyl

X*(Z(H)") — X*(Z(H")").
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PROPOSITION 4.10. If f is an ad-isomorphism, then the commutative square
(4.9.2) is cartesian.

We will prove the propositionin 4.17, after proving Lemmas 4.15 and 4.16. At
the moment we are concerned with two useful corollaries of the proposition.

COROLLARY 4.11. Theset B(H) isthefiber product of B(Hg) and X *(Z(H)F)
over X*(ZL), where Zs. denotesthe center of (H ).

To prove the corollary take H' = Hy in the proposition.

COROLLARY 4.12. Let A\ € X*(Z(H)") and let h be a basic 1-cocycle of W
in H(L) whose class h in B(H) maps to A under the bijection (4.4.1). Let J"
denotetheinner form (see 4.4) of H determined by h, and let JZ denotethe simply
connected cover of its derived group; thus JZ is an inner form of Hg. Then the
composed map

B(J&) — B(J") —~ B(H)
(see (3.4.2)) induces abijection
B(J&) ~ B(H)),
where B(H ), denotesthe fiber over A of
B(H) — X*(Z(H)").
Consequently B(H ') can be written as the digoint union

B(H)= ][] B(J%)
heB(H),

Toprove Corollary 4.12 onebeginsby applying the proposition to the ad-isomor-
phism Hg. — H in order to conclude that thereis anatural bijection

B(Hg) ~ ker[B(H) — X*(Z(H)")].

This is the specia case of the corollary in which X is trivial. Now consider the
diagram

B(J")
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This diagram commutes (use z-extensions to reduce to the case in which Hye iS
simply connected), and both horizontal arrows are obviously bijections. It follows
that

B(H)x ~ ker[B(J") — X*(Z(H)")]
~ B(Jg).
as desired.
4.13. Corollary 4.12 gives an even clearer picture of B(H) when it is combined

with the following observation: for any simply connected group H the Newton
map (4.2.1)

B(H) —» 2
isinjective. More generally, for any connected reductive group H the map
B(H) — A x X*(Z(H)") (4.13.1)

is injective (the first component of the map (4.13.1) is the Newton map and the
second component is the map (4.9.1)).

Indeed, let h, h’ be two elements in B(H) having the same image under the
Newton map. Pick a 1-cocycle h lying in the class h and let J be the group
associated to h in 3.3. In 3.5 we saw that h’ liesin the image of

HY(F,J) -1 B(H). (4.13.2)

Let M bethe Levi subgroup of G associated to h in 4.3 (recall that .J is an inner
form of M). The diagram

XH(Z(M)") 2+ X*(2(G))

commutes, where \ denotestheimage of hin X*(Z(G)F'), and -\ denotesthe map
obtained by composing the restriction map

XH(Z(M)") == X*(2(G)")
and themap from X*(Z(@)F) to itself given by multiplication by A. Asbefore one
proves the commutativity of the diagram above by using z-extensionsto reduce to
the casein which Hyge issimply connected (which impliesthat G ger, Myer, Jaer €
simply connected as well).
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Now supposethat h, h’ also havethesameimagein X *(Z(H)T) = X*(Z(G)F).
Pick an element z € H(F,.J) that mapsto h’ under (4.13.2). It follows that the
image of = under

res

HY(F,J) — X*(Z(M)") =~ X*(Z(G)") (4.13.3)
istrivial. Recall from [K2, 1.2] that

HY(F,J) ~ X*(mo(Z(M)")),
where mo(Z (M)T) denotes the group of connected components of Z(M)''. More-

over Z(G)! meetsevery connected componentof Z(M)', since[Z(M)/Z(G)]" is

~

connected (reduce to the casein which Z(G) istrivial, and then note that Z (M) is
atorus whose character group has abasis permuted by I'). Therefore the composed
map (4.13.3) isinjective, and we conclude that « istrivial. It follows that h = h’,
and this completes the proof that (4.13.1) isinjective.

4.14. It remains to prove Proposition 4.10. We say that an ad-isomorphism f is
good if the conclusion of Proposition 4.10 holds for f; our goal is to prove that
every ad-isomorphism is good. To this end we must first prove two lemmas.

LEMMA 4.15. Let f: H — H' be a surjective ad-isomorphism whose kernel Z
isatorussuchthat H(F, Z) istrivial. Then f is good.

Consider the exact sequence
1572-H-L 815 1,
aswell as the associated exact sequence

1— ZH')— Z(H) —» Z — 1.
We must show that the square

B(H) B(H)

X*(Z(H)") — X*(Z(H")")

is cartesian. Let h' € B(H') and let \' denoteitsimagein X*(Z(H')). We must
show that

~

B(H)y =~ X*(Z(H)")x
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(as before X denotes the fiber of X — S over s € S). The group B(Z) acts
transitively on B(H),. Since Z is asubgroup of the center of H the discussionin
4.5 showsthat the stabilizer in B(Z) of any pointin B(H) isequal to the stabilizer
of the base point in B(H'), namely

ker[B(Z) — B(H)],
which isalso equal to
ker[HY(F, Z) — HX(F, H)].

Since H(F, Z) istrivial by hypothesis, we see that B(Z) acts simply transitively
onB(H)y .

Thegroup X *(Z") actstransitively on X*(Z(H)")x.. Since HY(F, Z) istrivial,
the group Z" is connected [K2, 1.2], whence

X*(2") = X*(z(H)")

is injective. Therefore X*(ZT) acts simply transitively on X*(Z(H)T), . Using
the canonical isomorphism

B(Z) ~ X*(Z")
of [K], we seethat

B(H)y =~ X" (Z(H)")x,
as desired.

LEMMA 4.16. Let f : H — H' be an ad-isomorphism, and assume that Hger,
Hl,, are simply connected. Then f is good.

Put D = H/Hye and D' = H'/H),. Recall that D = Z(H) and D' = Z(H').
The map (4.9.1) can be thought of as the natural map

B(H) — B(D),
using the identifications

B(D) ~ X*(D") ~ X*(Z(H)").
Thus our problem isto show that the square

B(H) —— B(H')

B(D) —— B(D')
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iscartesian. Letd € B(D) and let d’ beitsimagein B(D'). We must show that
B(H)q ~B(H')y.

We claim that both of these fibers are in natural one-to-one correspondence with
the set B(JZ), where h is abasic 1-cocycle in H (L) whose image in B(D) isd,
and where J" is the inner form of H obtained from A as in 4.4. Of course this
claimis a special case of Corollary 4.12, but in order to avoid circular reasoning,
we must establish Corollary 4.12 directly in the casethat Hyer iSSimply connected.
Looking back at the method used to derive Corollary 4.12 from Proposition 4.10,
we see that it is enough to show that

B(Hs) ~ ker[B(H) — B(D)].

It follows from the exactness of
1-Hy—+H—>D—1

that B(Hs:;) maps onto ker[B(H) — B(D)]. The fibers of the map
B(Hs) — B(H)

coincide with the orbits of D(F') on B(Hg) (see 1.5). It follows from the triviality
of HY(F, Hs) (see[Kn]) that the map H (F) — D(F) issurjective. Therefore the
orbits of D(F') on B(Hg) coincide with the orbits of H(F') on B(Hs). Looking
back at 1.5, we seethat theaction of H (F') on B(Hs:) isinduced by the conjugation
action of H(F') on Hg. It follows from 4.6 that this action is trivial. We conclude
that B(Hs;) — B(H) isinjective, and our proof is complete.

4.17. Now we prove Proposition 4.10. Let f: H — H' be any ad-isomorphism. It
is easy to construct (see [K4, 2.4.4]) acommutative diagram

f1

H, H]
P 14
H—I .

inwhich thetwo vertical arrowsare z-extensions. Clearly f1 isan ad-isomorphism.
By Lemma4.16 f; isgood. By Lemma4.15 p’ isgood. It is clear that the compo-
sition of two good ad-isomorphismsis good. Thereforep’ o f1 = f o p isgood. By
Lemma4.15 p is good, and moreover

X*(Z(H)") — X*(Z(H)")

is surjective. Therefore the fact that f o p isgood impliesthat f is good (see 4.7).
The proof of Proposition 4.10 is complete.
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4.18. Let h, beabasic 1-cocycleof W in H(L), let J be the F-group associated
toh,in3.3, andlet v € A denote the Newton point of /.. Aswenotedin 4.4, J is
aninner form of H (and GG), so that the Newton mapsfor .J and H both take values
in 2. It follows from (3.4.3) that the diagram

B(J) —= B(H)

(4.18.1)

v

2 2

commutes, where - denotestranslation by v in the abelian group 2 and the vertical
arrows are Newton maps. Since h, isbasic, it is evident that the map

B(J) — B(H)
is bijective. Thus we conclude from (4.18.1) that the image of the Newton map

for H isthe trandlate by v of the image of the Newton map for .J. Note that if the
center of H is connected, then the natural map

B(H), — B(Ha)y = H(F, Hy)

issurjective, so that every inner form of H isof theform J for asuitable 1-cocycle.
In particular the Newton mapsfor inner forms of an adjoint group all havethe same
image, since the relevant Newton points v are trivial in this case.

5. Simpledescription of B(H) for connected reductive H

Let G be a quasi-split connected reductive group over F'. For such G a simple,
concrete description of B(G) isgivenin [K]. Our goa hereisto give an analogous
description for all connected reductive groups over F'. This is best accomplished
by considering simultaneously all inner forms H of the given quasi-split group G.

5.1. Wefirst need to recall from [K] the description of B(G) in the quasi-split case.
By aparabolic subgroup of G we mean a parabolic subgroup of G defined over F'.
Fix aBorel subgroup B of G over F'. Asusua we refer to parabolic subgroups of
G containing B as standard parabolic subgroups of G. We fix a maximal torus T’
in B over F, and for any standard parabolic subgroup P of G wewrite P = M N,
where N isthe unipotent radical of P and M isthe unique Levi component of P
containing 7". Wewrite Ap (or Ay,) for the maximal split torusin the center of M.
Let 21> denote the R-vector space X, (Ap) ®z R. Asusual P determines an open
chamber 23, in 2 p, defined by

A, = {z € Ap | (o, z) > Ofor every root o of Ap inLie(N)}.
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We also use the notation 4, 21, 2o, C and Cq from 4.1 (A is the maximal split
torusinT').

Any element gin B(G) determinesastandard parabolic subgroup Py, asfollows.
Let 7 € C betheimageof gunder the Newton map (see4.2). The closed chamber C'
in A isthe digoint union

C =[]27,
P

where P runs over the standard parabolic subgroupsof G (as usual weidentify 21
with a subspace of 2). By definition Fy is the unique standard parabolic subgroup
P for which 7 € 5.

For any standard parabolic subgroup P = M N of G, we denote by B(G) p the
subset of B(G) consisting of all elements g for which Py isequal to P. ThusB(G)
isthe digjoint union

B(G) = [[B(G)», (5.1.1)
P

where P runs through the set of standard parabolic subgroups in G. Of course
B(G)¢ issimply the set B(G),, of basic elementsin B(G) (see 4.4). For any basic
element m in B(M ), the image of m under the Newton map (for M) liesin 2Ap.
We write B(M);" for the subset of B(M),, consisting of all m whose image under
the Newton map lies in the subset 2}, of 2(p.

It follows from [K, Sect. 6] that the canonical map

B(M) — B(G)
induces a bijection

B(M)} ~B(G)p. (5.1.2)
Thereis anatural homomorphism

X*(Z(M)") = up (5.1.3)
obtained by composing the natural map

X*(2(M)") = X*(Z(M)")g
with the isomorphism (4.4.3)

Ap ~ X*(Z(M)")z.

Let X*(Z(M)")* denote the subset of X*(Z(M)") consisting of all elements
whoseimagein 2p liesin 2. Combining (5.1.2) with the bijection (4.4.1)

B(M)y ~ X*(Z(M)"),
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we get abijection Aninner formof G isapair (H, ¥) consisting of a connected
reductive group H over F and aT'-stable G(F')-orbit ¥ of F-isomorphisms

Yv:G— H.

Let (H1, V1), (H2, U2) betwo inner forms of G. An isomorphism from (Hq, V1)
to (Hy, ¥7) isan F-isomorphism «.: Hy — Hj carrying Wy into W». The group of
automorphisms of (H, V) isequal to Hy(F'). There is an obvious bijection from
the set of isomorphism classes of inner forms of G to the set H(F, G ), Obtained
by sending (H, ¥) to the class of the 1-cocycle 7 — ¢~1 o 7(1)), where ) is any
elementin .

Consider triples (H, ¥, h) consisting of an inner form (H,¥) of G and an
element h € B(H). An isomorphism from one triple (H1, V1, h;) to another
(Hz, Uy, hy) isan F-isomorphism «.: H; — H> carrying ¥4 into ¥, and h into
h,. Let B;(G) denote the set of isomorphism classes of triples (H, ¥, h). Note that
any ad-isomorphism G — G’ (see 4.8) induces a natural map

Bs(G) — B (G'). (5.2.1)
There is an obvious map
Bs(G) — HY(F,Ga), (5.2.2)

sending (H, ¥, h) to the element in H(F,G4) determined by the inner form
(H,¥) of G.Let (H, V) beaninner form of G, and let x denote the corresponding
elementin H1(F, G ). Thenthereis acanonical bijection from B(H) to the fiber
of (5.2.2) over x; to prove this use that Hyy(F') acts trivially on B(H) (see 4.6).
Speaking loosely, B, (G) is the disioint union of the setsB(H ) as H runs through
theinner forms of G.

Let (H, U, h) beatriple as above. The map (4.9.1) for H produces from h an
element \ in X*(Z(H)'), which we regard as an element of X*(Z(G)T). We
define amap

B,(G) = X*(Z(G)") (5.2.3)
by sending (H, ¥, h) to \.

5.3. We are going to give a simple, concrete description of B,(G) that is quite
analogousto the one we already havefor B(G). Let (H, ¥, h) be atriple as above.
The Newton map for H produces from h an element 7 € 2(. We define amap (still
called the Newton map)

Bs(G) — A (5.3.1)

by sending (H, ¥, h) to . Again the Newton map takes valuesin the subset C' of
A

Just asin 5.1 we use the Newton map to associate a standard parabolic subgroup
P(H,¥,h)to (H,¥,h), and for agiven standard parabolic subgroup P of G we
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write B;(G) p for the subset of B;(G) consisting of all (isomorphism classes of)
triples (H, ¥, h) suchthat P(H, ¥, h) isequal to P.

Let Zg. denote the center of (@), the simply connected cover of the derived
group of G. Of course I operates on Zs, and as usual we denote by ZL. the group
of fixed points. Thereis a canonical bijection [K2, 1.2]

HY(F,Ga) — X*(ZL). (5.3.2)

Recall that we have chosen a maximal torus 7' of G contained in the Borel
subgroup B. Let Ty (respectively, Ty) denote the inverse image (respectively,
image) of T' in G« (respectively, Ga). Thereis a surjective homomorphism

Dual to thisis the surjective homomorphism

~ ~

(T)se = (T)ad,

whosekernel is Zs:. Thus (7')s is an extension of (7')aq by the finite abelian group
Zs. Sincethe group X*((T)a) = X« (T) has abasisthat is permuted by I (for
example the basis of simple coroots of Ty;), the group (7)., of I'-invariants in

~

(T')ad is connected; hence the homomorphism

(T)ge = (1)
is also surjective. Thus we get an extension

1= Z8 - (ML - (D) —1 (5.3.3)
of ()%, by ZL.

Dual to Ts; — T isasurjective homomorphism

T — (T)ad,
which induces a surjective homomorphism

" = (1) (5.3.4)

Pulling back the extension (5.3.3) by means of the homomorphism (5.3.4), we
obtain an extension

1= 28 -Th 51" =51 (5.3.5)

of T by ZL., where we have written T, for the fiber product of 7' and (T')s. over
(T)a0-

For any standard parabolic subgroup P = M N of G, the group T' is amaximal
torusin M, and therefore there is a canonical I'-equivariant embedding

o~

Z(M) — T,
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which induces an embedding
Z(M)F =TT (5.3.6)

Pulling back the extension (5.3.5) by means of the homomorphism (5.3.6), we
obtain an extension

1— 28— Z,(M)" - Z(M)" — 1, (5.3.7)
where we have written Z, (M) for the inverse image under
T, =T
of the subgroup Z (M) of T.
Since Z(G)" isthe kernel of (5.3.4), thereis a canonical isomorphism

Z,(G)" = 2(&)" x Zg,
and hence there is a canonical embedding
Z(G)" — Z, Q).
Combining this with the obvious embeddings
Z,(G)" = Z,(M)",
we obtain embeddings
Z(G)" — z,(M)". (5.3.8)

Let f: G — G’ be an ad-isomorphism. Thereis aunique Levi subgroup M’ of
G’ suchthat f~1(M') = M, and thereis an obvious cartesian diagram

—

Zy(M') — Zy(M)"
(5.3.9)

Z(M"' — Z(M)".

Since ZSFC is afinite abelian group, we see from (5.3.7) that there is a canonical
isomorphism

X*(Zs(M)")z = X*(Z(M) )z,
which we compose with the isomorphism (4.4.3)

X*(Z(M)")g =~ Ap,
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obtaining an isomorphism

X*(Zs(M) )z ~ Ap. (5.3.10)
Thus we have a canonical map

X*(Zy(M)T) = 2up. (5.3.12)

Wedenoteby X*(Z,(M)")* thesubset of X*(Z,(M)") consisting of all elements
whose image under (5.3.11) liesin the subset 2}, of 2 p.

THEOREM 5.4. Thereis a canonical bijection
Bs(G)p ~ X*(Z,(M)")",

and this bijection is functorial with respect to ad-isomorphisms f: G — G'. The
composition of this bijection with the map (5.3.11) coincideswith the restriction to
Bs(G) p of the Newton map. The composition of this bijection with the map

X*(Z,(M)") » X*(2(G)")

dua to (5.3.8) coincides with the restriction to B, (G)p of the map (5.2.3). The
composition of this bijection with the map

X*(Zs(M)") — X*(Z&)
dual to theinclusion of ZL. in Z,(M)" coincideswith the restriction to B, (G) p of
the map

Bs(G) — HY(F,Gw) ~ X*(Z%)

obtained by composing (5.2.2) and (5.3.2). The bijection is characterized by the
last three properties.

It follows from 5.2 and 4.13 that the obvious map
By(G) — A x X*(Z(G)F) x X*(ZL) (5.4.1)

is injective. Therefore there can be at most one hijection satisfying the last three
properties stated in the theorem.

We begin by constructing the desired bijection in the case that G is an adjoint
group. Let (H, ¥) beaninner form of G. Choose € ¥ and let g, := 1™t o 7(1))
be the associated 1-cocycle of I in G(F) = G(F). Of course we can restrict g,
to W, obtaining a 1-cocycleof W in G(L). Asin (3.4.2) we have the map

B(H) — B(G) (5.4.2)
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sending the class of a 1-cocycle h, of W in H(L) to the class of the 1-cocycle
Y ~1(h;)g,. It is obvious that the map (5.4.2) is bijective and independent of the
choice of ¢ in ¥. Looking back at (4.18.1), we see that the diagram

B(H) B(G)

(5.4.3)

A =———=2
commutes, where the two vertical arrows are Newton maps (from 3.2 we know that
the Newton point of g, istrivial).
Let \y € X*(ZL) be the image under the map (5.3.2) of the class of g,. We
have already noted (see the proof of Corollary 4.12) that the diagram

B(H) B(G)

(5.4.4)

X*(Zg) = X*(Zy)
commutes, where the vertical arrows are of type (4.9.1).
Let P be a standard parabolic subgroup of G. Viewing B(H) as a subset of

Bs(G), we define B(H) p to be the intersection of B(H') and B;(G) p. It follows
from the commutativity of (5.4.3) that the bijection (5.4.2) induces a bijection

B(H)p — B(G)p. (5.4.5)
Combining the bijections (5.4.5) for varying (H, ¥), we get a bijection

B.(G)p — B(G)p x X*(ZL), (5.4.6)
therestrictionto B(H)p C B4(G)p of (5.4.6) being given by

he = ($ (hr)grs Am).-
Combining (5.4.6) with the bijection (5.1.4), we get a bijection

Bs(G)p — X*(Z(M)")" x X*(ZL). (5.4.7)

SinceG isadjoint, thereisacanonical splitting of the extension (5.3.5), obtained
asfollows: in this special case T isthe fiber product of 7 with itself over (T')L,,
and therefore the diagonal map from 7T to that fiber product provides the desired
splitting. Since the extensions (5.3.7) are obtained as pull-backs from (5.3.5), they
all have canonical splittings as well. Thus

Zy(M)' = Z(M)" x Z% (5.4.8)
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in our special case, and we can view (5.4.7) as a bijection
Bs(Q)p — X*(Zy(M)")*. (5.4.9)

Itis easy to check that (5.4.9) has the three desired properties.
Now we consider the general case. There is acommutative square

B, (G) Bs(Ga)

(5.4.10)

X1(Z(@)") — X*(Zg),
where the vertical maps are of type (5.2.3). It follows from Proposition 4.10 that
the square (5.4.10) is cartesian. Let P = M N be a standard parabolic subgroup

of G and let P, M; denote the imagesin Gy of P, M respectively. The inverse
image of Bs(Gag) p, Under

B, (G) — By (Ga)
isBs(G) p; therefore the square
BS(G)P - Bs(Ged)Pl

(5.4.11)

XH(2(G)) — X7(ZY)
is cartesian as well. Using the bijection (5.4.9), we see that there is a canonical
bijection

Bs(G)p — X*(Z,(M1)")t xy X*(Z(G)D), (5.4.12)

where we have written Y for X*(ZL). The target of (5.4.12) is a subset of the
abelian group

X*(Zs(M)") xy X*(Z(G)"),
and this abelian group can be identified with X*(A), where A isthe group
A= (Z,M0)" x Z2(Q)") ) Z

(ZSFC is embedded in the product as follows: the first component of the embedding
is the inverse of (5.3.8) for G and the second component is the canonical map
from ZL to Z(G)T).
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There are natural homomorphisms
Zy(My)" — Zy(M)" (5.4.13)
and
Z(G)" = Z,(M)", (5.4.14)

the first coming from (5.3.9) and the second from (5.3.8). Together these yield a
homomorphism

Z(M)" x 2(G) = Z,(M)"
and this homomorphism yields an isomorphism
A~ Z,(M)". (5.4.15)

In this way the target of (5.4.12) can be viewed as a subset of X*(Z,(M)") and
this subset is easily seen to be X*(Z,(M)")*. Thus we get a canonical bijection

B.(G)p ~ X*(Z,(M)")", (5.4.16)

asdesired. It isroutine to check that this bijection satisfies all the properties stated
in the theorem.

6. The Subset B(H, 1) of B(H)

In this section we define certain subsets B(H, 1) of B(H ). Motivation for intro-
ducing these subsetsis given in the introduction.

6.1. Let G beaquasi-split connected reductive group over F', and let (H, ¥) bean
inner form of G. We use the same notation asin the last two sections. In particular
B denotesaBorel subgroup of G over F', and T denotesamaximal F'-torusin B.
Let 4 € X, (T) and suppose that 1 lies in the closed Weyl chamber in X, (T')g
determined by B. Of course we may also regard . as a character on T, which we
can restrict to the subgroup Z(G)" of T, obtaining an element

€ XH(Z(G)F) = X*(Z(H)").
We can also restrict 4 to T then, applying the homomorphism
XH(TV) =
(aspecial case of (5.1.3)) to this element of X*(7™), we obtain an element

p2 € A
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Equivaently, viewing 2 as the subspace of [-invariant elementsin X, (T')r, we
have

pe=[ T 3 7(w), (6.1.1)
Tel'/T,

whereI',, denotes the stabilizer of . in T

6.2. Let B(H, 1) denotethe subset of B(H ) consisting of all h € B(H) such that
theimage of h under the map (4.9.1) is equal to 1 and such that theimage v € 21
of h under the Newton map (4.2.1) satisfies

v < . (6.2.1)

Here < is the usual order on &; thus 7 < u2 means that up — o is a nonnegative
linear combination of positive coroots in X, (T')g, or, equivalently, a nonnegative
linear combination of positive relative corootsin 2. Let Q5 be the relative Weyl
group of the maximal split torus A in T'; recall that Q2 can be identified with the
fixed points Q of T in Q, where Q2 denotes the absolute Weyl group of 7' in G. It
isknown (see[A]) that (6.2.1) is equivalent to the the following condition:

v liesin the convex hull of the orbit 2z - 2 of u2 under Qp. (6.2.2)
6.3. Since 1, 2 depend only on the restriction of . to 7T, the subset B(H, 1)

depends only on this restriction, or, equivalently, only on the image of p in the
group X, (T)r of coinvariantsof I in X.(T').

6.4. It follows easily from Theorem 5.4 that B(H, 1) isafinite set. It is clear that
B(H, 1) contains the unique basic element in B(H ) whose image under (4.4.1) is
equal to p1, and it is clear that B(H, 1) contains no other basic element. We say
that the pair (H, 1) isuniformif B(H, u) hasexactly one element, namely the basic
element we just described. Again motivation for making this definition is givenin
the introduction.

6.5. Let Ty denotetheimage of T' in G4, and let 115 denote the image of 1 under
X (T) = Xi(Tad).

Then the natural map B(H) — B(H) induces a bijection
B(H, p) = B(Ha, pad)- (6.5.1)

Indeed, this follows immediately from Corollary 4.11. In particular (H, ) is uni-
formif and only if (Ha, prag) 1S uniform.
Supposethat H is aproduct

H:H1XH2
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and that 1, o are the two components of .. Then there is an obvious bijection
B(H,H,) = B(Hlvlul) X B(HZMU'Z)' (652)

Inparticular (H, 1) isuniformif andonly if (Hy, p11) and (Hz, u12) areboth uniform.

Let E be afinite extension of F' in F, and let G be a quasi-split connected
reductive group over E. We use R(G) to denotethe F'-group obtained from G by
Weil’s restriction of scalars from E to F. Supposethat G = R(Gp). By Shapiro’'s
lemmaevery inner form (H, ¥) isisomorphic to one of theform (R(Hop), R(¥o)),
where (Hp, ¥p) is an inner form of Go. Of course T', B are of the form R(Tp),
R(Byp) for amaximal torus Ty and Borel subgroup By in G containing 7p. The
dominant coweight 1 liesin

X.(T) = Ind(X.(T0)),

where Ind( X, (7p)) denotesthe I'-module induced by the I" ;-module X ,.(Tp) (we
denoteby I'; the Galoisgroup of F’ over E). Thus . can bethought of asafunction

¢: T — X, (Tp)
satisfying
plpr)=p-p(r) fordl peTly, T€Tl.

Pick aset I'p of coset representatives for the cosetsI'z\ " and form the sum

po= Y ¢(1) € X.(To),

T€lg

noting that each ¢(7) is dominant in X, (7o), so that uo is dominant as well. Of
course the image of 1o in the group of coinvariants X, (7o), iswell-defined. It is
easy to seethat there is a canonical bijection

6.6. If u = 0, then (H, ) isuniform. Indeed, in this case the Newton point v of
any h € B(H, ) must be 0. Therefore B(H, 1) consists of basic elements, and as
we have seen, B(H, 1) contains exactly one basic element.

LEMMA 6.7. Suppose H is an F-simple adjoint group, and suppose that p is
nonzero. Suppose further that H is not anisotropic over F. Then (H, ) is not
uniform.

By hypothesis H contains a proper parabolic subgroup ). Choose a Levi sub-
group L of Q. Let P = M N bethe unique standard parabolic subgroup of G' such
that «)(P) is conjugate to ) under H(F) for all ¢p € W. Let ¥, be the set of
¢ € U suchthat )(P) = Q and y)(M) = L; then ¥, is (the set of F-points of)
an F-torsor under M. In particular L is an inner form of M.
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Now let w be an element of the relatlveWeyI group Q2 of A inG. Restricting
the character wy on T to the subgroup Z (M)"', we get an element of X*(Z(M)'),
which by means of the canonical bijection

B(L)y ~ X*(Z(M)")

determines a basic element x(w) in B(L). Let h(w) € B(H) denote the image of
X(w) under the natural map

B(L) — B(H).

The elements h(w) all belong to B(H, 1). Since H is adjoint, the element h(w)
isbasicin B(H) if and only if its image under the Newton map is trivial, which
happensif and only if the restriction of wy to the identity component of Z (M )F is
trivial. Therefore h(w) isbasicin B(H) if and only if wu; liesin the kernel K of
the natural surjection 2 — 2, (dual to Z(M)" — TV).

Note that our hypothesis that . is nonzero implies that o is nonzero (this
is clear from (6.1.1) since p is dominant and I" preserves the cone of dominant
coweights). Since G is F-simple and adjoint, the relative root system of A in G
isirreducible (since G is quasi-split its relative Dynkin graph is the quotient by I'
of its absolute Dynkin graph [T, 2.5.3]). Therefore the representation of Q27 on 2
isirreducible, and hence Q2 - u2 spans 2. We conclude that there existsw € Qp
such that wu, ¢ K. The corresponding element h(w) in B(H, i) is not basic, and
therefore (H, 1) isnot uniform.

6.8. Using (6.5.1), (6.5.2), (6.5.3), we see that in order to classify all uniform
pairs (H, ;1) it suffices to classify the ones for which H is an absolutely simple
adjoint group. By Lemma 6.7 we may further assume that H is anisotropic over
F (otherwise (H, i) is uniform only for x» = 0). Any absolutely simple, adjoint,
anisotropicgroup over F'isaninner formof PGL,, [Kn]. Thereforewemay assume
that G = PGL,, for somen > 2and that H = DX ./ F, where D, denotes a

central division algebra over F having dimension n? and Hasse invariant j /n (of
course j must be relatively prime to n). We denote the algebraic group D, /F*
by Hj/n'

We make the usual choices for T', B (diagonal matrices and upper triangular
matrices, taken modul o scalar matrices), and werepresent coweights . € X, (T') as
n-tuples (u1, . . . , uy) Of integers, modulo constant n-tuples (q, .. ., a). Of course
w isdominant if and only if

iln

M1 2 p2 2 .. 2 fn. (6.8.1)

For any integer k between 1 andn wewrite ii(k) for then-tuple (1,...,1,0,...,0)
inwhich 1isrepeated k timesand O is repeated n — & times.

LEMMA 6.9. Thepairs(Hy,,, (1)) and (H,_1)/n, #(n—1)) areuniform. There

are no other uniform pairs of the form (4 ,,, 1) except those for which . is 0.
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It is more convenient to work with GL,, and Djx/n rather than their adjoint groups,

and by (6.5.1) it is harmless to do so. We must show that the only uniform pairs
(D].X/n,u) with p nonconstant (in other words, not of the form (a,...,a)) are
obtained by taking 7 = 1 and p of the form

(1,0,...,0) + (a,...,a)
or by taking j = n — 1 and . of the form
(1,...,2,0) + (a,...,a).

6.10. We begin the proof of the lemma by working out the image of the Newton
map for Djx/n. Of course C'y consists of al n-tuplesv = (v, ..., vy,) of rationa
numbers satisfying

VISV ... 2 Uy, (6.10.1)

For such an n-tuple and arational number z we say that the multiplicity of z in v
is the number of indices for which v; is equal to z, and we write m,, (x) for this
multiplicity.

It follows from 5.1 that the image of the Newton map for GL,, is the set E
consisting of all elements v € Cy such that

my(vi) v, €Z fori=1...,n

Let g, beabasic 1-cocycle of W in GL,, (L) whose image under the Newton map
is

(_j/n7 _j/nv"'v_j/n)'

Let J bethe inner form of G associated to g, (see 4.4). Then J isisomorphic to
]/n (see2.1). It followsfrom 4.18 that theimage E; of the Newton map for Dj/n
satisfies

(=j/n,=j/n,...,—3j/n) +E;=FE.

Therefore E; consists of all elementsin Cg of the form

(j/n,3/n,...,5/n)+v

for some element v in E.

Let (u1,...,u,) beadominant coweight for the diagonal torusin G = GL,,.
Thus H satisfies (6.8.1). We assume that 1 is nonconstant, so that i3 > pu,,. Since
Z(G)'' = c*, thegroup X*(Z(G)") istorsion-free. Therefore the Newton map

B(D>
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isbijective, and under this bijection the subset B(Djx/n, ) correspondsto the subset
of E consisting of all elements v such that

v+ (j/n,...,j5/n) < p. (6.10.2)

Recall the explicit form of the order < on 2 = R": z = (z1,...,2,) and y =
(y1, ..., ypn) Satisfy z < y if and only if

r1 < Y1,

1+ T2 < y1+y2,

T1+ 22+ ...+ Tp-1 S Y1 +Yy2+... +Yn-1,
T1t+x2+ ...+ Tp-1+Tp = Y1+y2+... +Yn-1+ Yn.

The unique basic element in B(D].X/n, ) corresponds to the constant solution
v=(a,...,a)
of (6.10.2), where a is determined by the condition
na+j=p1+ ...+ ln-

In order to provethelemmawe must show that theinequality (6.10.2) hasanoncon-
stant solution v € E exceptin thetwo special casesspecified in the statement of the
lemma. We can simplify this task considerably by means of the following remark.
If (6.10.2) admits a nonconstant solution v € E, then it admits a nonconstant
solutionin E of the specia form

V' =(a/r,...,a/r,b/s,...,b/s), (6.10.3)

where r, s are integers between 1 and » — 1 such that » + s = n, and where a/r
isrepeated  timesand b/s is repeated s times. Indeed, if v = (v4,...,v,) € EiS
nonconstant and satisfies (6.10.2), we let r be the multiplicity of v, in v and define
a,b € Zby

a =TV1=...=TU,
b=rvrp1+...+ vy

Itiseasy to seethat v/ € E, and that v/ < v; thus /' is a nonconstant solution of
(6.10.2) of the desired form.
Ann-tuple v’ of the form (6.10.3) is nonconstant and liesin E if and only if

as > br, (6.10.9)
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and it satisfies (6.10.2) if and only if

at+bt+j=p1+...+pn (6.10.5)
and

an+rj<n(pr+ ...+ pr). (6.10.6)

Using (6.10.5) to eliminate b, we seethat (6.10.2) has anonconstant solution of the
form (6.10.3) if and only if there exists a € Z satisfying

r(pr 4.+ ) — g <an <nlpy+ ...+ pe) — 77 (6.10.7)
It isobviousthat (6.10.7) has a solution whenever the difference between
n(pa+...+p) —1j
and
r(pa+ ..+ ) =7

is greater than or equal to n. Therefore, if (6.10.7) has no solutions we conclude
that

n(pr+ ...+ pr) —r(pr+ ...+ pg) <n. (6.10.8)

Now suppose that (6.10.2) has no nonconstant solutions in £. Then (6.10.8)
holds for each r between 1 and n» — 1. Adding the inequalities (6.10.8) for r = 1
andr = n — 1, wefind that

Ml_,ufn<2-

Since u1, p are integers satisfying g1 > pp, we conclude that p11 — pp, = 1. Up
to the addition of a constant vector (which is of no importance), . must be equal
to p(k) for some k between 1 and n — 1. Taking r = £ in (6.10.8), we find that

nk—k?><n
which is equivalent to
(k—1)(k—-n+1)>0

and impliesthat K = 1 or k = n — 1. Thus i isequal to ;(1) or u(n — 1) (up to
constant vectors).
Supposethat 1 = 11(1). Then (6.10.7) reducesto

r—rj<an<n-—rj. (6.10.9)

If (6.10.2) has no nonconstant solutions in E, then (6.10.9) has no solution for
r = 1, which can happen only if j is congruent to 1 modulo n.. Conversely, if
4 = 1, then (6.10.9) reduces to

O<an<n-—r,
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which has no solutions (no matter what r is). Similarly, if 4 = u(n — 1), then
(6.10.2) admits nonconstant solutions in E except when j is congruentto n — 1
modulo n. The proof of the lemma s now complete.

6.11. Now we classify al uniform pairs (H, 1) with  nonzero and H adjoint and
F-simple. By Lemma6.7 H is necessarily anisotropic over F', and hence we may
assumethat there exists afinite extension £ of F' and a central division algebra D
over E suchthat H = R(Hp) (asin 6.5 we use R to denote Weil’s restriction of
scalarsfrom E to F'), where Hp isthe E-group D* / E* . Write the Hasse invariant
of Dasj/nwithl<j <n-—1land(j,n) =1 Of course Go = PGL,(E) isa
quasi-split inner form of Hy, and R(Go) isaquasi-split inner form of H.

Giving a dominant coweight p for R(Go) is the same as giving a family of
dominant coweights 1(¢) for G, one for each embedding .: E — F over F. We
saw in 6.5 that (H, i) isuniform if and only if (Hy, uo) is uniform, where

po=y_ pv).

Clearly o isnonzero if and only if 4 is nonzero. Therefore, by Lemma6.9 either
j=11and up = pu(l),orj =n—21and po = p(n — 1).

Supposethat j = 1 and uo = p(1). Since there is no nontrivial way to decom-
pose 1+(1) as a sum of dominant coweights, the coweights 1(¢) must be O except
for one embedding co, for which p(t0) = p(1). Similarly, if j = n — 1, then the
coweights(¢) must be 0 except for oneembedding co, for which i(co) = p(n—1).

7. Themap wq: G(L) — X*(Z(G))

7.1. Let H beaconnected reductive group over L. Recall from 1.1 that we denote
by I the group Gal(L/L). In this section we are going to construct a natural
surjective homomorphism

wy: H(L) — X*(Z(H)"). (7.1.1)

We will also see that when H is defined over F', the map w¢ can be used to
construct the map (4.9.1)

B(H) — X*(Z(H)").

7.2. Webegin by constructing wy inthe caseof tori. Let T' beatorusover L. Then
the natural map

X, (T) = X*(T) —» X*(T")

identifies X* (T'/) with X, (T');, the group of coinvariants of I in X, (T)). Thuswe
seek to define afunctorial surjection
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Of coursethereis anatural surjection
qr: X.(T); — Hom(X*(T)!,z) (7.2.2)

(an element 1 in X, (T") determines ahomomorphism A — (X, u) from X*(T") to
Z,where (-, -) denotesthe canonical pairing between X*(7') and X, (T')). Thereis
an obvious functorial map

vr : T(L) — Hom(X*(T)!,z), (7.2.3)
sending ¢ € T'(L) to the homomorphism
A= val(A(t))

from X*(T')! to Z. Here val denotes the usual valuation on L, normalized so that
uniformizing elements have valuation 1. We are going to define w in such away
that

qr © wp = vUr. (724)

Notethat vy isalways surjective. Indeed, let T, denote the maximal anisotropic
subtorus of 7" and put S = T'/T,. Consider the commuitative diagram

T(L) S(L)

Hom(X*(T)!,z) — Hom(X*(S)!, 7).

Thebottom arrow isanisomorphism, and thetop arrow issurjectivesince HY{(L, T,,)
istrivial. Moreover vg isobviously surjective, since S is split. Therefore vy is sur-
jective.

The map g7 is an isomorphism whenever X, (T'); is torsion-free, and in this
case we define wr to be the unigque map satisfying (7.2.4); since vy is surjective,
s0 is wy. Of course wy isfunctorial in T for such T'. Recdll that atorus T' over L
issaid to beinduced if X, (T") hasaZ-basisthat is permuted by I. If T isinduced,
then X, (T'); istorsion-free, so that wr has been defined.

For any torus T there exists an induced torus R and a surjective map

X (R) = X.(T)

of I-modules. Moreover there exists another induced torus S and an 7-module map
X, (S) = X« (R)

such that
X.(S) = Xi(R) — X.(T) =0
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is exact. In this way we get an exact sequence

S terR 21
in which the kernels of f and g aretori. The diagram
S(L) R(L) T(L) 1
ws WR (7.2.5)
X.(8) — Xu(R) — X.(T); 0

is commutative and has exact rows (use that H(L, ker f) and H(L,ker g) are
trivial). We define w. to be the unique map from 7'(L) to X,.(7"); making

R(L) T(L)

g

wr w (7.2.6)

X (R)r — Xu(T)1

commute (the existence and uniqueness of w$. follow from (7.2.5)).
Let T — U beamap of tori. Choose an induced torus () and a surjection

X.(Q) = X.(U)
of I-modules, and let 4: @Q — U be the corresponding map of tori. We claim that

(L) U(L)
wi wi; (7.2.7)

X.(T) — X.(U);
commutes. Indeed, it is easy to construct an induced torus R’, a surjective I-map
X, (R — X,(R)

and an I-map
X.(R) = X, (U)
such that
R R T

R Q U
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commutes. The surjectivity of R'(L) — T'(L) together with the functoriality of w
for themaps ' —+ R and R’ — @ of induced tori establishes the commutativity
of (7.2.7).

It followsfrom the commutativity of (7.2.7) that w. isindependent of the choice
of g. Thus we may define w;- to be any one of the maps wj.. The commutativity
of (7.2.7) further implies that wy is functoria in 7". The map wy is surjective and
satisfies (7.2.4) (use (7.2.5) to deduce these statements from the corresponding
onesfor the induced torus R).

7.3. Let L' beafiniteextensionof Lin L, and let I’ denotethe subgroup Gal (L /L)
of I. Then the diagrams

T(L) —~ X, (T)p

N o (7.3.1)

A N (7.3.2)

T(L) —— X:(T)1
both commute. In (7.3.1) N is the norm map from 7'(L') to T'(L) and « is the
obvious surjection (induced by the identity map on X,.(7")). In (7.3.2) g isinduced
by the embedding L — L’ and N isgiven by

N(p)= Y

Tel'\I

for an element z € X, (T); represented by an element . € X, (7). It is easy to
prove the commutativity of these diagrams by reducing to the case in which T' is
an induced torus and then using (7.2.4).

Diagram (7.3.1) suggests a shorter way to define the map w, as the referee
pointed out. Choose a finite Galois extension L’ of L in L that splits 7. The
normmap N identifiesT'(L) with the coinvariantsof Gal (L' /L) onT' (L") (seethe
appendix to Chapter 1in[S1]). Itisclear how to definew for T'(L'), and we define
w for T'(L) to be the unique map making the diagram (7.3.1) commute. It is easy
to see that the resulting map is independent of the choice of '.
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7.4. Now we define the surjection wy for any connected reductive group H. We
begin with the case in which the derived group Hger Of H is simply connected.
Then we put

D = H/Hge.
Recall that
D = Z(H).

We define w to be the unique map making the diagram
H(L) —~ X*(Z(H)")
(7.4.2)

D(L) —2— X*(D")
commute. Note that wy; is surjective since wp and the map

H(L) — D(L)

are both surjective.
Now consider the general case. Pick a z-extension H' — H with kernel Z. The
map wy» has aready been defined. We define w to be the unique map making

H'(L) —> X*(2(H"))
(7.4.2)

H(L) =%+ X*(Z(H)")

commute. Of course uniqueness follows from the surjectivity of H'(L) — H(L)
and existence follows from the commutativity of

Z(L) X*(Zh

H'(L) — X*(Z(H")").
The map wy is surjective since the maps wy+ and

X*(Z(H)") - X*(Z(H)")
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are surjective. Using [K4, 2.4.4], one sees easily that wy isindependent of H' and
that wy isfunctoria in H.
Thereis an obvious homomorphism

vg: H(L) — Hom(X,(Z(H))",z), (7.4.3)
sending h € H (L) to the homomorphism
A = val(A(h))

from X, (Z(H))! toZ (weview elementsof X, (Z(H))! ashomomorphismsfrom
H to G,,, defined over L). Thereis an obvious surjective homomorphism

qi: X*(Z(H)") — Hom(X..(Z(H))!,2), (7.4.4)
whose kernel is the torsion subgroup of X*(Z(H)"). Itis not hard to check that
qH O WH = VH (7.4.5)

(reduce first to the case in which Hge is simply connected and then to the case of
tori).

7.5. Now supposethat H isaconnected reductivegroup over F'. Thenthe surjection
wg commutes with the action of the Frobenius element o. Therefore wg induces

amap
B(H) — X*(Z(H)") (), (7.5.1)

where the subscript (o) indicates that we are taking coinvariants for the group
(o). Since X*(Z(H)") can be identified with the group of coinvariants of I in
X*(Z(H)), we see that

X*(Z(H)") ) = X*(Z(H))r
= X*(Z(H)").
Moreover B(H) can be identified with B(H). Thus (7.5.1) can aso be viewed as
amap
B(H) — X*(Z(H)"). (75.2)

We claim that the map (7.5.2) coincideswith the map (4.9.1). Asusual one uses
z-extensions to reduce to the case in which H isatorus. Then by [K, 2.2(b)] one
reducesto the case H = G,,, which is easy to treat directly.

7.6. Let T beatorusover F. We write T'(L)o for the kernel of
vr: T(L) — Hom(X*(T)!,z)



ISOCRY STALSWITH ADDITIONAL STRUCTURE. II 299

and we write T'( L), for the kernel of
wr . T(L) — X*(T)[

Obviously T'(L)1 isasubgroup of finiteindex in T'(L)o. Moreover T'(L)1 is equal
toT'(L)o if X,.(T'); istorsion-free, which happenswhenever T"is an induced torus.
We claim that

H*((0),T(L)1) = {1}. (7.6.1)
Chooseinduced tori R, S over F' and an exact sequence
X:(S) = Xi(R) - X.(T) =0

of I'-modules. The diagram

S(L) R(L) T(L) 1
X.(S); — X.(R); — X.(T); 0

iscommutativewith exact rows, and all thevertical arrowsare surjective. Therefore
the map

R(L)l — T(L)l
is surjective, and hence the map
H'({0), R(L)1) = H*((0), T (L)1)

is surjective aswell. Thereforeit sufficesto prove (7.6.1) for induced tori 7.
We may assumethat T’ = R, G, for afinite extension E of F in F. Then

T(L)=M" x...x M*,
where M isthe compositumof E and L in F', and
T(L)y1=o3 X ... X0},

where o), denotes the valuation ring in M. By Shapiro’s lemma we reduce to the
casein which there is only one factor M * (this occurs when E is totally ramified
over F'), and then by replacing L, F' by M, E we reduceto the casein whichT' is
Gy, - Thus we must show that the map

o—1:0] = o]

issurjective. Thisis an easy exercise (see the proof of Proposition 2.3 in [K]). We
are done proving the claim.



300 ROBERT E. KOTTWITZ

Now consider the exact sequence

1 T(L); = T(L) — X,(T); — 1.

We see from the associated long exact cohomology sequence of (o)-cohomology
that

T(F) — (X.(T) )" (7.6.2)
is surjective, and that
B(T) = X.(T)r

is an isomorphism. We already knew the second fact, but this alternative proof
provides additional insight.

7.7. Againlet H be a connected reductive group over F'. Therestriction of wy to
H(F) provides a homomorphism

H(F) — X*(Z(H)")\), (7.7.2)

We claim that (7.7.1) is surjective.

For tori (7.7.1) can bethought of as(7.6.2), whichwe already know issurjective.
If the derived group Hge Of H is simply connected, the surjectivity of (7.7.1)
follows from the surjectivity of the map (7.6.2) for the torus H/ Hge. For arbitrary
H choose a z-extension

1-7Z—-H — H— 1
Consider the commutative square

(7.7.1)

w'(r) E Xz ()@

H(F) (7.7.1)

X*(Z(H)"),

We know that (7.7.1)’ is surjective. Moreover, since Z! is connected, the sequence
1 X*(Z" = X*(Z(H)) - X*(Z(H)") - 1

is exact. Taking invariants under (o), we find that

X2 - X (Z(1))
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is surjective; here we used that the group

H'((0),X*(2") = X*(Z")(0)

= X" (2)r

istorsion-free. We seefrom the commutative square abovethat (7.7.1) issurjective,
as desired.

8. Algebraic 1-cocycles

Let T' be a torus over I and let K be a finite Galois extension of F in F' that
splits T'. Let W/ ;- be the Weil group associated to K/ F (see B.3 for areview of
Wi r)- Inthis section we will define agroup

Hyg(Wi/p, T(K))
and a canonical isomorphism

Hiq(Wi/p, T(K)) ~ B(T).

8.1. LetT — ¢, bean abstract 1-cocycleof W inT(K) (of course Wi/ acts
on T'(K) in the obviousway, through its quotient Gal (K / F')). We say that ¢ isan
algebraic 1-cocycleif there existsan element i € X, (7) such that

by = M(x)

for al = in the subgroup K~ of Wi, . The cocharacter 1 is uniquely determined
by the 1-cocycle and is fixed by I'. We write Zég(WK/F, T(K)) for the group of
algebraic 1-cocyclesof Wi in T'(K). Any abstract 1-coboundary 7 — t=17(t)
is obviously algebraic (the associated 1 is trivial). We define Hég(WK/F, T(K))
to be the quotient of Zég(WK /i, T'(K)) by the subgroup of 1-coboundaries.

Let 6}(/}, be the extension of I' by K obtained from the extension W/ of
Gal(K/F) by K* by pulling back along the surjection

I' » Ga(K/F),
thusE}(/F is the fiber product of Wy, and I' over Gal(K/F'). Asin B.3, we let
&k denote the extension of I by F™ obtained from £ [1( /P by pushing out along

the injection
KX F”~.
Thus 5}( /¥ and F~ can be identified with subgroups of Ex/r; the product of

these two subgroupsis £/ and their intersection is K. Recall that £k is a
topological group (see B.3).
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Let ¢, bean abstract 1-cocycleof £k inT'(F). We say that ¢ isan algebraic

1-cocycleif themap 7 — ¢, is continuous for the discrete topology on 7'(#') and
there exists u € X, (T") such that

ty = pu(z)

for all z inthe subgroup 7'~ of E/r-Again i isuniquely determined and invariant
under I", and again 1-coboundaries are algebraic. We write

Z3g(Exyps T(F))
for the group of algebraic 1-cocyclesof £/ InT (F), and
Hyg(Exyp, T(F))

for its quotient by the subgroup of 1-coboundaries.
There is an obvious map

ZagWic p, T(K)) = Zgg(Ex/p, T(F)), (8.11)

defined as follows. Let ¢, be an algebraic 1-cocycle of W, p in T'(K), and let u
be the associated cocharacter. We inflate ¢ using the canonical surjection

5}(/1: = Wg/r,

obtaining a 1-cocyclet!. of &% /¥ in T'(K') whose restriction to the subgroup K *
of 8}(/F is given by u. We let ¢7 be the unique 1-cocycle of i/ in T(F) whose
restriction to 5}(/F is equal to ¢’ and whose restriction to F™ isgiven by x. Note
that ¢ isalgebraic. Themap ¢, — ¢! isthe desired map (8.1.1).

Let " denote the subgroup Gal(F'/ K) of I'. We use the canonical splitting of
the extension

1—>FX—>5K/F—>I‘—>1

over the subgroup I'k to identify I'x with an (open) subgroup of £k /. Since T
splitsover K, the group H*(K, T) istrivial. Thereforethe restriction to ' of any
algebraic 1-cocyclea, of Ex/p in T(F) isal-coboundary. Therefore there exists
a cohomologous 1-cocycle b, whaose restriction to 'k is trivid. It then follows

easily that (8.1.1) induces an isomorphism

His(Wi/p, T(K)) = Hig(Ex/r, T(F)). (8.12)

8.2. Put s = [K : F]. Choose a uniformizing element 7 in F'. Recall from B.2
that the choice of 7 determines an extension D, of I" by F . We define the notion

of algebraic 1-cocycle of D, in T'(F') in the same way we did for £ (impose
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continuity and the existence of an appropriate cocharacter ., of T'); in this way we
get groups

Zig(Ds, T(F)),
Hyy(Ds, T(F)).
The isomorphisms (B.3.2) induce isomorphisms
Z;I-g(D&T(F)) = Z;I-g(gK/FvT(F))v
and the induced isomorphisms
Hyy(Ds, T(F)) = Hyy(Ex/p, T(F))
all coincide.
Let ¢, bean algebraic 1-cocycleof D, in T'(F). For any representation p: T —

GL (V) of T" on afinite dimensional vector space V' over F' we get arepresentation
of Dyon F ®p V by letting T € D, acton F @ V' by the 7-linear automorphism

p(tr) o (T ®@idy)

(we are aso denoting the image of 7 in I" by 7). Recall (see Appendix B) that
giving arepresentation of D, isthe same as giving an object in 7, the category of
o-L-spaces whose slopes lie in the subgroup %Z of Q. In thisway t, determines
a®-functor g from Rep(T") to 7. Let w; denote the obvious fiber functor (over
F)V — F®p V on Rep(T), and let w!’ be the fiber functor (over F')) on T,
constructed in B.2. Thereis an obvious ®-isomorphism from wX’ o 3 to wy.

Asin 3.1 this construction yields a bijection from Z;, (D, T (F)) to the set of
®-isomorphism classesof pairs (3, ), where (3 isan exact ®-functor from Rep(7')
to 7, and a isa ®-isomorphism from w’” o 3 to wy. Thisin turn yields abijection
from Hég(l)s, T(F)) to the set of ®-isomorphism classes of exact ®-functors 3
from Rep(T') to 7.

Weclaimthat any exact ®-functor 5fromRep(T') to o- L-spacesfactorsthrough
the full Tannakian subcategory 7. In other words we claim that the image of the
Newton map

B(T) = X.(T)' ®Q
is contained in the subgroup X (7')"' ® (1z). Since this image is the same (see
[K]) asthat of the map

X.(T) = X, (T)'®Q
sending i to

1

- Z T(H’)?

5 reGA(K/F)
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we see that the claim is true. Therefore we get a bijection from H(}\,g(DS, T(F))
to the set of ®-isomorphism classes of exact ®-functors 5 from Rep(7) to W-
L-spaces. Comparing this with what was proved in 3.1, we obtain a canonical
isomorphism

Hy(Ds, T(F)) = B(T). (8.2.2)

Let ¢, bean algebraic 1-cocycle of D, in T'(F). Composing 7 + t, with the map
(B.2.5) from W to D, we get a (continuous) 1-cocycle of Wp in T'(F F), which
we can regard as a 1- cocycleof W inT(L). This map on 1-cocycles induces the
map (8.2.2).

Let ¢ be a positive integer such that s divides ¢t. Recall from B.2 that thereisa
canonical surjection

Dt — Ds,
which givesrise to an inflation map
Hiy(Ds, T(F)) — Hig(D:, T(F)). (8:2.3)

It is easy to check the commutativity of the diagram

H3y(D,, T(F)) — H3y(D,, T(F))

(8.2.4)
in which the vertical arrows are isomorphisms of type (8.2.2).
8.3. Combining (8.2.1) and (8.2.2), we get an isomorphism
Hiy(Ex/p, T(F)) ~ B(T). (8.3.2)

Let ¢, be an algebraic 1-cocycle of £k in T(F). Then by composing 7 + ¢,
with the map (B.3.3) from Wy to £/, We get a (continuous) 1-cocycle of Wy

inT(F), which we view as a 1-cocycle of Wy in T'(L). This map on 1-cocycles
induces the isomorphism (8.3.1). It follows from the discussion at the end of B.3
that the isomorphism (8.3.1) is independent of the choice of uniformizing element
.

8.4. Combining (8.3.1) and (8.1.2), we get a canonical isomorphism

Hiy(Wg r, T(K)) ~ B(T). (8.4.1)
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It is easy to seethat the diagram
HY(K/F,T(K)) — Hag(Wic/r, T(K))

(842) (84.2)

Hl(F7 T) (1.4.2) B(T)

commutes, where the top arrow is the inflation map for the surjection
Wi p — Ga(K/F)

and the left vertical arrow is the inflation map for the surjection
' > Ga(K/F)

(the second inflation map is an isomorphism since H(K, T) istrivial).

9. Hypercohomology

Let f: T — U beamap of F-tori. Weregard T' — U as a complex of length 2,
concentrated in degrees O and 1. Let K be a finite Galois extension of F' in
F that splits 7" and U, and put s = [K : F]. In this section we will define
hypercohomology groupsB(7T" — U) and Hég(WK/F,T(K) — U(K)) and show
that they are canonically isomorphic.

9.1. First we define B(T' — U). By a 1-hypercocycle of W in T'(L) — U(L)

we mean a pair (¢,u) consisting of a 1-cocycle ¢t of Wy inT'(L) and an element
u € U(L) suchthat f(t) = du (here Ou denotes the coboundary of «, namely the
1-cocycle 7 +— u~1r(u)). By a 1-hypercoboundary we mean a pair of the form

(0t, f(t)), wheret isan element of T'(L). We let
B(T' = U)

denote the group of 1-hypercocycles modulo 1-hypercoboundaries.
There is an exact sequence

1 — cok[T'(F) - U(F)]—-B(T - U)
— ker[B(T) — B(U)] — 1. (9.1.1)

Let C (respectively, W) denote the kernel (respectively, cokernel) of f: T — U.
Of course W isatorus, but C' need not be. There is a second exact sequence

1-B(C)—-B(IT' - U) - W(F), (9.1.2)
and if C' is connected then the map
B(T - U) - W(F)
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is surjective.

9.2. Now we define H (W p, T(K) — U(K)). By al-hypercocycle we now
mean apair (t,u) consisting of an algebraic 1-cocyclet of Wy inT'(K) and an
element u € U(K) suchthat f(¢) = du. By a1l-hypercoboundary we mean a pair
of theform (¢, f(t)), where ¢t isan element of T'(K'). Welet

Hig(Wi ), T(K) = U(K))

denote the group of 1-hypercocycles modulo 1-hypercoboundaries.

9.3. There are also hypercohomology groups
Hy(Ds, T(F) — U(F))

(define these in the obvious way, using algebraic 1-cocycles). There are canonical
isomorphisms

Hyo(Wi p, T(K) = U(K)) ~ Hig(Ex/p, T(F) — U(F))
~ Hiy(Dy, T(F) — U(F))
~ B(T — U) (93.1)

analogous to (8.1.2), (8.2.1), (8.2.2). Indeed, the maps on 1-cocycles defining
(8.1.2), (8.2.1), (8.2.2) can be used to define maps between the hypercohomol ogy
groups above, and these maps on hypercohomology are all isomorphisms since the
maps (8.1.2), (8.2.1), (8.2.2) areisomorphisms (use the exact sequence (9.1.1) and
its analogs for the other hypercohomol ogy groups). The resulting isomorphism

Hig(Wgr, T(K) = U(K)) ~ B(T = U) (9.3.2)
is independent of the choice of 7.
9.4. The diagram analogousto (8.4.2)

HYK/F,T(K) = U(K)) — Hzg(Wi/p, T(K) = U(K))

(032) (9.4.1)

HY(F,T — U) B(T' = U)
commutes, where we have written H(K/F,T(K) — U(K)) for
HYGA(K/F), T(K) — U(K))
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and HY(F, T — U) for HY(I',T(F) — U(F)), asin [KS]. Note that the left
vertical arrow in (9.4.1) isanisomorphismsince?” and U split over K. The bottom
arrow is analogousto (1.4.2).

10. Hyperhomology

Asin Section 9 let f: 7" — U be amap of F-tori and let K be afinite Galois
extension of F'in F that splitsT and U. Let X, Y denote the cocharacter groups
X.(T), X.(U) respectively. We regard

x -y

as a complex of length 2 placed in degrees 0 and 1. In this section we will define
an isomorphism

HoWgp, X =Y) ~ Hyg(Wgp, T(K) = U(K)).

10.1. The group Ho(Wg/r, X — Y) is the hyperhomology group studied in
Section A.3 of [KS], and our discussion here closely parallels the one there. For
m > 0 we write Cp,, (X) for the group of (abstract) m-chains of Wy, in X, so
that H,,,(Wg r, X) isthe m-th homology group of the complex

o Oo(X) 2 (X)) -2 Co(X).

We then get a double complex

Co(X) —— C1(X) Co(X)

Co(Y) —— C(Y) —2- Co(Y)

with vertical mapsinduced by f.: X — Y, and from this double complex we get
the complex

= Ca(X) B ColY) — Co(X) & Ca(Y) = Co(Y),
with « given by

a(z1,y2) = (071, fsz1 — Oy2)
and 3 given by

B(zo,y1) = frxo — Oy1.



308 ROBERT E. KOTTWITZ

Then Ho(Wg,r, X — Y') isthe quotient
ker(8)/im(a)

and we refer to elements of ker(3) as 0-hypercycles.

We write C°(T') for the group of 0-cochains of Wi in T(K) and Zg,(T)
for the group Zég(WK/F,T(K)) of algebraic 1-cocycles of Wy in T(K); of
course

coT) = T(K).
We are going to define maps
¢: CL(X) — CT),
2 Co(X) = Zzg(T),
making the diagram
Co(X) —2— C1(X) —2— Co(X)

¢ v (10.1.1)

0 (1) —2+ Z5,(T)

commute. Both ¢ and +) will be functoria in T'. Just asin [KS], we will use ¢,
to define a homomorphism
Ho(Wgp, X = Y) = Hjg(Wg/p, T(K) = U(K)) (10.1.2)

sending the class of the O-hypercycle (zo,y1) to the class of the 1-hypercocycle
(1 (z0), P(y1))-

It remainsto define ¢, 1. We fix a (set-theoretic) section
s: Gal(K/F) = Wk
of the canonical surjection
Wi p — Ga(K/F).
As us_ual this section givesusa2-cocyclea,, , of Gal(K/F) in K*, defined by the
eguation
s(p)s(7) = aprs(pr).

We now define ¢ exactly asin [KS, A.3]. It sendsa 1-chain w +— z,, of W/
in X to the element

Y= H p(xas(’r))(api,’]r-p(a)il)u (1013)

p’7—7a’



ISOCRY STALSWITH ADDITIONAL STRUCTURE. I 309

of T'(K), where the product is taken over all
(0,7,a) € GA(K/F) x Gal(K/F) x K*.
We define ) asfollows. Let
p € Co(X) =X
and put
v= > 7(p.
T€Gd(K/F)
Define amap
t:Wgp — K~
by the equation
w = t(w)s(p),
where p denotes the image of w € W/ under
Wk p — Ga(K/F).
Then ) sends 1 to the algebraic 1-cocycle

w — v(t(w)) - H p1 (1) (ap,r) (10.1.9)
reGa(K/F)

of Wi ,rINT(K), wherew € W, and p denotestheimage of w in Gal(K/F).
A direct calculation[L, A.1] showsthat the 1-cocycleconditionissatisfied, anditis
obviousthat this 1-cocycleisalgebraic. It isnot hard to check that the cohnomology
class of the 1-cocycleis equal to the corestriction of the element of

HYK* T(K)) = Hom(K*,T(K))

determined by .

If v = 0, or, in other words, if x liesin the subgroup Co(X)o of Co(X) (the
notation Cp(X )o comes from [KS]), then the first factor in (10.1.4) is 1, and the
second factor coincides with the one used to define the map

Y Co(X)o — ZY(T)

in [KS]. Thus the map v used in this paper extendsthe one in [KS]. In particular
(10.1.1) commuites, since 0 maps C1(X) into Co(X ) and the analogous diagram
in [KS] commutes.

10.2. Themaps ¢, 1) have adl the desired properties, and thus the map (10.1.2) has
now been defined. However we chose a section s of

Wk r — Ga(K/F)
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in order to define ¢, 1, and we need to check that the map (10.1.2) is independent
of this choice.

Let s’ be another section and let ¢/, 1)’ be the corresponding maps. Let b, bethe
1-cochain of Gal(K/F) in K* defined by

s'(1) = brs(T)
for 7 € Gal(K/F'). Define ahomomorphism
k: Co(X) — CT)

by sending an element 1. € X to the element

K= I w)

reGa(K/F)

of T(K) (this map is the obvious extension of the one in [KS]). Clearly k is
functorial in T, and aroutine calculation shows that

¢ — b= ko
and
W —1p = Ok.
It then follows easily that the homomorphism (10.1.2) does not change when s is

replaced by s’.

10.3. We now show that the homomorphism (10.1.2) is an isomorphism. Using the
5-lemmaasin[KS], we seeit isenough to provethat (10.1.2) isanisomorphismin
the special casein which either 7" or U istrivial. Thuswe must show that the maps

Hi(Wg/p, X) = T(F)
and
Xr — Hyy(Wg/p, T(K))

are isomorphisms. The first map is the usual Langlands isomorphism (see [KG)]
for areview). Composing the second map with the isomorphism (8.4.1), we get a
functorial homomorphism

Xp — B(T), (10.3.1)

which we must show is an isomorphism.

In fact (10.3.1) is equal to the isomorphism [K, 2.4.1]. By [K, 2.2(b)] it is
enough to prove that (10.3.1) coincides with the map in [K] in the special case
T = G, (more precisely we use the obvious variant of [K, 2.2(b)] that appliesto
the category of tori over F' that are split by K).
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In order to prove that (10.3.1) coincides with the map in [K] in the special
cae T' = G,,, we need to introduce some homomorphisms taking values in

Q Put s = [K : F| and consider the extensions Dy, £k Of I' by F*. Let
vp (respectively, wv¢) denote the unique continuous homomorphism from D,
(respectively, €/ r) to Q extending the valuation map

va: F* -5 Q

on the subgroup 7~ (we normalize the valuation on F' so that it takes the value 1
on uniformizing elements for ). The existence and uniqueness of vp, ve follow
from the triviality of H*(T", Q) for i > 1. Clearly the isomorphisms (B.3.2)

Ds ~ EK/F
carry vp into vg. Looking back at the definition of the homomorphism (B.2.5), we
see that the composition

wp B2% p 2, g (10.3.2)

sendsT € W to j/s, where j isthe uniqueinteger such that the restriction of 7 to
F'" isequal to o7; of course the composed map (10.3.2) is also equal to

wp L2 e g (10.3.3)

Now let i € X, (G, ) bethe identity map on G,, . Let ¢,, be the corresponding
algebraic 1-cocycle of W in K* (defined by the formula (10.1.4)), and let ¢,

be the algebraic 1-cocycle of £/ in F™ obtained from c¢,, by means of (8.1.1).
The map w ~ val(cy,) is acontinuous homomorphism from £ - to Q extending

the homomorphism s - val on the subgroup F ™~ of £, /1, and therefore
val(cd,) = s - ve(w).

Let ¢ bethe 1-cocycleof Wy in F~* obtained from ¢/, by means of the homomor-
phism (B.3.3). It follows from the discussion above that

va(cr) = s- (j/s) = J,
where j isthe unique integer such that the restriction of 7 € Wy to F'" isequal to

oJ. Pick acocyclec” of (o) in (FY")* whoseinflation to W} is cohomologousto
/!
cr. Then

val(c”) = 1.

o

Of course ¢! is an element of T'(L) whose classin B(T') = B(T) isequal to the
image of i € X, (G,,) under (10.3.1). Comparing with [K, 2.4], we see that this
classin B(T') isalso theimage of . under the isomorphism

XF — B(T)
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defined in [K]. This completes our proof.

10.4. Combining theisomorphisms(9.3.2) and (10.1.2), we obtain anisomorphism

11. Duality for B(T' — U)

Welet f: T — U, f,: X — Y and K/F beasin Section 10. In this section we
use (10.4.1) to prove aduality theorem for B(T' — U).

11.1. First we must topologize B(T' — U). Recall the exact sequence (9.1.1). We
put the uniquetopology on B(7" — U) for whichB(T' — U ) isatopological group
and the canonical map

U(F)—B(T —U)
is open. We write

for the group of continuous homomorphismsfromB(T' — U) to C*.

11.2. Dua to f: T — U isahomomorphism
fiU—T.
The hypercohomology groups H*(Wy,U — T) and H* (Wi, U — T) are

defined in [KS, A.3], using continuous 1-cocycles of Wy and Wy in U. The
inflation map

HY Wi/, U = T) = HY(Wp,U = T) (11.2.1)
isanisomorphism. Recall from [KS, (A.3.8)] that thereisacanonical isomorphism
Hom(HO(WK/Fa X = Y)a (CX) = He:l\-bS(WK/Fa (7 - f)a

where the subscript abs indicates that we regard Wy as an abstract group
when forming the hypercohomology group. Combining this with theisomorphism
(10.4.1), we get an isomorphism

Hom(B(T' — U),C*) ~ Hy(Wi/p, U = T),
and it is clear that this isomorphism restricts to an isomorphism

HoMeoni (B(T' — U),C*) ~ HX W, U — T),



ISOCRY STALSWITH ADDITIONAL STRUCTURE. II 313

which we combine with (11.2.1) to get an isomorphism
Homeont (B(T' — U),C*) ~ HY W, U — T). (11.2.2)

In 11.5 below we will provethat the isomorphism (11.2.2) isindependent of the
choice of K. Combining (11.2.2) with the canonical injection

HYF, T - U) = B(T = U)
(the bottom arrow in (9.4.1)), we recover the surjection
HYWp,U — T) — Homeon (HY(F, T — U),C¥)
of [KS, LemmaA.3.B].

11.3. We are going to prove a rather technical lemma that will be used in 11.5
to prove that (11.2.2) is independent of the choice of K. The lemma will be used
againin Section 12.

Let R denote the torus Ry /G, obtained from G,,, by Well’s restriction of
scalars from K to F. The group G(K/F) := Ga(K/F) actson (the left of) R
by F-automorphisms; for 7 € G(K/F) we write 6, for the corresponding F-
automorphism of R. Put

Ri:= ][] R

TEG(K/F)

and consider the homomorphism

R-1+ R, (11.3.1)

whose projection to the factor R indexed by 7 € G(K/F) isgivenby 6! —idg €
End(R).

Of course X, (R) is the left regular representation of G(K/F') on the group
rNng Z[G(K/F)]. Wewrite 1. i for the element of X, (R) corresponding to the unit
elementl € Z[G(K/F)]. Then (R, uk) representsthe functor 7 — X, (7) onthe
category of F-tori split by K. Note that

(k) = 07 (k)

forany 7 € G(K/F). It follows that the class of pux in X, (R)r liesin the kernel
of

X.(R)r —~ X.(Ry)r.
Now let Cx denote the category whose objects are homomorphisms

fiT—-U
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of F'-tori split by K and whose morphisms are given by commutative diagrams

T f U

T —I v
Let f: T — U bean object in Cx. Then giving a morphism fromn: R — R; to
f:T — U isthesame as giving an element 1, € X,.(7") and afamily of elements
pr € X, (U), oneforeach m € G(K/F), satisfying

L) = 3 (7= D). (1132)

T€G(K/F)

Theclassof 4 € X.(T) in X, (T)r liesinthe kernel of

X, (1) L x,(U)r.

Moreover, it is clear that for any element 1 € X, (T') whose classin X, (T lies
in the kernel of

X.(T)r L X, (U)r

there existsamorphismfromyn: R — Ry to f: T — U that carries i € X, (R)
into p € X, (7).

We are almost ready to state the technical lemma. For any object T — U inCg
put

H(T - U) = Ho(Wi i, X = Y)

(asusua X = X, (T),Y = X, (U)). Of course H is an additive functor from the
additive category Cy to the category of abelian groups. Suppose that we are given
an additive functor I from Cx to the category of abelian groups, and that we are
also given two natural transformations «, 8 from H to I.

LEMMA 11.4. Suppose that the maps
a,f:HT - U) = I(T - U)

are equal whenever T' istrivial or U istrivial. Suppose further that the obvious
map

I(R— R1) - I(R— 1) x I(1 — Ri1/n(R))

isinjective. Then « isequal to 5.
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First we note that the maps
a,B: H(R — R1) — I(R — Rj)

are equal. Indeed, this follows immediately from the hypotheses of the lemma
(apply the first hypothesisto both R — 1 and 1 — Ri1/n(R)). It follows that the

maps
o, HT—-U)—=I(T—U) (11.4.1)

are equal on al elements of H(T — U) that arise as the image of an element in
H(R — R;) for some morphismfromR — R;toT — U.
There is an obvious exact sequence

- > H1l—-T)—-H(1—-U)—>H(T—=VU)
- Xr—=>Yr— - (11.4.2)

Let z € H(T — U). We want to show that a(z) = g(x). It follows from the
discussion in 11.3 that there is a morphism £ from R — Ry to T — U and
an element y € H(R — R1) such that = and £(y) have the same image in
ker[ Xt — Yr|. Since we have aready seen that «, 8 have the same value on &(y),
we are reduced to the case in which z liesin the image of H(1 — U). Therefore
the first hypothesis of the lemma, appliedto 1 — U, impliesthat a(z) = B(x).

11.5. Now we usethelemmato provethat theisomorphism (11.2.2) isindependent
of the choice of K. Asin [KS, A.3] the only nontrivial fact that we need is the
commutativity of

- (11.5.1)

Here K' is afinite Galois extension of F in F containing K, and the map p, is
induced by the canonical surjection

p: WK’/F — WK/F
The horizontal maps are of type (10.4.1).

Note that the map p. is an isomorphism (use the exact sequence (11.4.2)).
Therefore (11.5.1) gives ustwo natural transformations «, 3 from H to I, where I
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denotes the functor on Ck that sends7” — U to B(T' — U). Weclaim that «, 3, 1
satisfy the hypotheses of Lemma 11.4. Thefirst point to check is that

H\(Wgyp, X) —— T(F)
(11.5.2)

Hi(Wgp, X) —— T(F)

commutes. Thisis standard (and also follows from the commutativity of (A.3.11)
in [KS]). The second point to check is that

Xp B(T)

Xp B(T)

commutes. This follows from the fact, proved in 10.3, that both horizontal maps
agree with the canonical map

XF — B(T)
defined in [K]. The third point to check is that the natural map
B(R — R1) - B(R — 1) x B(1 = R1/n(R))
isinjective.
More generaly let us find a sufficient condition for the injectivity of

B(I' L+ U) = B(I' > 1) x B(L— W), (11.5.3)

whereW = U/ f(T). It follows from (9.1.1) that the kernel of (11.5.3) isequal to
the kernel of

COK[T(F) — U(F)] — W (F),

whichisequal to V(F')/f(T(F')), whereV isthesubtorus f (1) of U. Let C denote
the kernel of T — U. Then T(F) — V (F) is surjective if HY(F,C) is trivial.
Therefore we concludethat (11.5.3) isinjectivewhenever H(F, C) istrivial. This
conditionissatisfied by n: R — Rj, since C' iS G, inthis case.

12. A valuation map on B(T' — U)

Welet f: T — U, f,: X — Y and K/F beasin Section 10. In this section we
are going to define a surjection

B(T — U) = HY(0),X; = Y7)
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and study its properties.

12.1. We need to review group cohomology and homology for the infinite cyclic
group (o). Let Z[(o)] denote the integral group ring of (o). There is an exact
seguence

0 z[(0)] T Z[{o) —>+ 7 — O,
where o — 1 denotes multiplication by o — 1 and « is defined by

a(;mjw) _ ;m]

Thus we get a projective resolution
o—1

Z[{0)] — z[(o)]

of thetrivial (o)-module Z.
Let A be an abelian group on which (o) acts. Then H*((o), A) isthe cohomol-
ogy of the complex

AT 4

and H,({0), A) isthe homology of the same complex. Therefore H" ({c), A) and
H,({(o), A) vanishfor m > 2 and

H%((0), 4) = A“) = Hi((0), A),
Hl(<0>?A) = A<a> = H0(<U>aA)7

(as usua the superscript (o) indicates invariants and the subscript (o) indicates
coinvariants).
Now let ¢: A — B beamap of (¢)-modules. From ¢ we get adouble complex

A—71 .4
¢ ¢
B o—1 B,
which in turn givesrise to a complex
A pgp 7l B

Thecohomology (respectively, homology) of thiscomplex isthe hypercohomol ogy
(respectively, hyperhomology) of A — B. Therefore

Hi_p((0), A — B) ~ H™((0), A — B) (12.1.1)
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foral m € Z.Moreover H™((c), A — B) vanishesunlessm = 0,1, 2, and
H((0), A = B) = ker[A) — B,
HY((0),A = B) = ker(¢p — (0 — 1)) /im(oc — 1, ¢), (12.1.2)
H*((0),A = B) = cok[A(,) = By

Werefer to elements of ker(¢ — (o — 1)) assimplified 1-hypercocycles(and also as
simplified O-hypercycles), and we refer to elements of im(o — 1, ¢) as simplified
1-hypercoboundaries (and also as simplified O-hyperboundaries).

There is an exact sequence

1 — cok[A” — B — H((0), A — B)
— ker[A@ — B<U>] —1 (1213)
generalizing (9.1.1), and there is an exact sequence

1 — (kerfA — BY]),., — H({0),A — B)

()
— (cok[A — B))'” = 1 (12.1.4)

analogousto (9.1.2) (it generalizes (9.1.2) in case C' is connected).

12.2. Wedefine B(T' — U) to be the hypercohomology group

B(T = U) := H*(0),T(L) — U(L)). (12.2.1)
The inflation map for the surjection Wy — (o) yields an isomorphism

B(T — U) ~B(T — U). (12.2.2)
Recall the canonical surjection (7.2.1)

wr: T(L) = X;.

Together the maps wr and wy; induce a map of complexes from [T'(L) — U(L)]
to [X; — Y], and thisin turn induces a map

B(T' = U)=B(T = U) = H((0), X; = Y7). (12.2.3)

We claim that the map (12.2.3) is surjective. Since wy, wy are surjective, it
sufficesto show that

H?((0), T(L)1 = U(L)1) (12.2.4)
istrivial, where T'(L); denotes the kernel of wy. But (12.2.4) isequal to
Cok[(T'(L)1) () = (U(L)1) (9],



ISOCRY STALSWITH ADDITIONAL STRUCTURE. II 319
whichisindeed trivial (see(7.6.1)).

12.3. Consider the canonical surjection ¢: Wy — (o). Thereis anatural map
(analogousto inflation for hypercohomology)

Ho(Wgp, X = Y) — Ho({0), X1 — Y1) (12.3.1)
obtained as the composition of

Ho(Wik/p, X = Y) = Ho(Wg/p, X1 — Y7)
and

Ho(WK/F,X[ — Y[)@ > (s >> Ho((U>,X[ — Y[).

12.4. Consider the diagram

10.4.1
HoWg/p, X =Y) St

B(T'— U)
(12.3.1) (1223) (12.4.2)

(12.1.1)

Ho((o), X1 — Y7) HY((o), X = Y7).

We are going to use Lemma 11.4 to provethat (12.4.1) commutes. We take I to be
the functor sending 7 — U to HY({c), X; — Y7), and we take a, 3 to be the two
natural transformationsfrom H to I given by thetwo pathsin thediagram (12.4.1).

Let V' denotetheimage f(7') of T'in U, let W denote the quotient torusU/V/,
and let C' denotethe kernel of f. We are interested in the kernel of the map

Hl(<a>7XI - YI) - Hl(<a>7XI) x (X*(W)I)<g>7 (1242)

since we must check that (12.4.2) isinjectivefor n: R — R;j. Itiseasy to seethat
the kernel of (12.4.2) isequal to

(im[X,(V); = Y2)) /im[x{ = v{). (12.4.3)

Now suppose that C' is connected. Then X, (T') — X, (V') is surjective, asis the
induced map on I-coinvariants, so that in this case (12.4.3) is equal to

(imX; — V)" /imx {7 - v} (12.4.4)
The group (12.4.4) istrivial if
H((0), ker[X; — Y7)) (12.4.5)

istorsion-free.
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Now supposethat f: T — U isn: R — Ri. Then C'isG,,, so that the kernel
of (12.4.2) is equal to (12.4.4). It is easy to see that the kernel of X; — Y; iSZ
(withtrivial action of (o). Therefore the group (12.4.5) istorsion-free (isomorphic
to Z), and we conclude that (12.4.2) isinjectivefor n: R — Rj, asdesired.

The next point to check isthat

X (10.4.1)

B(T)
(12.3.1) (12.2.3)

Ho((o), X1) 222 HY(0), X))
commutes. We identify H((c), X7) with Xr. Then we must show that the com-
posed map

(10.4.1) (12.2.3)

XF B(T) EaE— XF

is the identity map on Xr. This follows from 7.5 and 10.3 (see the discussion of
the map (10.3.1)).
Thefinal point to check is that

(10.4.1)

Hi(Wgp, X) T(F)
(12.3.1) (7.6.2) (12.4.6)

commutes. Let
ET(F) = (X))

be the homomorphism obtained by going the long way around (12.4.6) (remember
that (10.4.1) is an isomorphism). We want to show that £ is equal to (7.6.2).

Observe that ¢ is independent of the field K (use that the diagram (11.5.2)
commutes). Of course ¢ isfunctorial inT'. Let E be afinite unramified extension
of Fin F. Let Rp denote the F'-torus Ry r(Tk), obtained by Weil’s restriction
of scalarsfrom thetorus T over E. Themap ¢ for the torus Ry can be thought of
asamap

T(E) — (X)), (12.4.7)

where (o) denotes the Frobenius automorphism of F'" over E (we used that
X.(Rg); isthe (o)-module induced by the (o x;)-module X7).
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Suppose that £’ is afinite unramified extension of F' in F containing E. Then
there is acanonical embedding

Ry — REI
and the functoriality of £ implies that the diagram

T(E) — (X1)\7%)

T(E') — (X))

commutes. Thus these maps fit together to give a functorial map
wr: T(FM) — X;.

We must show that @y is the restriction to 7'(F''") of the map
wr: T(L) = X

definedin 7.2.
Choose an induced torus R over F' and a surjection

X, (R) = X.(T)

of I'-modules. Then there is an exact sequence
1-C—->R—->T—=1,

where C isatorus. Since HY(F'", C) istrivial, the map
R(F") — T (F"")

issurjective. Thereforeit is enough to provethat wy restricts to wy in the case that
T is an induced torus. Then X is torsion-free, and by using elements of X' we
reduceto the casein which T is G,,, .

Thus we must show that for 7" = G,,, the map (12.4.7)

E* > 7

is the usual valuation map on E. Using the norm map Rg/ Gy, — Gy, We see
that it is enough to show that the map

EF* =7

for G, isthe usual valuation map on F.
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Thusit is enough to show that the diagram

Hy(F*,7) F*
- va (12.4.8)
Hi((0),2) L

commutes, where ¢ isthe canonical surjection F* — (o) (uniformizing elements
in F* mapto o). Let z beanelementin Hy(F*,Z). Choosea l-cyclea — z,
of F* in Z representing z. Then (see (10.1.3)) the top horizontal arrow maps z to
the element

H a %o g FX
aceFX*
and the valuation of thiselement is
> —val(a) - z,. (12.4.9)
acF' X

The map ¢, sends z to the class of the 1-cycle

o= > @ (12.4.10)
val(a)=n

of (o) inZ (the sum istaken over all « € F* satisfying the stated condition).
Let A be any abelian group on which (o) acts. Let C,,,(A) be the group of
standard m-chainsof (o) in A, sothat H,((c), A) isthe homology of the complex

= Oo(A) L 01(4) 2+ Co(A).
The diagram

Ca(4) —2— C1(4) —— Co(A)

0 A—71 4

commutes, where the vertical arrow C1(A) — A sendsal-chain o™ — a, to the
element

Z Yn(an) € A,

nez
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where -,, denotes the unique element in the integral group ring of (o) satisfying
the equation

Y (c—1)=0c"—1

Therefore the bottom horizontal arrow in (12.4.8) mapsthe 1-cycle (12.4.10) to the
integer

S Y. (12.4.11)

ne€Z  va(a)=n
The element ,, acts by multiplication by —n on Z. Therefore (12.4.11) isequal to
(12.4.9), and we are done.

12.5. We return for a moment to the cohomology of the group (o). Let X;, X»
be finitely generated abelian groups on which (o) actsand let h: X1 — X, bea
homomorphism. Dual to X1, X, are diagonalizable C-groups

D; :=Hom(X;,C*) (i=1,2)

on which (o) acts. Of course X; isequal to X*(D;). Thereisamap h: Dy — Dy
dual to h. Since C* isan injective abelian group, there isacanonical isomorphism

Hom(Ho((0), X1 — X2),C*) ~ H*((0), D2 — D1), (12.5.1)
analogousto [KS, (A.3.8)]. Thisgivesus a C* -valued pairing between
Ho({(o), X1 — X>)
and
HY((0), Dy — Dy).

As in [KS] we have the following explicit formula for this pairing in terms
of standard chains and cochains. Consider a O-hypercycle (z1, z2(w)) and a 1-
hypercocycle (dz2(w), d1). Thus 1 € X1, and z3 is a 1-chain of (o) in X> such
that

h(z1) = Y (wtz(w) — z2(w));

we(o)
similarly d; € D4, and d, isa 1-cocycle of (o) in D, such that
h(da(w)) = dy "w(da)

for al w € (o). Then the value of the pairing on the classes of these two elements
isgiven by

(w1, d1) [ (za(w),da(w))™ (125.2)

we(o)
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In 12.4 we saw how to convert from standard 1-chainsfor (o) to the simplified
1-chains we used in 12.1. Of course it is obvious how to convert a standard 1-
cocycleof (o) toasimplified 1-cocycle: take the value of the 1-cocycleat o € (o).
Converting (12.5.2) into thelanguage of simplified chainsand cochains, wefind the
following alternative description of our pairing. Consider asimplified O-hypercycle
(1, z2) and a simplified 1-hypercocycle (d2,d1). Thus z1 € X; and z2 € X
satisfy

h(z1) = (0 — L)z2;
similarly d1 € D1 and dy € D satisfy
h(dg) = (o — 1)(da).
Then the value of the pairing on the classes of these two elementsis given by
(z1,d1)(o(x2), d2). (12.5.3)
Recall the canonical isomorphism (12.1.1)
Ho({(0), X1 — X2) =~ HY((0), X1 — X2).
Using thisisomorphism, we get a pairing between
HY (o), X1 — X2)
and
HY((0), D2 — Dy).

It is aso given by the formula (12.5.3) (recall that a simplified 0O-hypercycleisthe
same as asimplified 1-hypercocycle).

12.6. Wereturnto f: T — U and the canonical surjection (12.2.3)

B(T = U) — HY(0), X; — Y7). (12.6.1)
Thereis aninjective inflation map

H(o), 0" = T") = HXWp,U = T). (12.6.2)
Thereisa C* -valued pairing (see (11.2.2)) between

B(T— U)
and

H*Wp,U = T),
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and by applying 12.5t0 X; — Y; we get a C* -valued pairing between
HY (o), X1 — Y7)
and
HY((o), U = T").
We claim that these two pairings are compatible, in the sense that
b,y = (t/, z)

foranyb € B(T — U)andz € HY((0), U! — TT), whered' denotestheimage of
b under (12.6.1) and 2’ denotes the image of 2 under (12.6.2). The only nontrivia
fact needed to provethis claim is the commuitativity of the diagram (12.4.1), which
we have already established.

13. Canonical splittings

Let £ be afinite unramified extension of ' in F and put r = [E : F]. Thuso” is
the Frobenius automorphism of " over E.

13.1. We return once again to the cohomology of the group (o). Let A be an
abelian group on which (o) acts. Restricting A to the subgroup (o) of (o) and
then inducing back up to (o), we obtain a (o )-module

I(A) := Ind), (A).

We can identify I(A) with the r-fold product A x ... x A (as an abelian group).
Theaction of o on an r-tuple (as, . ..,a,) € I(A) isgiven by

o(ai,...,a;) = (o(a2),...,0(ar),o(a1)). (13.1.1)
Thereis a canonical automorphism 6 of the (o)-module 1(A), given by

0(a,...,a) = (ar,as,...,ar1). (13.1.2)
Thereis an obviousinjective (o)-mapi: A — I(A), defined by

i(a) = (a,...,a) (13.1.3)
and an obvious surjective (o)-map m: I(A) — A defined by

m(a1,...,a;) =ai---a,. (13.1.4)
The sequence
1A 1(4) 25 1) M a1
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isexact, and therefore the exact sequence (12.1.4) for thecomplex 1(A) o (A)
becomes

1 Ay — H((0), I(4) =% I(A)) — A 5 1. (13.1.5)

We claim that there is a canonical splitting of the exact sequence (13.1.5). We
write J(A) for the subgroup
A x L x A
of I(A). Onthe subgroup J(A) the automorphisms o and 6 of 1(A) areinverseto
one another. Recall from 12.1 that asimplified 1-hypercocycleof (o) in

14) 2% 1)

isapair (z,y) € I(A) x I(A) satisfying

(1=0)(z) = (e — (y).

For any z € J(A) thepair (o(x), z) isasimplified 1-hypercocycleof (o) in
14) 2% 1A,

We denote by

HY((0), I(4) = 1(4)),

thesubgroup of H({(o), I(A) e I(A)) consisting of theclassesof all simplified

1-hypercocyclesof this special form. We claim that the surjection

H (o), I(A) =% 1(4)) —» A@ (13.1.6)
induces an isomorphism
HY((0), I(A) =% 1(A)) , — A, (13.1.7)

Thiswill provide the desired splitting. Let 2z € J(A). The map (13.1.7) sends the
classof (o(z), x) tom(z). Since m maps J(A) onto A7), we seethat (13.1.7) is
surjective. Supposethat the class of (o(z), =) mapsto theidentity element of A(7?.
Then there existsy € J(A) suchthat x = (1 — 6)(y); therefore (o(z), z) isequal
to the simplified 1-hypercoboundary

((0 =D (), (1-0)(y)),

and we seethat (13.1.7) isinjective aswell.
We also need the following variant of the discussion above. Now we consider
the complex
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The sequence

i 1-0-1

1A I(A) I(A) 2+ A—1

is exact, so that we get an exact sequence

1= Ay = H'((0), 1(4) 0 1(4)) - A9 1, (13.1.8)

This exact sequence also has acanonical splitting. Asthe complementary subgroup

HY (o), 1(4) == 1(4)),

we now take all classes that can be represented by simplified 1-hypercocycles of
theform (z =1, z) for somexz € J(A).

13.2. We continueto usethe notation of 13.1. Wenow let X beafinitely generated
abelian group onwhich (o) acts, andlet Dx = Hom(X, C*) bethe diagonalizable
C-group dual to X. Thereis acanonical isomorphism of (o)-modules

where I denotes the induction functor | ndEZZ ) 8 in 13.1. We denote the automor-

phism 6 of 13.1 for the group (X) (respectively, I(Dx)) by 0x (respectively,
fp). Dud to

Ox:I[(X)— I(X)
is the automorphism
é\X: DI(X) — DI(X)-

Since the functor X — D is contravariant, the isomorphism (13.2.1) identifies
0x with theinverseof 0p.
From 13.1 we get an exact sequence

1—)X<g> —)H1(<0>,I(X) ﬂi[(X)) _>X<‘7> -1 (1322)
and a subgroup
HY((0), I(X) 7% (X)), (1323)

complementary to X . We also get an exact sequence

1-0. o
1— (Dx)<g> — Hl(<0'>,D[(X) e S DI(X)) — (Dx)< ) —1 (1324)

and a subgroup

1-9.
H'Y(0), Dyx) —> D)), (13.2.5)
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complementary to (D), (since Ox = 051, we are using the variant discussed at
the end of 13.1).
Recall from 12.5 the canonical pairing (-, -) between the groups

HY((o), [(X) =2 I(X))
and

1-0.
H'((0), Dy(xy —> Dyx))-

The pairing is given by the formula (12.5.3). We claim that the subgroups (13.2.3)
and (13.2.5) annihilate each other under this pairing. In other words we claim that

{(o(2),2), (a1, d)) =1 (13.2.6)

forany z € J(X) andany d € J(Dx). By (12.5.3) the |eft-hand side of (13.2.6)
isequal to

(o(2),d){o(z),d™") =1,

which provesthe claim.

13.3. Now let 7" beatorusover F,andput X := X, (7). Let R denotethe F-torus
Rpp(Tx) obtained from T; by Weil's restriction of scalars. The Galois group
Gal(E/F) actsnaturally (on theleft of) R by F-automorphisms, and we denote by

¢ the F-automorphism of R by which the Frobenius element o/ in Gal(E/ F')
acts. Under the canonical isomorphism

R(F) =T(E),

the action of & on R(F') goesover to the action of o/ ONT'(E).
There isacanonical isomorphism of (o)-modules

R(L) = I(T(L)), (13.3.1)
obtained as follows. We have
R(L) = T(E®r L),

I(T(L)) = T(L) x ... x T(L)
=T(Lx...x L),

and with these identifications (13.3.1) becomes the map
T(E®r L) —-T(Lx...xL)

induced by the L-algebraisomorphism
EQrL—Lx...xL
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sending e ® [ to the r-tuple

(0" (e)l, ..., 02(e)l, o (e)l).

Note that (13.3.1) carries the automorphism of R(L) induced by 6 € Auty(R)
over to the automorphism of I(7'(L)) denoted by ¢ in 13.1.
Consider the exact sequence

1 B(T) = B(R =% R) - T(F) - 1 (13.3.2)
(aspecial case of both (13.1.5) and (9.1.2)). From 13.1 we get acanonical subgroup
B(R > R),

of B(R A R), complementary to the subgroup B(T").
Consider the Langlands dual complex
R R
Thereis an obviousidentification (of C-groups) of & with the r-fold product
Tx...xT.
Let 7 € I and suppose that the restriction of 7 to F'" isequal to o. Then
(... 5) = (r(2),..., 7)), 7(t1).

Moreover the action of 6 is given by

~ o~ ~

a(tlv s 7t7‘) = (%\27 cee 7%\7‘7%\1)‘
The sequence

i =S 1-0 5 mo 5

15T R R T—1 (13.3.3)

is exact, where s is defined by
tes (t,...,1)

and m is defined by
(Frren D) s Fre D

Let f: T — U beamap of F-tori, let C' be the kernel of f, let W be the
cokernel of f, andlet V betheimage of f. Assumethat C is connected. Thereis
an exact sequence

1-T—->V]|-T-Ul-[1-W]—>1 (13.34)
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and the obvious map from [C — 1] to [T" — V] isaquasi-isomorphism. Applying
B to (13.3.4) we get the exact sequence (9.1.2)

1-B(C)—=B(IT—=U)—>W(F)—1 (13.3.5)
Dual to (13.3.4) is the exact sequence
15 W—=1=U—=T)=[V-T -1 (13.3.6)

Since C' is connected, the map V T is injective with cokernel C, and hence
the obvious map from [V —T]to[1l— C’] is a quasi-isomorphism. Applying the
functor H*(Wp, -) of [KS, A.3] to (13.3.6), we get an exact sequence

1 H'(Wp, W) = H*(Wp, U > T) - C" > 1 (13.3.7)

(usethat H2(W -, W) vanishes), and this exact sequenceis obtained from (13.3.5)
by applying the functor Homgor (-, C* ) (See Section 11).

Taking T . UtobeR —t R, the exact sequence (13.3.7) becomes
1 H\Wp,T) - H*(Wp, R % R) - TF - 1, (13.3.8)

and this sequenceis obtained by applying Homgoq (-, C*) to (13.3.2).
There is a commutative diagram with exact rows

1 HY(0),T") —» H((0), R"*3 RI) T" 1
1—~ H\Wp,T) — HY (Wp, REE4R) 7" 1
(13.3.9)

in which the vertical maps are inflation maps for the canonical surjection Wy —
(o). Note that

= Hom(X;,C*),

and hencethat the top row in (13.3.9) is the exact sequence (13.2.4) for the finitely
generated abelian group X ;. Therefore 13.2 gives us a subgroup

HY(o), B 4RI,

of
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complementary to the subgroup H({(s), 7). By inflation we identify

(o), B! 2 R,
with a subgroup of

H\(Wr, B 2% R);

obviously thissubgroupiscomplementary to H(W ., T'), so that we have produced
acanonical splitting of the exact sequence occurring as the bottom row in (13.3.9).

PROPOSITION 13.4. The subgroup B(R —— R) , of B(R — R) and the
subgroup H((o), B = R!), of HX(Wp, R = R) annihilate each other
under the C* -valued pairing between B(R —2 R) and HY(Wp, R — R)
obtained from (11.2.2).

We have the following commutative diagram with exact rows

1 B(T) B(RS4R) T(F) 1
1 (X1)() — H((0),Y173Y;) — (X))@ 1,
(13.4.1)

where Y denotes the cocharacter group X, (R). The vertical maps are of type
(12.2.3), and the bottom row is of type (13.2.2) (for the finitely generated abelian
group X ); of course we are using the obvious identification

¥ = Ind(?), (X;).

In 12.6 we proved the compatibility of two pairings. This compatibility implies
that the diagram (13.3.9) is obtained by applying Homgon (-, C*) to the diagram
(13.4.1).

since H((0), Rl =2 R), is a subgroup of H((o), B =2~ R!) it is
enoughtoshow that H((o), B! 2% R!) , annihilatestheimageof B(R = R)
in

HY(0),Y; —% V7). (13.4.2)
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But thisimage is contained in the canonical subgroup of (13.4.2) complementary
to (X1) (- Therefore the desired annihilation was proved in 13.2 (apply 13.2 to
the finitely generated abelian group X).

Appendix
A. Automor phism groups of ®-functors

A.l. Let k be acommutative ring with 1. Let G = Spec(A4), X = Spec(B) be
affine schemes over k, and suppose that we are given a morphism

a.GxX —-X

of schemes over k (the product is taken over Spec(k)). We think of G, X as set-
valued functors on the category of k-algebras and define a subfunctor X of X as
follows: for any k-algebra R the set X“(R) consists of all elements 2z € X (R)
such that

a/(g,.’I)S) =Zs

for every R-algebra S and every g € G(S) (we use x g to denote the image of «
in X(5)). If G isagroup scheme and « is an action of G on X, then we refer to
pointsin X“(R) as G g-fixed pointsin X (R) (G r denotesthe group scheme over
R obtained from G by extension of scalars).

Now assumethat % isafield. Thenwe claim that X ¢ is represented by aclosed
subschemeof X. Let

a":B— A®, B

be the k-algebra map induced by a. The set X“(R) can be identified with the set
of k-algebrahomomorphisms f: B — R such that the map

dy® f:A®r B — A®; R

vanishes on the subset M of A ®; B consisting of all elements of the form
a*(b) — 14 ® b for some b € B. Pick a basis {a; };c; for A as k-vector space.
Any element z € A ®; B canbewritten uniquely as}_;.; a; ® b;(x) andidy ® f
vanisheson z if and only if f(b;(z)) = Ofor every i € I. It followsthat idsy ® f
vanisheson M if and only if f vanisheson the set N of elementsin B of theform
bi(x) for somex € M and somei € I. Therefore X ¢ isrepresented by the closed
subscheme of X defined by the ideal in B generated by V.

A.2. Letk beafield, and let 7, U be Tannakian categories over k (see[D], [Sa]).
Let 3: T — U be an exact ®-functor. For any k-algebra R we define an R-linear
®-category Ut asin 3.3. Recall that /% has the same objects as 4/, and that for
objects X, Y inl{ one has

Hom;»(X,Y) = Homy(X,Y) ®; R.
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Asin 3.3 thereis an obvious ®-functor
U —ur.

Composing this functor with 3, we get a ®-functor
gt T - Ut

Wethen let J3(R) denote the group of ®@-automorphisms of 5%.

We claim that the functor Jj is representable by an affine group scheme over
k. Suppose that ¢/ has afiber functor w;, over a nonzero k-algebra S. We define a
fiber functor wr on T by

w7y ‘= wy o B.

Then wr, wy, determine k-groupoids G, H acting transitively on Spec(S) (see[D]),
and the pullbacks of G, H aong the diagonal map

Spec(S) — Spec(S) X specr) SPEC(S)
are affinegroup schemes G, H over S. The ®-functor 3 inducesahomomorphism
viH—d

over S, and we denote by G, the centralizer of v in G, by which we mean the
subfunctor of H-fixed pointsin G (see A.1) for the conjugation action of H on G.
We claim further that there is a canonical isomorphism

(J,B)S = Gw

where (J3) s isthe group scheme over S obtained from J; by extension of scalars.

In fact the first claim follows from the second. Indeed, ¢/ has a fiber functor
over somefield S containing k. It is easy to seethat Jg is asheaf for the faithfully
flat topology (on the category of affine schemes over k). Therefore it is enough
to prove that (J3)s is representable by an affine group scheme over S, and this
follows from A.1 (assuming the truth of the second claim).

Now we prove the second claim. Let R be any S-algebra. From w, wy, we get
fiber functors w% % on T, U over R, and the corresponding groupoids Gr, Hr
(respectively, group schemes) G, Hy are obtained from G, H (respectively, G,
H) by extending scalarsfrom S ®; S to R ®;, R (respectively, from S to R).

Giving an element ¢ € J3(R) is the same as giving a compatible family of
elements

ax € (Endy, (wfiBX)®r R)",

one for each object X in T (compatible means functorial and compatible with all
finite tensor products). But w; X = wiX and

EndHR (w?X) Qr R = EndHR (w#X),
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since the action of the groupoid H  on wﬁX determines descent data (from R to
k) on Endy, (wfX), and Endy,, (w£X) is equal to the k-vector space obtained
from Endy, (w¥X) by descent. Moreover Endy;, (wfX) can be identified with
the fixed points of the action of Hy on the R-module Endg(w£X). Therefore
giving a € J3(R) isthe same as giving an H p-fixed point in the set of compatible
families of elements

a'y € Endg(wiX)*

and thisin turn isthe same as giving an H p-fixed point in G(R). Therefore J3(R)
isequal to G (R), where H acts on G by conjugation, which proves the second
claim.

B. The Galoisgerbs D,

B.1. Let 7 be a Tannakian category over F' (see [D], [Sa]). We suppose that T
admits afiber functor over I, and we fix such a fiber functor w. Then in the usual
way w determines an affine group scheme G over F. We assume further that G is
of finite type over F, so that G isalinear algebraic group over F. Of course G(F)
is equal to the group of ®-automorphisms of the fiber functor w.

Let 7 € I". By a7-linear ®-automorphism of w we mean a family of 7-linear
isomorphisms

9x : w(X) — w(X),

one for each object X in 7, functorial in X and compatible with finite tensor
products. Let G, be the set of al r-linear ®-automorphisms of w, and let G be the
digoint union

g = HgT

Tel

Then G isagroup (under composition) and there is an exact sequence
1-GF) = G@>q>>T—1, (B.1.1)

the fiber of ¢ over 7 € I" being G, (to prove that the map G — I' is surjective use
that any two fiber functors for 7~ over F' areisomorphic).

Theextension G of I by G(F) is caled the Galois gerb associated to 7~ and w
(see [LR]). Thereis a natural topology on G making G into a topological group.
The induced topology on the subgroup G (F') is discrete, and the induced topol ogy
on the quotient group I is the usua Krull topology. The topology is defined as
follows. There exists a finite Galois extension K of F' in F' and a fiber functor
wo on T over K. Choose a ®-isomorphism between w and the fiber functor w{’
obtained from wq by extension of scalarsfrom K to F'. Let T i denotethe subgroup
Ga(F/K) of T'. Our choices determine a section of G — T" over the subgroup T
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of I" (since each w(X') has acquired a K -structure and hence a canonical 7-linear
automorphism for each = € T' k). Any two sections of this type become conjugate
under G(F) after restricting to a suitably small open subgroup of T'. Using our
chosen section we express ¢~ 1(I' ) as the semidirect product

qil(FK) = G(F) x k.

We put the discrete topology on G (F), the Krull topology on 'k, and the product
topology on ¢—*(I'x ). We give G the unique topology for which it is atopological
group and the inclusion

¢ Tk) =G

isan open mapping. It iseasy to seethat thistopology isindependent of the choices
we made.

By arepresentation p of G we mean a discrete, semilinear, algebraic action of
G on afinite dimensional F-vector space V (discrete means that the stabilizer in
G of any vector in V' is an open subgroup of G, semilinear means that elementsin
G act by 7-linear automorphisms of V/, and algebraic means that the restriction
of p to G(F) is a representation of the algebraic group G). For any object X in
T there is an obvious representation of G on w(X), and the resulting ®-functor
X — w(X) from 7 to the ®-category of representations of G is a ®-equivalence
of ®-categories.

B.2. Let 7 be the Tannakian category o-L-spaces (see Section 2). Let s be a
positive integer. We denote by 7, the full Tannakian subcategory of 7 consisting
of all o-L-spaces (V, ®) whose slopeslie in the subgroup %Z of Q.

Let F, denotethefixedfield of o° on F''"; of course F isthe unique unramified
extension of F'in F' having degree s. The Tannakian category 7, hasfiber functors
over Fj, and any two such fiber functors are isomorphic. We can single out one
such fiber functor by choosing a uniformizing element = for F. Then the desired
fiber functor w, is given by

wr(V, @) :=PV™"®

nez

8

(B.2.1)

together with the obviousisomorphism
Wr <® Vz) = ®w7r(vl)
el el
The group of automorphisms of w; is G,, (Fs) (an element = € G, (Fs) acts on

VT py ™).
By considering semilinear ®-automorphismsof w, aswell, we get an extension

1— G (F;) —» D° — Gal(F,/F) — 1. (B.2.2)
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Extending scalars from F, to F we get afiber functor wZ on 7, over F, and thus
we also have the extension

1-Gyu(F)—Ds—T—1, (B.2.3)

where D, denotesthe Galois gerb associated to 7" and wf. Of coursethe extension
(B.2.3) is obtained from the extension (B.2.2) by pulling back along the canonical
surjection

' —» Gal(F/F)
and then pushing out along the canonical injection

G (Fs) = G (F).

For any o-L-space (V, ®) the o-linear automorphism ® preservesthe subspace
wr(V, @) of V. Sincetheresulting o-linear automorphism of w, (V, ®) isfunctorial
and compatible with tensor products, there is a canonical element o, € D9 lying
over the Frobenius element in Gal (F; / F'), namely the unique element that acts by
® onw, (V, @) forall (V, ®). Notethat the s-th power of ¢, isequal to € Gy, (Fy).
The element ¢, € DY determines a homomorphism

(o) — DY, (B.2.4)

namely the unique one that sends the generator o of the infinite cyclic group (o)
to the element ¢, in DY. We now define a continuous homomorphism

Wpg — Ds (B.2.5)
asfollows. Let I'; denote the group Gal(F5/F'). Then the fiber product
DO xp, T

isasubgroup of D, and the homomorphism (B.2.5) factors through this subgroup,
its first component being the map

Wr — (o) = D°

obtained by composing the canonical surjection Wy — (o) with the map (B.2.4)
from (o) to DY, and its second component being the canonical injection

WF — I
It isclear that the map (B.2.5) is a section of
Dy — T

over the subgroup W= of I'. The pair consisting of the extension D, of I' by G,,, (F)
and the section (B.2.5) over W has no nontrivial automorphisms.
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Now suppose that ¢ is a positive integer such that s divides ¢, say ¢t = su. For
any object (V, ®) in 7, (which also can be regarded as an object in 7;) thereis a
canonical isomorphism

F, ®r, (@ V”"‘I’S> - v (B.2.6)
nez mez

(to prove this use descent theory for F}/F;). Theisomorphism (B.2.6) determines
amap of extensions

1 G (F) Dy r 1
u (B.2.7)
1 Gm(F) D r 1,
where the left vertical arrow isthe map = — x“. It is easy to see that the diagram
Wp Dy
Wg D,

commutes, where the horizontal maps are of type (B.2.5).

B.3. Now let K be any finite Galois extension of F' in F. Put s = [K : F].
Let Wy, denote the Weil group of K/F'. Recal that W is the subgroup of
Gal(K®/F) consisting of elements that induce on FU" an integral power of o
(here K® denotes the maximal abelian extension of K in F). Obviously Wi/ is
aquotient of Wy, and there is an exact sequence

1— K" = Wg/p— Gd(K/F) =1, (B.3.1)

inwhich we usethereciprocity isomorphismfor K toidentify K with asubgroup
of Gal(K®/K). We normalize the reciprocity isomorphism in the same way Serre
does [S2], so that Frobenius elementsin Gal(K® /K correspond to uniformizing
elementsin K*.

Pulling back the extension (B.3.1) along the canonical surjection

I' » Gal(K/F)
and then pushing it out along the canonical injection

G (K) = G (F),
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we get an extension Exp of I' by G (F). The surjection Ex/p — ' hasa
canonical section over the subgroup ' := Gal(F'/K) of I". We use this section
to topologize €/ in the same way that we topologized G in B.1. The induced
topology on the subgroup G, (#') of £ is discrete, and the induced topology
on the quotient group I is the Krull topology.

The extensions £k and D, are isomorphic (both correspond to % € Q/z
under the canonical isomorphism from H?(F, G,,) to Q/Z), and the isomorphism
between them is unique up to an inner automorphism of £k coming from an
element in G,, (F) (since H(F,G,,) istrivial). Using one of these isomorphisms

Ds ~ Ekyr, (B.3.2)
the map (B.2.5) gives us a section

Wr — Ekp (B.3.3)
of

Exp =T

over the subgroup Wy of ', and if we make a different choice of isomorphism
(B.3.2) the section (B.3.3) is replaced by a conjugate under some element of
G (F). Suppose that we make a different choice of uniformizing element .
Then the section (B.3.3) is multiplied by a 1-cocycle of W in G, (F) that is
cohomologousto one obtained by inflation from a 1-cocycle of (o) in the group of
unitsin F;. Note that the isomorphism (B.3.2) is an isomorphism of topological
groups and hence that the map (B.3.3) is continuous.
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