FUNZIONI: LIMITI E CONTINUITÀ

Giacomo Tommei

e-mail: giacomo.tommei@unipi.it

web: people.unipi.it/tommei

Punti di accumulazione

Definizione

Sia $A \subset \mathbb{R}$. Il numero reale x_0 è un punto di accumulazione di A, se ogni intorno completo di x_0 contiene almeno un elemento di A distinto da x_0 .

Si usa il termine *accumulazione* per intendere che i punti di A si addensano attorno a x_0 . Vista la definizione, **ogni punto di un intervallo è di accumulazione** per l'intervallo stesso.

Esempio

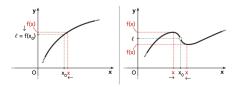
Consideriamo l'insieme

$$A = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$$

All'aumentare di n gli elementi di A si avvicinano sempre di più a 1. È possibile verificare che il punto 1 gode della seguente proprietà: comunque scegliamo un intorno completo di 1 (anche di raggio molto piccolo), questo contiene infiniti elementi di A. Quindi 1 è un punto di accumulazione di A. Nota che 1 non appartiene all'insieme A.

Limite finito di una funzione in un punto

Sia D un sottoinsieme di \mathbb{R} e consideriamo la funzione $f:D\to\mathbb{R}$, il cui grafico è rappresentato in figura. Nel primo caso a sinistra $x_0\in D$, mentre nel secondo a destra $x_0\notin D$, ma è di accumulazione per D.



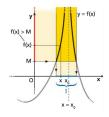
Come si vede dai grafici, più scegliamo x vicino a x_0 , più la sua immagine f(x) si avvicina ad un valore ℓ . Si scrive:

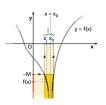
$$\lim_{x \to x_0} f(x) = \ell$$

Definizione

$$\lim_{x \to x_0} f(x) = \ell \quad \Leftrightarrow \quad \forall \epsilon > 0, \ \exists \delta > 0: \ |x - x_0| < \delta \Rightarrow |f(x) - \ell| < \epsilon$$

Limite infinito di una funzione in un punto





$$\lim_{x \to x_0} f(x) = \pm \infty$$

Definizione

$$\lim_{x \to x_0} f(x) = \pm \infty \quad \Leftrightarrow \quad \forall M > 0, \ \exists \delta > 0 : \ |x - x_0| < \delta \Rightarrow |f(x)| > M$$

Limite destro e sinistro di una funzione in un punto

• Il **limite destro** di una funzione viene indicato con il simbolo:

$$\lim_{x \to x_0^+} f(x)$$

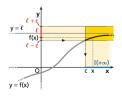
La definizione del limite destro è analoga a quella già data di limite, con la sola differenza che la disuguaglianza $|f(x) - \ell| < \epsilon$ deve essere verificata per ogni x appartenente a un intorno destro di x_0 , ossia a un intorno del tipo $(x_0, x_0 + \delta)$.

• Il **limite sinistro** di una funzione viene indicato con il simbolo:

$$\lim_{x \to x_0^-} f(x)$$

Anche per il limite sinistro valgono le stesse considerazioni fatte per il limite destro, con la sola differenza che $|f(x) - \ell| < \epsilon$ deve essere verificata per ogni x appartenente a un intorno sinistro di x_0 , ossia un intorno del tipo $(x_0 - \delta, x_0)$.

Limite finito di una funzione all'infinito

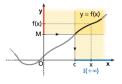


$$\lim_{x \to \pm \infty} f(x) = \ell$$

Definizione

$$\lim_{x \to \pm \infty} f(x) = \ell \quad \Leftrightarrow \quad \forall \epsilon > 0, \ \exists c > 0: \ |x| > c \Rightarrow |f(x) - \ell| < \epsilon$$

Limite infinito di una funzione all'infinito



$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

Definizione

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \quad \Leftrightarrow \quad \forall M > 0, \ \exists c > 0: \ |x| > c \Rightarrow |f(x)| > M$$

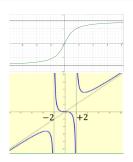
Asintoti

Definizione

Un asintoto di una funzione è una retta la cui distanza da un generico punto del grafico della funzione tende a zero quando l'ascissa o l'ordinata del punto tendono a ∞ .

Gli asintoti sono di 3 tipi:

- verticali, x = c;
- orizzontali, y = k;
- obliqui, y = m x + q.



Teoremi vari

Teorema

(Unicità del limite) Se una funzione ammette un limite, in un punto o all'infinito, questo limite è unico

Teorema

(Permanenza del segno) Quando il limite di una funzione in un punto $c \in \mathbb{R}$ è un numero ℓ diverso da zero, esiste un intorno di c in cui (escluso al più c) la funzione assume valori tutti dello stesso segno del limite.

TEOREMA

(Confronto) Se f(x), h(x), g(x) sono tre funzioni definite in uno stesso intorno H del punto c (escluso al più c), e risulta

- $f(x) \le h(x) \le g(x), \ \forall x \in H, \ x \ne c$
- $\bullet \lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \ell$

allora si ha

$$\lim_{x \to c} h(x) = \ell$$

Operazioni con i limiti

Se $x_0 \in \mathbb{R} \cup \{+\infty, -\infty\}$ valgono **quasi** sempre:

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} [c f(x)] = c \lim_{x \to x_0} f(x)$$

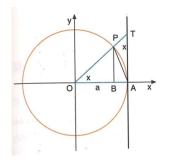
$$\lim_{x \to x_0} [f(x) g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \text{ se } \lim_{x \to x_0} g(x) \neq 0$$

 $quasi \rightarrow attenzione alle forme indeterminate$

$$+\infty - \infty$$
 $\pm \infty \cdot 0$ $\frac{\pm \infty}{\pm \infty}$

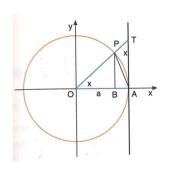
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$



La funzione $f(x) = \sin x/x$ non è definita per x=0. Calcoliamo il limite destro e consideriamo quindi $0 < x < \pi/2$. Riferendoci alla figura, dette \mathcal{A} , \mathcal{B} e \mathcal{C} le aree rispettivamente del triangolo OAP, del settore APO e del triangolo OAT si ha

$$A < B < C \tag{1}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$



$$\mathcal{A} = \frac{1}{2} \overline{OA} \overline{BP} = \frac{1}{2} \sin x$$
$$\mathcal{B} = \frac{1}{2} \overline{OA} \widehat{AP} = \frac{1}{2} x$$
$$\mathcal{A} = \frac{1}{2} \overline{OA} \overline{AT} = \frac{1}{2} \tan x$$

Da (1) si ha

$$\frac{1}{2}\sin x < x < \frac{1}{2}\tan x$$

Dividendo per $(1/2) \sin x$ (che è un numero positivo) si ottiene

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

equivalente a

$$1 > \frac{\sin x}{x} > \cos x$$

Ma per $x \to 0^+$ si ha che $\cos x \to 1$ quindi per il teorema del confronto si ha

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1$$

Ponendo x = -u si ha

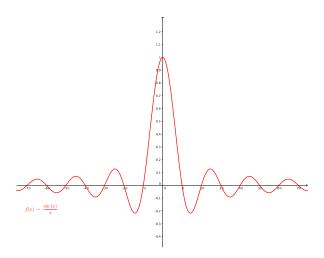
$$\lim_{x \to 0^-} \frac{\sin x}{x} = \lim_{u \to 0^+} \frac{\sin(-u)}{-u} = \lim_{u \to 0^+} \frac{-\sin u}{-u} = \lim_{u \to 0^+} \frac{\sin u}{u} = 1$$

Quindi

$$\lim_{x\to 0^+}\frac{\sin x}{x}=\lim_{x\to 0^-}\frac{\sin x}{x}=1$$

Attenzione: il limite notevole vale se x indica la misura dell'angolo in radianti.

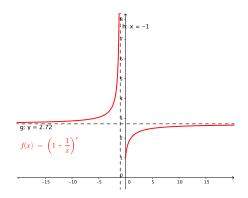
Funzione $f(x) = \sin(x)/x$



$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Numero di Neper (irrazionale, Eulero 1737)

 $e \simeq 2.718281828$

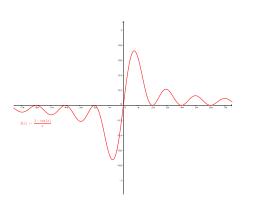


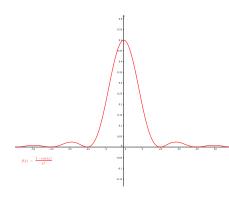
$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \qquad \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to \infty} \left(1 + \frac{\alpha}{x} \right)^x = e^{\alpha} \qquad \lim_{x \to 0} (1 + \alpha x)^{1/x} = e^{\alpha}$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \qquad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad a > 0$$

Grafici





Funzioni continue

Definizione

Una funzione $f: \mathbb{R} \to \mathbb{R}$ è continua in un punto non isolato x_0 del proprio campo di esistenza se

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$$

Ricordando la definizione di limite la definizione precedente è equivalente a

$$\forall \epsilon > 0 \; \exists \; \delta > 0 : \quad |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Definizione

Una funzione $f: I \to \mathbb{R}$ è continua in I se lo è in ogni punto di I.

Funzioni continue - Esempi e proprietà

- Le funzioni potenza, le funzioni polinomiali, le funzioni razionali, le funzioni trigonometriche, le funzioni esponenziali e le funzioni logaritmiche sono continue dove definite.
- La somma, la differenza, il prodotto e il rapporto (dove il denominatore non si annulla) di funzioni continue sono funzioni continue.
- La composizione di due funzioni continue è continua.
- L'inversa di una funzione continua reale di variabile reale definita su un intervallo, quando esiste, è continua.

Funzioni continue - Teoremi

Teorema

(Permanenza del segno) Sia f(x) una funzione definita in un intorno di x_0 e continua in x_0 . Se $f(x_0) > 0$ allora esiste un $\delta > 0$ tale che f(x) > 0 per ogni $x \in (x_0 - \delta, x_0 + \delta)$.

Teorema

(Esistenza degli zeri) Sia f(x) una funzione continua in un intervallo [a,b]. Se f(a) < 0 e f(b) > 0 (o viceversa) allora esiste un $x_0 \in (a,b)$ tale che $f(x_0) = 0$.

Teorema

(Esistenza dei valori intermedi) Una funzione continua in un intervallo [a,b] assume tutti i valori compresi tra f(a) e f(b).

Funzioni continue - Teoremi

TEOREMA

(Weierstrass) Sia f(x) una funzione continua in un intervallo chiuso e limitato [a,b]. Allora f(x) assume massimo e minimo in [a,b], cioè esistono $x_1, x_2 \in [a,b]$ tali che $f(x_1) \leq f(x_2)$ per ogni $x \in [a,b]$.

Teorema

(Esistenza dei valori intermedi riformulato) Una funzione continua in un intervallo [a,b] assume tutti i valori compresi tra il massimo e il minimo.