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1. Introduction

Let E be an elliptic curve over Q of conductor N and let K be an imaginary
quadratic field in which all primes dividing N split. The theory of complex mul-
tiplication and a modular parameterization X0(N) → E can be used to define a
point yK ∈ E(K), called a Heegner point. The precise point yK depends on some
choices, but it is well-defined up to sign and torsion, so that its canonical height
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ĥ(yK) is well-defined independent of any choices. If L(E/K, s) is the L-function of
E over K, one has L(E/K, 1) = 0 for trivial reasons, and Gross and Zagier proved
the spectacular formula

L′(E/K, 1) =

(
1√
D

∫
E(C)

ω ∧ iω

)
· ĥ(yK).

Here D is the discriminant of K/Q and ω is the differential on E coming from the
fixed modular parameterization. In particular, L′(E/K, 1) 6= 0 if and only if yK
has infinite order.

Motivated by their formula and the conjecture of Birch and Swinnerton-Dyer,
Gross and Zagier were led to the following conjecture (their conjecture is actually
somewhat more precise):
Conjecture (Gross–Zagier). Assume that yK has infinite order in E(K). Then
E(K) has rank one and the Shafarevich-Tate group X(E/K) has trivial p-primary
component for any odd prime p such that:

• E has good reduction at p;
• Gal(Q(E[p])/Q) ∼= GL2(Fp);
• yK /∈ pE(K).

In this paper we give Kolyvagin’s proof of this conjecture. The key idea is that
the Heegner point yK does not come alone: it lies at the bottom of a certain
family of points of E defined over anti-cyclotomic extensions of K. These points
satisfy relations which make them an Euler system. This allows one to use them
and techniques from Galois cohomology to bound the Selmer group Sel(K,E[p])
(and thus to obtain information on E(K)/pE(K) and X(E/K)[p]) for appropriate
primes p.

This paper could not exist without the magnificent paper [6]. In particular,
Sections 5 and 6 of this paper follow the corresponding sections of [6] very closely.
We deviate from Gross in our treatment of the Galois cohomology. Our exposition
is intended to relate somewhat more directly to the more recent theories of Euler
systems developed by Rubin, Kato and Perrin-Riou.

We present this Galois cohomology in Sections 2 and 3. We first define Selmer
groups and recall the relevant duality results. Our treatment of Euler systems is
based on the exact sequence (7) which divides the computation of a Selmer group
into two parts. The first part is the computation of a certain restricted Selmer
group. This can be done quite generally, and we present these results without
reference to elliptic curves. The second part is the production of an Euler system.
We give no general theory for this; we only explain it in the case of elliptic curves
in Sections 6.

Section 4 contains the details of the proof of Kolyvagin’s theorem; it assumes
the existence of the cohomology classes constructed via the Euler system in Section
6. Section 4 is mostly a straightforward application of the results of Section 3; we
try to emphasize that this part of the proof consists entirely in fairly routine Galois
cohomology calculations.

We introduce Heegner points and their basic properties in Section 5. In Section
6 we explain how to use these properties to prove the results needed in Section 4.

It is our hope that this paper can serve as an introduction to Euler systems for a
graduate student with some knowledge of Galois cohomology and the arithmetic of
elliptic curves. Although Heegner points do not fit into most of the general theories
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of Euler systems, we regard it is an especially interesting and striking example of
the fundamental ideas involved.

This paper grew out of one of the student projects at the 2001 Arizona Winter
School. In the process of helping my student group to prepare their presentation on
[6], it became clear to me that the Galois cohomology in Gross’ argument could be
simplified in several ways. This paper is my attempt to demonstrate that. Although
it may seem strange that the allegedly simpler proof given here is somewhat longer
than that given in [6], I believe that much of the extra bulk comes from the general
treatment of the Galois cohomology and some elaboration on points Gross treats
very quickly. (See [4] and [13] for another example of an intended simplification by
this author which ended up being far longer than the original, especially considering
that all of the hard parts were omitted.)

My Winter School student group consisted of Kirsten Eisentraeger, Chris Hall,
Ling Long, Satya Mohit, Jorge Pineiro, Marat Sadykov and Michael Schein. I would
like to express my sincere gratitude to each of them for preparing and giving an
outstanding presentation of these ideas; I would also like to thank them for helping
me to understand this proof far better than I ever had before. I hope that skipping
the Desert Museum seemed at least a little worthwhile in the end. Robert Pollack
provided invaluable insight throughout the project, and Mark Dickinson helped me
work out some of the details in this write-up. The calculations presented in Section
7 were done by Kirsten Eisentraeger and Peter Green; William Stein helped with
some of them as well. I would also like to thank the organizers of the Winter School
for giving all of us this opportunity. Lastly, I would like to thank Barry Mazur for
inviting me to share in his lectures at the Winter School and for all of the help and
inspiration he provided. If nothing else, I hope that this paper can at least serve
as the long-awaited conclusion to [7].

Notation. If H is an abelian group with pH = 0, we write H∨ for its Pontrjagin
dual HomFp(H,Fp). If H is an arbitrary abelian group, we write H[p] for the
p-torsion in H.

If K is a perfect field we will write GK for the absolute Galois group Gal(K̄/K).
If L is an extension of K and T is a Gal(L/K)-module, we write Hi(L/K, T ) for the
group cohomology Hi(Gal(L/K), T ); if L = K̄ we will just write this as Hi(K,T ).
(All Galois modules we consider will be discrete so that there is no need to worry
about topologies.) If T is a p-torsion GK-module for some prime p, we write T ∗ for
its Cartier dual HomFp(T, µp) (where µp denotes the GK-module of the pth roots
of unity) endowed with the adjoint Galois action. We write K(T ) for the fixed field
of the kernel of the homomorphism GK → Aut(T ).

We will identify non-archimedean places of number fields with prime ideals; we
will usually use places when working abstractly and ideals when working somewhat
more concretely. We will tend to ignore archimedean places; this will not be a
problem since we almost always have p 6= 2.

We will have frequent use for the following construction: let M/L and L/K
be Galois extensions and assume that Gal(M/L) is abelian. There is a natural
action of Gal(L/K) on Gal(M/L) defined as follows: given τ ∈ Gal(L/K) and
σ ∈ Gal(M/L), let τ̃ be any lift of τ to Gal(M/K). Then the action of τ on σ
is given by τσ = τ̃στ̃−1. (The fact that Gal(M/L) is abelian implies that this is
independent of the choice of τ̃ .) The action of Gal(L/K) on Gal(M/L) is trivial
precisely when M is an abelian extension of K.
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We will often be working with eigenspaces for involutions, and we make the
following sign convention: whenever ± appears in a formula, it is to be regarded
as a fixed choice of sign, and every other ± in that formula should agree with this
choice; a ∓ indicates the opposite of this initial choice.

2. Local cohomology groups

2.1. Basic facts. Fix a prime l and let K be a finite extension of Ql. Let Kur

denote the maximal unramified extension of K; we write IK for the inertia group
Gal(K̄/Kur) and Gur

K for GK/IK ∼= Gal(Kur/K). Let T be a finite dimensional
Fp-vector space with a discrete action of GK . We say that T is unramified if IK
acts trivially on T .

We will need the following facts about the Galois cohomology group H1(K,T ).
Inflation-restriction: There is an exact sequence [10, Chapter 7, Section 6]

(1) 0→ H1(Kur/K, T IK ) inf−→ H1(K,T ) res−→ H1(IK , T )G
ur
K → 0.

(We will always use inflation to regard H1(Kur/K, T IK ) as a subspace of
H1(K,T ).)

Tate local duality: There is a perfect pairing of Fp-vector spaces [8, Chap-
ter I, Corollary 2.3]

(2) H1(K,T )⊗Fp H
1(K,T ∗)→ Fp.

Unramified duality: If l 6= p and T is unramified, then H1(Kur/K, T ) and
H1(Kur/K, T ∗) are exact orthogonal complements under (2) [8, Chapter I,
Theorem 2.6].

2.2. Local Selmer structures. By a local Selmer structure F (sometimes called a
finite/singular structure) for T we simply mean a choice of Fp-subspace H1

f,F (K,T )
of H1(K,T ). We define the singular quotient H1

s,F (K,T ) as H1(K,T )/H1
f,F (K,T ),

so that there is an exact sequence

(3) 0→ H1
f,F (K,T )→ H1(K,T )→ H1

s,F (K,T )→ 0.

For c ∈ H1(K,T ) we write cs for the image of c in H1
s,F (K,T ).

We say that F is the unramified structure if H1
f,F (K,T ) = H1(Kur/K, T IK ). In

this case the sequence (3) identifies with the sequence (1).
Given a local Selmer structure F on T , we define the Cartier dual local Selmer

structure F∗ on T ∗ by letting H1
f,F∗(K,T ) be the exact orthogonal complement of

H1
f,F (K,T ) under the Tate pairing (2). In particular, there is an induced perfect

pairing

(4) H1
s,F (K,T )⊗Fp H

1
f,F (K,T ∗)→ Fp.

Note that if T is unramified, F is the unramified structure and l 6= p, then T ∗ is
unramified and F∗ is the unramified structure.

2.3. Local cohomology of elliptic curves. Let E be an elliptic curve over the
local field K. We will be studying the GK-module E[p] = E(K̄)[p]; it is a two-
dimensional Fp-vector space. Recall that the Weil pairing on E[p] is a perfect
Galois equivariant pairing

E[p]⊗Fp E[p]→ µp;
see [11, Chapter 3, Section 8] It follows that E[p]∗ is canonically isomorphic to E[p].
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We have an exact sequence

0→ E[p]→ E(K̄)
p−→ E(K̄)→ 0

of GK-modules. The associated long exact sequence in GK-cohomology yields a
short exact sequence

0→ E(K)/pE(K) κ−→ H1(K,E[p])→ H1(K,E)[p]→ 0;

here by H1(K,E) we mean H1
(
K,E(K̄)

)
. The Kummer map is given explicitly as

follows: for P ∈ E(K), fix Q ∈ E(K̄) such that pQ = P . Then the cocycle κ(P )
sends σ ∈ GK to σ(Q) − Q ∈ E[p]. (One checks that changing the choice of Q
changes this cocycle by a coboundary.)

We define the geometric local Selmer structure F on E[p] by setting

Hf,F (K,E[p]) = imκ.

We will need the following two facts (see [1, Chapter 1]):
Duality: The Cartier dual of the geometric structure is the geometric struc-

ture. (This makes sense since E[p]∗ ∼= E[p].)
Compatibility: If E has good reduction over K and l 6= p, then E[p] is

an unramified E[p]-module and the geometric structure agrees with the
unramified structure.

3. Global cohomology groups

3.1. Selmer groups. Let K be a number field. For a place v of K we write Kv

for the completion of K at v; we write Gv and Iv for the absolute Galois group and
inertia group of Kv, respectively. We also write Fv for the residue field of OKv . We
fix an embedding K̄ ↪→ K̄v for every v; this yields a restriction map Gv ↪→ GK .

Let T be a finite-dimensional Fp-vector space with a discrete action of GK . For
any place v we regard T as a Gv-module via the injection Gv ↪→ GK ; we say that T
is unramified at v if it is unramified as a Gv-module. Since T is finite and discrete
one checks easily that it is unramified at almost all places v. Note that for any
place v we have a restriction map

resv : H1(K,T )→ H1(Kv, T )
c 7→ cv

which is in fact independent of the choice of embedding Gv ↪→ GK .
We define a global Selmer structure F on T to be a choice of local Selmer struc-

tures for every place of K; we further require these structures to be unramified at
almost all places. Thus a global Selmer structure F on T is a choice of Fp-subspace

H1
f,F (Kv, T ) ⊆ H1(Kv, T )

for every place of v, such that

H1
f,F (Kv, T ) = H1(Kur

v /Kv, T
Iv )

for almost all v.
We define the Selmer group SelF (K,T ) to be the set of all c ∈ H1(K,T ) such

that cv lies in H1
f,F (Kv, T ) for every place v of T . That is,

SelF (K,T ) = ker
(
H1(K,T )→ ⊕

v
H1
s,F (Kv, T )

)
.



6 TOM WESTON

3.2. Global cohomology of elliptic curves. Let E be an elliptic curve over K.
Since the coordinates of the p-torsion points E[p] generate a finite extension of K,
the Galois module E[p] is discrete; in particular, it is unramified almost everywhere.
(In fact, by our local discussion we know that E[p] is unramified at all places of
good reduction which do not divide p.) We define the geometric global Selmer
structure F on E[p] by letting it agree with the geometric local Selmer structure at
every place of K. By our local discussion we know that this really will be a Selmer
structure (since it it is the unramified structure at all places of good reduction not
dividing p). We also know that the geometric structure is self-dual under the Weil
pairing identification E[p]∗ ∼= E[p].

We claim that the Selmer group SelF (K,E[p]) agrees with the usual p-torsion
Selmer group Sel(K,E[p]) (see [11, Chapter 10, Section 4]) of E sitting in an exact
sequence

(5) 0→ E(K)/pE(K)→ Sel(K,E[p])→X(K,E)[p]→ 0

with
X(K,E) = ker

(
H1(K,E)→

∏
v
H1(Kv, E)

)
.

Indeed, the classical Sel(K,E[p]) is defined to be the subspace of H1(K,E[p]) of
classes whose restriction to H1(Kv, E[p]) lie in the image of the local Kummer map
κv for every v. This is precisely our definition of SelF (K,E[p]).

3.3. Global duality. Fix a GK-module T as in Section 3.1 and a global Selmer
structure F on T ; this induces a Cartier dual Selmer structure F∗ on T ∗. We will
omit these structures from our notation for the remainder of the section.

For any ideal a of the ring of integers OK , we define groups

Sela(K,T ) = {c ∈ H1(K,T ) | cv ∈ H1
f,F (Kv, T ) for all v - a};

Sela(K,T ∗) = {c ∈ H1(K,T ∗) | cv ∈ H1
f,F (Kv, T

∗) for all v and cv = 0 for v|a}.
From these definitions we have exact sequences

0→ Sel(K,T )→ Sela(K,T )→ ⊕
v|a
H1
s (Kv, T )

0→ Sela(K,T ∗)→ Sel(K,T ∗)→ ⊕
v|a
H1
f (Kv, T

∗).

The dualities (2) induce a duality between

⊕
v|a
H1
s (Kv, T ) and ⊕

v|a
H1
f (Kv, T

∗).

Combining these facts, we obtain a sequence

(6) 0→ Sel(K,T )→ Sela(K,T )→ ⊕
v|a
H1
s (Kv, T )

→ Sel(K,T ∗)∨ → Sela(K,T ∗)∨ → 0

which is obviously exact except possibly in the middle.
Proposition 3.1. The sequence (6) is exact.

Proof. A proof is given in [8, Chapter 1, Theorem 4.10]; see also [9, Theorem
1.7.3]. �
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It follows that for any ideal a we have a short exact sequence

(7) 0→
(
⊕
v|a
H1
s (Kv, T )

)
/ im Sela(K,T )→ Sel(K,T ∗)∨ → Sela(K,T ∗)∨ → 0.

In particular, if we can choose a so that we can compute both of the flanking terms,
we will immediately determine Sel(K,T ∗). In the next section we will show that for
appropriate a it is easy to obtain a bound on Sela(K,T ∗); this part of the argument
only depends on the coarse structure of T . The difficult part is to exhibit elements
in Sela(K,T ) so as to bound the cokernel of the map

Sela(K,T )→ ⊕
v|a
H1
s (Kv, T ).

This is accomplished, in a few special cases, via Euler systems.

3.4. Bounds on restricted Selmer groups I. We will prove the result we actu-
ally need for our applications to elliptic curves in the next section. In this section
we present a less cluttered version which is often useful.

We now assume that p is an odd prime. Let L/K be a finite extension of number
fields and let T be a finite-dimensional Fp-vector space with an action of Gal(L/K).
(Of course, we can also regard T as a discrete GK-module.) We assume that T is
irreducible as a Gal(L/K)-module; that is, T has no proper subspaces which are
stable under the action of Gal(L/K). We wish to exhibit ideals a for which we can
bound Sela(K,T ) in terms of L. (The T of this section corresponds to the T ∗ of the
previous section.) In fact, we will use nothing special about the subspace Sel(K,T )
of H1(K,T ), so we proceed in somewhat more generality.

Suppose that τ ∈ Gal(L/K) is an involution; that is, τ2 = 1. Associated to τ
we have a decomposition T = T+ ⊕ T− where

T ε = {t ∈ T | τt = εt}

for ε ∈ {±}. We say that τ is non-scalar if both T+ and T− are non-zero.
Let S be a finite-dimensional Fp-subspace of H1(K,T ). If a is an ideal of OK ,

we write
Sa = {s ∈ S | sv = 0 in H1(Kv, T ) for all v|a}.

Since S is finite we can choose a finite Galois extension M of L such that S lies in
the image of H1(M/K,T ) under inflation. We fix such an M and we assume that
τ extends to an involution in Gal(M/K) which we still write as τ . Let {γ1, . . . , γr}
be a set of generators of Gal(M/L).
Proposition 3.2. With notation as above, let w1, . . . , wr be places of M such that
FrobM/K wi = τγi. Let vi denote the restriction of wi to K and set a = v1 · · · vr.
Then Sa lies in the image of H1(L/K, T ) under inflation.

The power of this result lies in the fact that in practice H1(L/K, T ) is generally
easily computable if L is chosen appropriately. For example, let E be an elliptic
curve over Q and set T = E[p]. Take τ to be (a choice of) complex conjugation;
since p 6= 2 it follows from the existence of the Weil pairing that τ is non-scalar
on E[p]. Set S = Sel(Q, E[p]); it is finite by the weak Mordell-Weil theorem. Let
L = Q(E[p]). If Gal(L/Q) is isomorphic to GL2(Fp) (which is true for almost all
primes p so long as E does not have complex multiplication), we will see later that
H1(L/Q, E[p]) = 0. Thus in this case the proposition says that for appropriately
chosen ideals a of Z, we have Sela(Q, E[p]) = 0.
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Proof. We begin with the inflation-restriction exact sequence

0→ H1(L/K, T )→ H1(M/K,T )→ H1(M/L, T )Gal(L/K).

Since S ⊆ H1(M/K,T ), to prove the proposition we must show that the image
s̃ ∈ H1(M/L, T ) of any s ∈ Sa is zero.

Fix an s ∈ Sa. Since Gal(M/L) acts trivially on T , we have H1(M/L, T ) =
Hom(Gal(M/L), T ). We may therefore regard s̃ as a homomorphism Gal(M/L)→
T . In this language, Gal(L/K)-invariance translates to Gal(L/K)-equivariance of
s̃ for the conjugation action on Gal(M/L) and the usual action on T .

Fix one of the places w = wi of M corresponding to γ = γi as in the statement
of the proposition; that is, FrobM/K w = τγ. We will also write w for the induced
place of L and v for the induced place of K. We have

FrobL/K w = FrobM/K w|L = τ,

which has order 2. Thus

FrobM/L w = (FrobM/K w)2 = (τγ)2.

Since s ∈ Sa, we know that the restriction of s toH1(Mw/Kv, T ) is a coboundary.
Thus the homomorphism s̃|Gal(Mw/Lw) is zero. In particular, s̃(FrobM/L w) = 0;
that is,

(8) s̃(τγτγ) = 0.

Since τ is an involution, τγτ is nothing other than τγ. We can thus rewrite (8) as
s̃(τγ) = −s̃(γ). Since s̃ is Gal(L/K)-equivariant, this means that τ s̃(γ) = −s̃(γ).
We conclude that s̃(γ) lies in the eigenspace T− for the action of τ on T .

Since the γi generate Gal(M/L), by applying the above argument to each of
γ1, . . . , γr we see that the Fp-span of the image of s̃ : Gal(M/L) → T lies in T−.
Let us write this span as W . Since s̃ is Gal(L/K)-equivariant and Gal(M/L) is
stable under the conjugation action of Gal(L/K), W is stable under the action of
Gal(L/K).

We have now shown that W is Gal(L/K)-stable and lies in T−. However, since
τ is non-scalar by hypothesis, we have T− 6= T ; thus W 6= T . T is irreducible as a
Gal(L/K)-module, so this implies that W = 0. Thus s̃ = 0, as desired. �

3.5. Bounds on restricted Selmer groups II. As in the previous section, let
T be an irreducible Fp[Gal(L/K)]-module and let S be a finite-dimensional sub-
space of H1(M/K,T ) for some finite Galois extension M of L. We introduce an
intermediate field L0 of the extension L/K, Galois over K, and we assume that
the action of Gal(L/K) on T factors through Gal(L0/K). We also assume that K
is a quadratic extension of a field K0 and that the Gal(L0/K)-action on T is the
restriction of a Gal(L0/K0)-action.

We now let τ denote an involution of Gal(M/K0) which projects to the non-
trivial element of Gal(K/K0). (In particular, τ /∈ Gal(M/K).) As before we have a
decomposition T = T+⊕T− and we assume that both of these factors are non-zero.
Note that τ also acts on H1(M/K,T ) (via conjugation on Gal(M/K) and the usual
action on T ) and we have a decomposition

H1(M/K,T ) = H1(M/K,T )+ ⊕H1(M/K,T )−.

We assume that S ⊆ H1(M/K,T )ε for some ε ∈ {±}.
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Finally, let σ be an element of Gal(M/L0) such that τστ−1 = σ−1. As before
we let {γ1, . . . , γr} be a set of generators of Gal(M/L).
Proposition 3.3. With notation as above, let w1, . . . , wr be places of M such that
FrobM/K0 wi = τσγi. Let vi denote the restriction of wi to K and set a = v1 · · · vr.
Then Sa lies in the image of H1(L/K, T )ε.

The Tchebatorev density theorem guarantees the existence of an infinite number
of choices for each of the wi above. In particular, we obtain the following corollary.
Corollary 3.4. There is an ideal a of K, divisible only by primes λ lying over
primes λ0 of K0 with Frobenius conjugate to τσ on L, such that Sa ⊆ H1(L/K, T )ε.

In our applications to an elliptic curve E over Q, we will take K0 = Q and K will
be an appropriate imaginary quadratic field. T will be the p-torsion representation
E[p], τ will be a complex conjugation and S will be Sel(K,E[p])ε for some ε. We
will take L0 to be the field K(E[p]) or an extension of it of degree p2; in either case,
L will be a certain extension of L0 of degree p2. We will need the extra flexibility
provided by taking σ to be non-trivial to insure that the Euler system part of our
argument succeeds.

Proof. Since S = Sε, it suffices to show that Sa lies in the inflation of H1(L/K, T ).
As before, by the inflation-restriction sequence we must show that for any s ∈ Sa

the induced Gal(L/K)-homomorphism s̃ : Gal(M/L) → T is zero. Note also that
s̃ extends to a homomorphism Gal(M/L0)→ T .

Fix one of the places w = wi of M corresponding to γ = γi. We will also write w
for the induced places of L and L0 and v for the induced places of K and K0. Note
that v is inert in K/K0 and splits completely in L0/K. Since FrobM/K0 w = τσγ

and K/K0 is quadratic, we thus have FrobM/L0 w = (τσγ)2. Since τ is an involution
we have

(τσγ)2 = τσττγτσγ = τσ · τγ · σ · γ.
Since τσ = σ−1, we conclude that

(9) FrobM/L0 w = σ−1 · τγ · σ · γ.

As before, since s ∈ Sa we must have s̃(FrobM/L0 w) = 0. Since s̃ is a homomor-
phism on Gal(M/L0), (9) now implies that

s̃(σ−1) + s̃(τγ) + s̃(σ) + s̃(γ) = 0.

Since s̃(σ−1) = −s̃(σ), this implies that

(10) s̃(τγ) = −s̃(γ).

s̃ need not be equivariant for the action of τ since τ /∈ Gal(L/K). However, since
s ∈ H1(M/K,T )ε, we do have

s̃(τγ) = ετ s̃(γ)

by the definition of the τ -action on H1(L/K, T ). Combining this with (10) we see
that s̃(γ) lies in T−ε.

Let W ⊆ T be the Fp-span of s̃(Gal(M/L)); it is Gal(L/K)-stable since s̃ is
Gal(L/K)-equivariant. By the above argument applied to each of γ1, . . . , γr we see
that W ⊆ T−ε. But we are assuming both that T is irreducible and that T−ε 6= T .
Thus W must be zero, and s̃ = 0, as desired. �
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4. Galois cohomology calculations

4.1. Statements. Let E be an elliptic curve over Q of conductor N and let ε be
the negative of the sign of the functional equation of E over Q. We fix a modular
parameterization X0(N) → E and we let K be an imaginary quadratic field in
which every prime dividing N splits. In the next section we will construct a point
yK in E(K) which is mapped to ε · yK (up to torsion) under complex conjugation.
(If E(K) has no p-torsion, then this implies that yK ∈

(
E(K)/pE(K)

)ε.) The
main result of this paper is the following.
Theorem 4.1. Let p be an odd prime such that:

• E has good reduction at p;
• Gal(Q(E[p])/Q) ∼= GL2(Fp);
• yK /∈ pE(K).

Then Sel(K,E[p]) has order p and is generated by the image of yK under the Kum-
mer map.

By Lemma 6.3 below, the second condition implies that Gal(K(E[p])/K) ∼=
GL2(Fp) as well. In particular, E has no K-rational p-torsion.

Note that if E does not have complex multiplication and if yK has infinite order,
then the conditions of the theorem hold for almost all p (while if yK is torsion,
then the conditions of the theorem never hold). In particular, by (5) we have the
following corollary.
Corollary 4.2. Assume that E does not have complex mulitplication. If yK has
infinite order, then E(K) has rank one and X(E/K) has trivial p-primary part for
all p satisfying the conditions of the theorem.

In this section we will use Corollary 3.4 to reduce the proof of the theorem to the
construction of certain classes in H1(K,E[p]). Before we can apply Corollary 3.4,
however, we must compute the relevant Galois cohomology groups.

4.2. Preliminaries. The proof proceeds differently for the different eigenspaces of
Sel(K,E[p]) under complex conjugation. Fix a complex conjugation τ ∈ GQ and a
prime p as in the theorem. We begin with the following fundamental fact.
Lemma 4.3. dimFp E[p]± = 1.

Proof. Recall that the Weil pairing is a Galois equivariant perfect pairing E[p] ⊗
E[p] → µp. Since τ acts on µp as inversion, the Galois equivariance implies that
the Weil pairing yields a perfect pairing E[p]+ ⊗E[p]− → µp. Since at least one of
E[p]± is non-zero, the result follows. �

The maps of (6) respect the action of complex conjugation; we therefore obtain
exact sequences
(11)

Sela(K,E[p])± → ⊕
v|a
H1
s (Kv, E[p])± → Sel(K,E[p])±∨ → Sela(K,E[p])±∨ → 0.

We will prove the theorem by choosing a in such a way that we can compute all of
the terms above.

Let l be a prime of Q which is inert in K; set λ = lOK . Then τ yields the
non-trivial element of Gal(Kλ/Ql), so that we can define a conjugation action of
τ on Gλ = Gal(K̄λ/Kλ) and thus on H1(Kλ, E[p]). Furthermore, the action of τ
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respects H1
f (Kλ, E[p]) (as always we are using the geometric Selmer structure for

E[p]) so that that the eigenspaces H1
s (Kλ, E[p])± are defined.

Lemma 4.4. Let l be a prime of Q such that:
• E has good reduction at l;
• l 6= p;
• FrobK(E[p])/Q l is conjugate to τ .

Then H1
s (Kλ, E[p])± is a one-dimensional Fp-vector space.

Proof. Note that l as above is inert in K/Q and splits completely in K(E[p])/K. In
particular, E[p] ⊆ E(Kλ); it follows by the Weil pairing that µp ⊆ K×λ . Since the
geometric structure at l agrees with the unramified structure and E[p] is unramified
at λ, we have

H1
s (Kλ, E[p]) ∼= H1(Iλ, E[p])G

ur
λ ∼= Hom(Iλ, E[p])G

ur
λ .

By the basic Galois theory of local fields [5, Section 8]

Iλ/pIλ ∼= Gal(Kur
λ (l1/p)/Kur

λ ) ∼= µp

as Gur
λ -modules. Since Gur

λ acts trivially on E[p] and µp (both are defined over Kλ)
we conclude that

H1
s (Kλ, E[p]) ∼= Hom(µp, E[p]).

This isomorphism respects the action of τ ; since τ acts on µp as inversion, we find
that

H1
s (Kλ, E[p])± ∼= E[p]∓.

Lemma 4.3 now completes the proof. �

4.3. The −ε-eigenspace. We now prepare to apply Corollary 3.4. Fix z ∈ E(K̄)
with pz = yK . Set K0 = Q, L0 = K(E[p]) and L = L0(z). By Lemma 4.3, τ is
non-scalar on E[p]. Let κ : E(K)/pE(K) → H1(K,E[p]) be the Kummer map.
Note that κ(yK) is non-zero (since κ is injective and yK /∈ pE(K) by assumption)
and lies in H1(L/K,E[p]). Our first task is to compute the group H1(L/K,E[p]);
this is done in the next three lemmas.
Lemma 4.5. Hi(L0/K,E[p]) = 0 for all i.

Proof. Since Gal(L0/K) ∼= GL2(Fp), the cohomology groups we must calculate are
simply Hi

(
GL2(Fp),F2

p

)
with the natural action of GL2(Fp) on F2

p. Let Z = F×p
be the normal subgroup of GL2(Fp) of scalars; there is a spectral sequence

(12) Hp
(
PGL2(Fp),Hq(Z,F2

p)
)
⇒ Hp+q

(
GL2(Fp),F2

p

)
.

Since Z has order p − 1, Hq(Z,F2
p) = 0 for q > 0; since p 6= 2, one computes that

H0(Z,F2
p) = 0 as well. The desired vanishing now follows from (12). �

Lemma 4.6. Gal(L/L0) is isomorphic to E[p] as a Gal(L0/K)-module. This iso-
morphism may not respect the action of τ , but one does have dimFp Gal(L/L0)± =
1.

Proof. The cocycle κ(yK) : GK → E[p] is given by σ 7→ σ(z) − z. Thus if we
let c : GL0 → E[p] be the Gal(L0/K)-equivariant restriction of κ(yK) to GL0 , the
field L is precisely the kernel of c. To prove the first statement we must show that
c is surjective; the second statement then follows from the fact that κ(yK) is an
eigenvector for τ .
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It follows from Lemma 4.5 that restriction yields an isomorphism

H1(K,E[p]) ∼= Hom(GL0 , E[p])Gal(L0/K).

Since yK /∈ pE(K) we have κ(yK) 6= 0; by the above isomorphism, the homomor-
phism c is non-zero as well. Since it is Gal(L0/K)-equivariant and Gal(L0/K) acts
transitively on E[p], the surjectivity follows. �

Lemma 4.7. H1(L/K,E[p]) ∼= Fp · κ(yK).

Proof. Lemma 4.5 and the inflation-restriction sequence for the tower L/L0/K yield
an isomorphism

(13) H1(L/K,E[p]) ∼= H1(L/L0, E[p])Gal(L0/K).

Gal(L/L0) acts trivially on E[p], so by Lemma 4.6 (13) is just the Gal(L0/K)-
invariants of Hom(E[p], E[p]). Since Gal(L0/K) ∼= GL2(Fp), one computes directly
that these invariants consist precisely of the one-dimensional space of scalars in
Hom(E[p], E[p]). Thus H1(L/K,E[p]) has dimension one as an Fp-vector space.
Since κ(yK) is a non-zero element of H1(L/K,E[p]), this completes the proof. �

We will give the proof of the next proposition in Section 6.
Proposition 4.8. Assume that yK /∈ pE(K). Let l be a prime of Q which has
FrobL0/Q l conjugate to complex conjugation and which does not split completely in
L/L0; set λ = lOK . Then there exists a cohomology class c(l) ∈ Selλ(K,E[p])−ε

with c(l)sλ 6= 0 in H1
s (Kλ, E[p]).

We can now give the proof of the following portion of the main theorem.
Theorem 4.9. Sel(K,E[p])−ε = 0.

Proof. By Lemma 4.6 we can choose a nontrivial σ ∈ Gal(L/L0)−; thus τστ−1 =
σ−1. We may now apply Corollary 3.4 with S = Sel(K,E[p])−ε. (Note that E[p]
is irreducible as a Gal(L0/K)-module since Gal(L0/K) ∼= GL2(Fp).) We conclude
that there exist primes l1, . . . , lr of Q with FrobL/Q li conjugate to τσ and such
that

Sela(K,E[p])−ε ⊆ H1(L/K,E[p])−ε;

here a = λ1 · · ·λr with λi = liOK . By Lemma 4.7 we know that H1(L/K,E[p]) has
dimension one, with generator κ(yK). Since κ commutes with complex conjugation
and yK ∈

(
E(K)/pE(K)

)ε, we have κ(yK) ∈ H1(L/K,E[p])ε. Thus

Sela(K,E[p])−ε = H1(L/K,E[p])−ε = 0.

This takes care of one of the terms in (11).
By Lemma 4.4, the vector space

V = ⊕ri=1H
1
s (Kλi , E[p])−ε

has dimension r. Since FrobL/Q li is conjugate to τσ and σ 6= 1, the primes
li satisfy the conditions of Proposition 4.8. This yields classes c(l1), . . . , c(lr) ∈
Sela(K,E[p])−ε. Since the image of c(li) in V is supported precisely in the one-
dimensional space H1

s (Kλ, E[p])−ε, the images of c(l1), . . . , c(lr) in V are linearly
independent. Therefore they span V . Thus the map Sela(K,E[p])−ε → V is sur-
jective; applying (11) completes the proof. �
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4.4. The ε-eigenspace. We now consider Sel(K,E[p])ε; the proof here is compli-
cated somewhat by the fact that Sel(K,E[p])ε is visibly non-trivial as it contains
κ(yK).

We continue with the notation of the previous section. We begin by choosing
an auxiliary prime q as in Proposition 4.8; the role it plays will only become clear
in Section 6. This yields a class c(q) ∈ Selq(K,E[p])−ε with c(q)sq 6= 0, (where q

is the prime of K above q). Note that κ(yK) and c(q) are linearly independent
in H1(K,E[p]) since κ(yK)sq = 0. Let L′ be the fixed field of the kernel of the
homomorphism GL → E[p] obtained by restricting c(q); L′ is the smallest extension
of L such that c(q) ∈ H1(L′/K,E[p]).
Lemma 4.10. Gal(L′/L) is isomorphic to E[p] as a Gal(L/K)-module. Further-
more, we have dimFp Gal(L′/L)± = 1.

Proof. Since c(q) is linearly independent from κ(yK), it follows from inflation-
restriction and Lemma 4.7 that the restriction of c(q) to GL is non-zero. From
here the proof proceeds as in Lemma 4.6; we omit the details. �

Lemma 4.11. H1(L′/K,E[p]) ∼= Fp · κ(yK)⊕ Fp · c(q).

Proof. The proof of this is quite similar to the proof of Lemma 4.7. One first shows
via inflation-restriction for the tower L′/L/K that H1(L′/K,E[p]) has dimension
2 over Fp. The elements κ(yK) and c(q) are linearly independent, so they must be
a basis. �

We give the proof of the next proposition in Section 6. It will require the use of
Theorem 4.9.
Proposition 4.12. Assume that yK /∈ pE(K). Let l be a prime of Q which has
FrobL/Q l conjugate to complex conjugation and which does not split completely in
L′/L; set λ = lOK . Then there exists a cohomology class c(ql) ∈ Selλ(K,E[p])ε

with c(ql)sλ 6= 0 in H1
s (Kλ, E[p]).

We can now complete the proof of the main theorem.
Theorem 4.13. Sel(K,E[p])ε = Fp · κ(yK).

Proof. By Lemma 4.10 we can choose a nontrivial σ ∈ Gal(L′/L)−. We now apply
Corollary 3.4 with S = Sel(K,E[p])ε and the tower of fields L′/L/K/Q. We con-
clude that there exist primes l1, . . . , lr of Q such that FrobL′/Q li is conjugate to
τσ and such that

Sela(K,E[p])ε ⊆ H1(L′/K,E[p])ε;
here a = λ1 · · ·λr with λi = liOK .

By Lemma 4.11 we know that H1(L′/K,E[p]) has dimension two, with basis
κ(yK) and c(q). However, c(q) lies in the −ε-eigenspace, so we conclude that
Sela(K,E[p])ε has dimension at most one.

As before,
V = ⊕ri=1H

1
s (Kλi , E[p])ε

has dimension r. Proposition 4.12 implies that we have r elements

c(ql1), . . . , c(qlr) ∈ Sela(K,E[p])ε

whose images span V . Thus the map Sela(K,E[p])ε → V is surjective.
We conclude by (11) that

Sel(K,E[p])ε ∼= Sela(K,E[p])ε
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and that these are Fp-vector spaces of dimension at most one. Since κ(yK) is a
non-zero element of Sel(K,E[p])ε, the theorem follows. �

It is perhaps worth noting that we can also prove Theorem 4.13 with the ideal
aq = λ1 · · ·λrq; one then has Selaq(K,E[p])ε = 0, but now the cokernel of

Selaq(K,E[p])ε → ⊕
v|aq

H1
s (Kλ, E[p])ε

has dimension 1.
It remains, then, to prove Propositions 4.8 and 4.12. This will be done using

Heegner points.

5. Heegner points

5.1. Ring class fields. The class field theory of the field Q is fairly straightfor-
ward: all abelian extensions of Q are contained in cyclotomic extensions of Q. An
imaginary quadratic field K, however, has two kinds of abelian extensions: the
cyclotomic extensions (which are still abelian over Q) and the anti-cyclotomic ex-
tensions (which are not abelian over Q). These anti-cyclotomic extensions are the
ring class fields of K.

For proofs of the assertions of this section see [2, Section 9]. Fix an imaginary
quadratic field K. For any integer n let On = Z + nOK be the order of conductor
n in OK . Let I(n) denote the group of fractional ideals of OK relatively prime to n
and let P (n) be the subgroup generated by principal ideals αOK where α ∈ OK is
congruent to a rational integer modulo nOK . It is an elementary fact that the ideal
class group Pic(On) is isomorphic to the quotient I(n)/P (n). This is a generalized
ideal class group for K, so class field theory yields an abelian extension Kn/K,
unramified away from n, such that there is an isomorphism

(14) Pic(On) '−→ Gal(Kn/K)

sending a prime ideal λ ∈ I(n) to its Frobenius element. This Kn is the ring class
field of K of conductor n. Note that if l is a prime of Q, relatively prime to n,
which is inert in K, then λ = lOK lies in P (n), so it splits completely in Kn/K. As
we have said, Kn is not abelian over Q: the conjugation action of the non-trivial
τ ∈ Gal(K/Q) sends σ ∈ Gal(Kn/K) to σ−1.
K1 is simply the Hilbert class field of K. We will write Gn for Gal(Kn/K1); one

computes from the definitions that there is a canonical isomorphism

(15) Gn ∼= Pic(On)/Pic(OK) ∼= (OK/nOK)×/(Z/nZ)×.

In particular, for an odd prime l which is unramified in K/Q, Gl is cyclic and

[Kl : K1] =

{
l − 1 l splits in K;
l + 1 l inert in K.

In this case Kl/K1 is totally ramified as well. (We should at least comment that
the notation Gl could in principle conflict with our earlier notation for Gal(Q̄l/Ql).
Since this latter group will never appear below, this should cause no confusion.)

Suppose that n is squarefree. By ramification considerations (or else the Chinese
remainder theorem applied to (15)) we find that there is a canonical isomorphism

(16) Gn ∼=
∏
l|nGl

which will be useful later.
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5.2. Complex multiplication. Let N be a positive integer and consider the mod-
ular curve X0(N). (See [14] and the references given there for more details on
modular curves.) Recall that the non-cuspidal C-valued points of X0(N) classify
isomorphism classes of cyclic N -isogenies E → E′ of elliptic curves over C. (A
cyclic N -isogeny is simply a map of algebraic curves which respects the group laws
and has kernel cyclic of order N .) X0(N) is a smooth projective curve which admits
a model over Q and has good reduction at primes not dividing N . If K is a number
field, the non-cuspidal K-rational points of X0(N) correspond to cyclic N -isogenies
E → E′ defined over K, but only up to isomorphism over K̄; this last subtlety can
be safely ignored below.

We now fix a quadratic imaginary field K such that every prime dividing N
splits completely in K/Q. It follows that we can choose an ideal N of OK such
that OK/N ∼= Z/NZ. Let D denote the discriminant of K/Q.

Let n be an integer which is relatively prime to ND and consider the order On
in K. The ideal Nn = N ∩On satisfies On/Nn ∼= Z/NZ. We can therefore consider
the cyclic N -isogeny

C/On → C/N−1
n

of elliptic curves over C induced by the identity map on C. We denote the corre-
sponding C-point of X0(N) by xn; it is the Heegner point of conductor n for K.
(Note that the point xn depends on the choice of ideal N , so that it is not entirely
canonical.)

The theory of complex multiplication (see [12, Chapter 2] and the references given
there for more details) yields the following information on the action of Aut(C/K)
on xn: consider the restriction of σ ∈ Aut(C/K) to Gal(Kn/K) with Kn the ring
class field of K of conductor n. The map σ|Kn corresponds to an ideal class in
Pic(On) under the isomorphism (14); let aσ be any ideal in this class. Then the
cyclic N -isogeny corresponding to σxn is

C/a−1
σ → C/N−1

n a−1
σ .

It follows in particular that xn is a Kn-rational point of X0(N).
For any field L ⊆ K̄ we let DivX0(N)(L) denote the group of divisors on

X0(N)(K̄) which are stable under the action of Gal(K̄/L). For a prime l not
dividing N we have the Hecke correspondence

Tl : DivX0(N)(L)→ DivX0(N)(L)

sending a cyclic N -isogeny E → E′ to the formal sum∑
C⊆E[l];#C=l

(E/C → E′/C)

of l + 1 cyclic N -isogenies.
Let n be an integer relatively prime to ND and let l be a prime not dividing

nND. There is a natural trace map

Trl : DivX0(N)(Knl)→ DivX0(N)(Kn)

sending a point of X0(N)(Knl) to the formal sum of its Gal(Knl/Kn)-conjugates.
It follows from the main theorem of complex multiplication as given above and the
definition of the Hecke correspondence that Trl xnl = Tlxn.
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Heegner points also satisfy a certain congruence which we now explain. If L/Q
is any extension and λ is a prime of L with residue field Fλ, we write

redλ : E(Lλ)→ E(Fλ)

for reduction modulo λ.
Let l be inert in K and set λ = lOK ; λ splits completely in Kn/K and is

totally ramified in Knl/Kn. Let λn be a prime of Kn above λ and let λnl be the
unique prime of Knl over λn. The residue fields Fλn and Fλnl at these primes are
canonically isomorphic to the residue field Fλ = OK/λ; Fλ is isomorphic to Fl2 ,
although not canonically.

We consider the image of the Heegner points xn, xnl under the reduction maps
redλn and redλnl ; note that both maps land in E(Fλ). The congruence (which is a
fairly direct consequence of the Eichler-Shimura relation) is

redλnl(xnl) = redλn
(
FrobKn/K λn · xn

)
.

See [6, Proposition 3.7] for details.
We summarize these results in the following proposition.

Proposition 5.1. Let K be as above. For every integer n relatively prime to ND
there is a point xn ∈ X0(N)(Kn) such that:

• If l is a prime not dividing nND, then we have an equality Trl xnl = Tlxn
of divisors on X0(N)(Knl);

• If l is a prime not dividing nND which is inert in K, then we have

redλnl(xnl) = redλn
(
FrobKn/K λn · xn

)
.

for any prime λn of Kn over λ.

5.3. Heegner points on elliptic curves. Let E be an elliptic curve of conductor
N and let

ϕ : X0(N)→ E

be a modular parameterization of E; ϕ corresponds to a normalized newform f =∑
anq

n on Γ0(N). Recall that for a prime l not dividing N we have

al = l + 1−#E(Fl).

Let ε be the negative of the sign of the functional equation of E over Q; it is also
the eigenvalue of f for the Atkin-Lehner involution wN .

For any field L, ϕ induces a map

X0(N)(L)→ E(L)

and we define the Heegner points of E by

yn = ϕ(xn) ∈ E(Kn).

The translation of Proposition 5.1 is the following. Note that we can regard the
trace map Trl as a map E(Knl) → E(Kn) (rather than as a map of divisors) by
applying the group law on E.
Proposition 5.2. Let E be an elliptic curve of conductor N (endowed with a fixed
modular parameterization as above) and let K be an imaginary quadratic field of
discriminant D in which every prime dividing N splits. Then for any integer n not
dividing ND there is a point yn ∈ E(Kn) such that:

• If l is a prime not dividing nND, then Trl ynl = alyn in E(Kn);
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• If l is a prime not dividing nND which is inert in K, then we have

redλnl(ynl) = redλn
(
FrobKn/K λn · yn

)
for any prime λn of Kn over λ.

Furthermore, if τ is a complex conjugation, then there exists σ ∈ Gal(Kn/K) such
that τyn = εσyn in E(Kn)/E(Kn)tors.

Proof. The fact that ϕ ◦ Tl = alϕ is a consequence of Eichler-Shimura theory; see
[3, Section 13] for a discussion. Given this, the first two statements follow from
Proposition 5.1. The last statement follows from the behavior of xn under the
Atkin-Lehner involution wN ; see [6, Proposition 5.3]. �

We conclude this section by defining the basic Heegner point yK . It is simply
the image of y1 ∈ E(K1) under the trace map

TrK1/K : E(K1)→ E(K).

We let complex conjugation act on E(K)/pE(K) in the usual way.
Lemma 5.3. Assume that E(K) has no p-torsion. Then yK ∈

(
E(K)/pE(K)

)ε
.

Proof. Since E(K) has no p-torsion, Proposition 5.2 implies that there is a σ ∈
Gal(K1/K) such that τy1 = εσy1 ∈ E(K)/pE(K). Let Tr denote the trace from
K1 to K. We have

(17) Tr τy1 = εTrσy1 ∈ E(K)/pE(K).

Since the conjugation action of τ on Gal(K1/K) is inversion and Tr is stable under
this operation, we have Tr τ = τ Tr. Since σ ∈ Gal(K1/K), we also have Trσ = Tr.
Thus (17) becomes

τ Tr y1 = εTr y1 ∈ E(K)/pE(K),
which is the statement of the lemma. �

6. The Euler system

6.1. Kolyvagin’s derivative operator. We now fix an elliptic curve E of con-
ductor N , a modular parameterization X0(N)→ E, an imaginary quadratic field K
and a prime p as in Section 4. This data defines a basic Heegner point yK ∈ E(K)
and Heegner points yn ∈ E(Kn) for every n relatively prime to ND, with D the
discriminant of K/Q. We are also assuming that E has good reduction at p and
that Gal(Q(E[p])/Q) ∼= GL2(Fp). We will not invoke the assumption yK /∈ pE(K)
until the very end of the argument.

We will now convert the Heegner points yn ∈ E(Kn)/pE(Kn) into cohomology
classes in H1(K,E[n]). The most brutal way to do this is to simply take the trace
of yn from Kn down to K and then apply the Kummer map. This approach,
however, does not yield interesting cohomology classes. Instead we will apply a
certain operator to the yn to obtain Gal(Kn/K1)-invariant elements. Applying the
trace from K1 to K will yield the desired cohomology classes.

Let R be the set of squarefree integers which are relatively prime to pND and
which are products of primes l such that FrobK(E[p])/Q l is conjugate to complex con-
jugation. Note that such an l is inert in K/Q and splits completely in K(E[p])/K.
We will only need to consider Heegner points yn for n ∈ R.
Lemma 6.1. For every prime l ∈ R, p divides l + 1 and al = l + 1−#E(Fl).
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Proof. The characteristic polynomial of Frob l on E[p] is x2 − alx + l and the
characteristic polynomial of complex conjugation on E[p] is x2 − 1. Since Frob l is
conjugate to complex conjugation on E[p], these polynomials must be congruent
modulo p; the lemma follows. �

For a prime l ∈ R, the group Gl = Gal(Kl/K1) is cyclic of order l + 1. Fix a
generator σl and define operators

Dl =
l∑
i=1

iσil , Trl =
l∑
i=0

σil ∈ Z[Gl].

Trl is just the trace operator for Kl/K1. These are related by the telescoping
identity

(18) (σl − 1)Dl = l + 1− Trl .

Fix now n ∈ R; we have Gn ∼=
∏
l|nGl, and we define

Dn =
∏
l|n
Dl ∈ Z[Gn].

Fix also a set of coset representatives for the subgroup Gal(Kn/K1) of Gal(Kn/K);
let Tr (resp. Tr−1) be the sum of these representatives (resp. of their inverses). If
M is a Z[Gal(Kn/K)]-module and m ∈ MGn , then Trm lies in MGal(Kn/K) and
is independent of the choice of coset representatives above; in particular, Trm =
Tr−1m.

We can regard all of the above operators as elements of the commutative group
ring Z[Gal(Kn/K)]. These operators do not commute with complex conjugation τ ;
indeed, since conjugation by τ is inversion on Gal(Kn/K), one finds, for example,
that

(19) τ Tr = Tr−1 τ ; τDl = lTrl−σlDlτ.

6.2. Derived cohomology classes. There is a natural action of the group ring
Z[Gal(Kn/K)] on E(Kn)/pE(Kn). The following lemma is the main step in the
construction of our desired cohomology classes.

Lemma 6.2. For any n ∈ R we have Dnyn ∈
(
E(Kn)/pE(Kn)

)Gn .

Proof. Since Gn is generated by the σl for l dividing n, the statement of the lemma
is equivalent to the statement that

(σl − 1)Dnyn ∈ pE(Kn)

for all l dividing n. Using (18) we compute that

(σl − 1)Dnyn = Dn/l(σl − 1)Dlyn

= Dn/l(l + 1− Trl)yn

in E(Kn). By Proposition 5.2 this equals Dn/l

(
(l+ 1)yn − alyn/l

)
. By Lemma 6.1

this lies in pE(Kn), which completes the proof. �

We now define
Pn = TrDnyn ∈ E(Kn);

by Lemma 6.2, the image of Pn in E(Kn)/pE(Kn) is Gal(Kn/K)-invariant and is
independent of the choice of Tr. We will use the next two lemmas to produce an
element of H1(K,E[p]) from Pn.
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Lemma 6.3. E has no Kn-rational p-torsion for any n ∈ R.

Proof. This is basically the statement that the groups GL2(Fp) and Gal(Kn/Q)
are not very compatible; see [6, Lemma 4.3] for details. �

Lemma 6.4. The restriction map

res : H1(K,E[p])→ H1(Kn, E[p])Gal(Kn/K)

is an isomorphism.

Proof. By inflation-restriction the kernel and cokernel of this map are the groups
Hi(Kn/K,E[p]Gal(Kn/K)) for i = 1, 2 respectively. Both of these groups vanish by
Lemma 6.3, so the restriction map is an isomorphism. �

Now consider the image of Pn under the Kummer map

κ : E(Kn)/pE(Kn)→ H1(Kn, E[p]).

The Kummer map is Galois equivariant, so that κ(Pn) ∈ H1(Kn, E[p])Gal(Kn/K),
and we define c(n) ∈ H1(K,E[p]) to be the unique class such that res c(n) = κ(Pn).

These are the cohomology classes which we need to complete our proof. We
begin our investigation of them by determining how they behave under complex
conjugation.

Lemma 6.5. Let n ∈ R have k prime factors. Then c(n) ∈ H1(K,E[p])(−1)kε.

Proof. Since κ and res respect the action of complex conjugation, it suffices to show
that τPn = (−1)kεPn in E(Kn)/pE(Kn). In the calculations below we always work
in E(Kn)/pE(Kn). By (19) we have

τPn = τ Tr
∏
l|n
Dlyn = Tr−1∏

l|n
(lTrl−σlDl)τyn.

By Proposition 5.2 there is a σ ∈ Gal(Kn/K) such that τyn = (−1)kεσyn in
E(Kn)/pE(Kn); thus

τPn = (−1)kεσTr−1∏
l|n

(lTrl−σlDl)yn.

For each l we have Trl yn = alyn/l; by Proposition 5.2 this is zero in E(Kn)/pE(Kn).
It follows that only one term survives in the above product and

(20) τPn = (−1)kεσ
(∏
l|n
σl
)

Tr−1Dnyn.

But Dnyn is Gn-invariant, so that Tr−1Dnyn = TrDnyn = Pn. Since Pn is
Gal(Kn/K)-invariant, the other group operations in (20) are trivial; we conclude
that τPn = (−1)kεPn, as claimed. �

6.3. Ramification of the derived classes. We begin with the fact that the class
c(n) is unramified away from n.

Lemma 6.6. Fix n = l1 · · · lr ∈ R and set λi = liOK . Then

c(n) ∈ Selλ1···λr (K,E[p]).
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Proof. Let v be a place of K distinct from λ1, . . . , λr; we must show that c(n)v ∈
H1
f (Kv, E[n]), or equivalently that c(n)sv = 0 in H1

s (Kv, E[n]). This is straight-
forward if E has good reduction at v. In this case we have H1

s (Kv, E[p]) =
Hom(Iv, E[p])G

ur
v , so that c(n)sv is zero exactly when the restriction of c(n) to Iv is

trivial.
Let w be a place of Kn over v. Since v does not divide n, Kn,w/Kv is unramified.

In particular, the inertia group of Kn,w is also Iv. We therefore have a commutative
diagram

H1(Kv, E[p])

res

��

// Hom(Iv, E[p])

E(Kn,w)/pE(Kn,w) κ // H1(Kn,w, E[p]) // Hom(Iv, E[p])

in which the bottom row is exact. (Both rows are just portions of the exact sequence
(3) over Kv and Kn,w, respectively.) We know that res c(n)v = κ(Pn), so that
exactness of the bottom row shows that (res c(n)v)s is trivial. But then c(n)sv is
trivial as well, as claimed.

The proof at places v of bad reduction for E and places dividing p are somewhat
more subtle and involves an analysis of the Néron model of E. We refer to [6,
Proposition 6.2] for the details. �

We now turn to the local behavior of a class c(n) at primes dividing n. The key
computation is given in Lemma 6.7 below; we first set some notation. Let nl ∈ R
with l prime and set λ = lOK . Since Pnl ∈ E(Knl) is Gal(Knl/K)-invariant in
E(Knl)/pE(Knl), we know that (σl − 1)Pnl ∈ pE(Knl). Since also E(Knl) has no
p-torsion, this implies that there is a unique Qn,l ∈ E(Knl) with pQn,l = (σl−1)Pnl.
Indeed, it is clear from the proof of Lemma 6.2 that Qn,l is given by the formula

(21) Qn,l =
l + 1
p

TrDnynl −
al
p
Pn;

this makes sense since l + 1 and al are divisible by p.
Recall that λ splits completely in Kn/K and is totally ramified in Knl/Kn. For

a prime λn of Kn over λ, we write λnl for the unique prime of Knl over λn. We
will consider the image of Qn,l under the reduction map

redλnl : E(Knl,λnl)→ E(Fλ);

recall that Fλ is the residue field of each of λ, λn and λnl. Note that we also have
Kn,λn = Kλ, so that we can consider Pn as an element of E(Kλ).
Lemma 6.7. redλnl(Qn,l) is trivial in E(Fλ) if and only if Pn ∈ pE(Kλ).

Proof. We first show that

(22) redλn(TrDnynl) = redλn
(
FrobKn/K λn · TrDnyn

)
.

This reduces immediately to showing that

(23) redλn(σynl) = redλn
(
FrobKn/K λn · σyn

)
for any σ ∈ Gal(Kn/K). Note that the case σ = 1 is given in Proposition 5.2. In
general, we begin with the congruence of Proposition 5.2 for the ideal σ−1λn:

redσ−1λnl(ynl) = redσ−1λn

(
FrobKn/K(σ−1λn) · yn

)
.
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Since redσ−1λn = redλn ◦σ, this is equivalent to

redλnl(σynl) = redλn
(
σ FrobKn/K(σ−1λn) · yn

)
.

But FrobKn/K(σ−1λn) = σ−1 FrobKn/K(λn)σ, which now completes the proof of
(23) and thus of (22) as well.

Combining (22) with (21) and the fact that TrDnyn = Pn, we conclude that

(24) redλnl(Qn,l) = redλn

((
l + 1
p

Frob−al
p

)
Pn

)
where we now simply write Frob for FrobKn/K λn.

We claim that (l + 1) Frob−al annihilates E(Fλ). To see this, recall that Fλ ∼=
Fl2 ; thus Frob is an involution and we have a decomposition E(Fλ) = E(Fλ)+ ⊕
E(Fλ)−. We have E(Fλ)+ = E(Fl), which has order l + 1− al by definition. The
Weil conjectures for elliptic curves imply that E(Fλ)− then has order l+ 1 + al. In
either case, we see that ±(l + 1)− al annihilates E(Fλ)±, so that (l + 1) Frob−al
annihilates E(Fλ).

Since Frob is the reduction of a complex conjugation, by the proof of Lemma 6.5
we have FrobPn = νPn + pQ for some ν ∈ {±1} and some Q ∈ E(Kn). Since
(l + 1) Frob−al annihilates E(Fλ), it follows that

redλnl(Qn,l) =
(l + 1)ν − al

p
redλn(Pn)

in E(Fλ)ν . Since E(Fλ)ν has order equal to the absolute value of (l + 1)ν − al,
it follows that redλnl(Qn,l) = 0 if and only if redλn(Pn) ∈ pE(Kn,λn). Since
Kλ = Kn,λn and the kernel of the map E(Kλ)→ E(Fλ) is pro-l, this is equivalent
to Pn ∈ pE(Kλ), as claimed. �

A consequence of this lemma is the following result which is the key to the entire
proof. It relates the ramification of c(n) at a prime l dividing n to the behavior of
the local divisibility of the point Pn/l at l.
Lemma 6.8. Let nl ∈ R with l prime and set λ = lOK . Then c(nl)sλ = 0 if and
only if Pn ∈ pE(Kλ).

Proof. Since H1
s (Kλ, E[p]) = Hom(Iλ, E[p]), we can regard c(nl)sλ as a homomor-

phism Iλ → E[p]. We claim that it factors through Iλ/Iλnl for any prime λnl
of Knl above λ. To see this, let res : H1(K,E[p]) → H1(Knl, E[p]) be the re-
striction map. By definition res c(nl) lies in the image of the Kummer map, so
that res c(nl) ∈ Sel(Knl, E[p]). In particular, c(nl)sλnl = 0. Since H1

s (Knl,λnl , E[p])
equals Hom(Iλnl , E[p]), we see that c(nl)(Iλnl) = 0, as claimed.

Since Gl is the inertia group of Gal(Knl/K) at λ, we have Iλ/Iλnl ∼= Gl. In
particular, we now see that c(nl)sλ = 0 if and only if c(nl)(σl) = 0.

We now need a formula for c(nl). Fix Q ∈ E(K̄) with pQ = Pnl. We claim that
it is represented by the cocycle GK → E[p] given by

σ 7→ σQ−Q− 1
p

(σ − 1)Pnl ∈ E[p].

Here we know that (σ − 1)Pnl ∈ pE(Knl) by Lemma 6.2 and 1
p (σ − 1)Pnl is the

unique (by Lemma 6.3) pth root in E(Knl). It is easy to see that the expression
above is in E[p], and to check that it represents c(nl) one simply needs to check
that res c(nl) = κ(Pnl); this is clear since (σ − 1)Pnl = 0 for σ ∈ GKnl .
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Note that c(nl)(σl) equals

(25) σlQ−Q−Qn,l.

Fix a prime λ̄ of K̄ over λ and consider the corresponding reduction map

red : E(K̄)→ E(k̄λ).

Since E has good reduction at p, we know that this map is injective on p-torsion.
In particular, c(nl)(σl) = 0 if and only if the reduction of (25) is trivial.

Note that red(σlQ−Q) and red(Qn,l) both lie in E[p] even though neither point
does prior to reduction. In fact, red(σlQ−Q) = 0 since σl lies in inertia and thus
acts trivially on the residue fields. Thus

red(σlQ−Q−Qn,l) = red(Qn,l).

We conclude that c(nl)(σl) = 0 (and thus c(nl)sλ = 0) if and only if red(Qn,l) = 0.
Lemma 6.7 now completes the proof. �

6.4. Final considerations. We are now in a position to prove Propositions 4.8
and 4.12. Recall that L0 = K(E[p]) and L = K(E[p], 1

pyK).

Proposition. Assume that yK /∈ pE(K). Let l be a prime of Q with FrobL0/Q l
conjugate to complex conjugation and which does not split completely in L/L0;
set λ = lOK . Then there exists a cohomology class c(l) ∈ Selλ(K,E[p])−ε with
c(l)sλ 6= 0 in H1

s (Kλ, E[p]).

Proof. We consider the class c(l) defined above via Heegner points. The fact that
c(l) ∈ Selλ(K,E[p])−ε follows from Lemmas 6.6 and 6.5. It remains to check that
c(l)sλ 6= 0 in H1

s (Kλ, E[p]). By Lemma 6.8 this is true if and only if P1 /∈ pE(Kλ).
Note that P1 ∈ E(K) is precisely the point yK . Since L is the minimal extension of
L0 in which yK is globally divisible by p, yK is divisible by p in E(Kλ) precisely if λ
splits completely in L/L0. Since we are assuming that λ does not split completely
in L/L0, we have yK /∈ pE(Kλ), which implies that c(l)sλ 6= 0. �

For the next result, recall that we have chosen a non-trivial c(q) ∈ H1(K,E[p])
and we let L′/L be the minimal extension over which c(q) is defined. We need the
following lemma.

Lemma 6.9. Let l be a prime with FrobL/Q l conjugate to complex conjugation;
set λ = lOK . Then Pq ∈ pE(Kλ) if and only if l splits completely in L′/L.

Proof. We show that both conditions are equivalent to the vanishing of c(q)λ in
H1(Kλ, E[p]). Note first that if l has FrobL/Q l conjugate to τ , then λ splits com-
pletely in L. In particular, LλL = Kλ where λL is any prime of L above λ. Fix
such an l and λL and let λL′ be a prime of L′ above λL.

Recall that c(q)|GL yields an isomorphism c : Gal(L′/L) '−→ E[p]. c(q)λ is
therefore trivial precisely when Gal(L′λL′/LλL) is trivial. This in turn is the same
as λL splitting completely in L′, as claimed.

For the other equivalence, recall that λ splits completely in the ring class field
Kq. In particular, the restriction map H1(K,E[p])→ H1(Kλ, E[p]) factors through
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H1(Kq, E[p]). We therefore have a commutative diagram

H1(K,E[p])

��

E(Kq)/pE(Kq)
� � //

��

H1(Kq, E[p])

��

E(Kλ)/pE(Kλ) � � // H1(Kλ, E[p])

It now follows from the definitions that c(q)λ is the image of Pq ∈ E(Kλ)/pE(Kλ)
under the Kummer map. The second asserted equivalence follows. �

Proposition. Assume that yK /∈ pE(K). Let l be a prime of Q which has FrobL/Q l
conjugate to complex conjugation and which does not split completely in L′/L; set
λ = lOK . Then there exists a cohomology class c(ql) ∈ Selλ(K,E[p])ε with c(ql)sλ 6=
0 in H1

s (Kλ, E[p]).

Proof. By Lemmas 6.6 and 6.5 we have c(ql) ∈ Selqλ(K,E[p])ε. The fact that
c(ql)sλ 6= 0 follows immediately from Lemmas 6.9 and 6.8.

It remains to check that c(ql)sq = 0. Consider the class c(l) ∈ Selλ(K,E[p])−ε.
Since l splits completely in L/L0, we have yK ∈ pE(Kλ) and thus by Lemma 6.8 we
have c(l)sλ = 0. Thus c(l) ∈ Sel(K,E[p])−ε. But this group is zero by Theorem 4.9.
Thus c(l) = 0. By the construction of c(l) this implies that Pl ∈ pE(Kl). But then
certainly Pl ∈ pE(Kl,q), so that by Lemma 6.8 we have c(ql)sq = 0, as claimed. �

7. Examples

In this section we give some examples for the elliptic curve

y2 + y = x3 − x2 − 10x− 20,

(otherwise known as X0(11); see [14]) and the imaginary quadratic field K =
Q(
√
−7). Note that K has class number 1, so that K1 = K. E has bad reduction

only at 11, and it is known that Gal(Q(E[p])/Q) ∼= GL2(Fp) for p 6= 5.
Set α = 1+

√
−7

2 . In the table below we give the minimal polynomials (over K)
of the Heegner points xn = yn for 1 ≤ n ≤ 4. (We suppress the various choices
required to define the Heegner points.)

n x-coordinate of yn y-coordinate of yn
1 X − α X + (4− 4α)
2 X + (14− 17α) X + (−120 + 34α)

3

X4 + (93− 46α)X3 +
(−1530− 519α)X2 +
(−1816 + 5545α)X +
(1943− 14460α)

X4 +(−347−475α)X3 +
(29550− 38190α)X2 +
(−95394− 782135α)X +
(−6593671 + 715920α)

4 X2 + (216− 290α)X +
(−1649 + 3745ω)

X2 +(8414−2690α)X+
(304382− 191230α)

In particular, the basic Heegner point yK is
(

1+
√
−7

2 ,−2 + 2
√
−7
)
. It can be

shown (via height computations) that yK has infinite order and is not divisible by
any odd primes in E(K). In particular, Theorem 4.1 thus shows that E(K) has
rank 1 and that X(E/K) has trivial p-primary part for p 6= 2, 5, 11.



24 TOM WESTON

References

[1] J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Narosa Publishing House,

2000.

[2] D. Cox, Primes of the form x2 + ny2, John Wiley and Sons, 1989.
[3] F. Diamond and J. Im, Modular forms and modular curves, pp. 39–133, in: Seminar on

Fermat’s last theorem, Canadian Mathematical Society Conference Proceedings 17, American
Mathematical Society, 1995.

[4] M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, Inventiones

Mathematicae 109 (1992), pp. 307–327.
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