Kolyvagin’s work on modular elliptic curves

BENEDICT H. GROSS

1. Let X,(N) be the modular curve over @ which classifies elliptic curves
with a cyclic N-isogeny. Let K = Q(v/=D) be an imaginary quadratic ficld
of discriminant —D, where all prime factors of N are split. For simplicity, we
assume that D # 3,4, so the integers O of K have unit group O* = (&1).
Choose an ideal A/ of O with O/N ~1/NZ.

We consider K, and all other number fields in this paper, as subfields of C.
Then the complex tori C/@ and C/AN " define elliptic curves related by a
cyclic N-isogeny, hence a complex point z, of Xo(/N). The theory of complex
multiplication shows that the point z, is rational over K, the Hilbert class
field of K.

Let E be a modular elliptic curve of conductor N over @, and fix a paramet-
rization ¢ : Xo(N) — E which maps the cusp oo of Xo(N) to the origin
of E. Once ¢ has been chosen, there is a unique invariant differential w on
E over Q such that ¢*(w) is the differential Xa,q"dg/q associated to a nor-
malized (a, = 1) newform on Xo(N). Write wo = aw, where wo is a Néron
differential on E. 1t is known that c is an integer, and we may assume that
c2 L.

Let ¥, = ¢(z;) in E(K,), and define the point yx = Trg n (i) in E(K).
This point is obtained by adding y, to its conjugates, using the group law on
E. If A is another ideal with O/N"' =~ Z/NZ, and y% is the corresponding
point in E(K), we have vy = yx + (torsion). Hence the canonical height
fn(y,‘) is well-defined, independent of the choice of . Zagier and I proved
the limit formula [GZ; Ch. 1, (6.5)]:

IIE(C)“" Atw

vD

In particular, the point yx has infinite order if and only if L'(E/K,1) # 0.

(1.1) L(E[K,1) = - h(yx).
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By comparing (1.1) with the conjecture of Birch and Swinnerton-Dyer for
L(E/K,s), Zagier and I were led to the following [GZ; Ch. V, 2.2]).

Conjecture 1.2 Assume that il(yx) # 0, or equivalently, that the point yx
has infinite order in E{K). Then

(1) the group E(K) has rank 1, so the index Ix = [E(K): Zyx]) is finite,
(2) the Tate-Shafarevich group LI(E/K) is finite; its order is given by

#IE/K) = (Ix/c- I-[PI)""""P)2
where m, = (E(Q,) : E%(Q,))-

In (2), note that both the index Ix and the integer ¢ depend on the para-
metrization ¢, but that the ratio Ix/c is independent of the parametrization
chosen. Since ¢ and the local factors m, are integers, the formula in (2) pre-
dicts that the order of I{ E/K) should always divide (Ix)*. This implies, by
the existence of the Cassels pairing, that the group II(E/K) should always
be annihilated by Ix.

Kolyvagin has proved a great part of Conjecture 1.2. His main result is the
following [K1, Thm. A].

Theorem 1.8 (Kolyvagin) Assume that the point yx has infinite order in
E(K). Then

(1) the group E(K) has rank I,
(2) the group W(E/K) is finite, of order dividing 1g/x - (Ix)’.

In part (2) of this theorem, tg/« is an integer > 1, whose prime factors depend
only on the curve E: they consist of 2 and the odd primes p where the Galois
group of the extension Q(E,) is smaller than expected.

In many cases, Theorem 1.3 reduces the conjecture of Birch and Swinnerton-
Dyer to a finite amount of computation. For example, let £ = Xo(37)/war
be the curve y? + y = z° - &, and let ¢ be the modular parametrization of
degree 2. Then ¢ = 1 and m3; = 1 in part (2) of Conjecture 1.2, so we expect
that #IU(E/K) = (Ix)? when yx has infinite order. Kolyvagin shows that
tg/x is a power of 2 in this case, and that tg;x = 1 when Iy is odd. To
prove the full conjecture of Birch and Swinnerton-Dyer for E over K, one
must construct nuu-trivial elements in W(E/K) when Ix > 1. (Kolyvagin's
method suggests such a construction - see §11). We remark that in this case
the point yx lies in E(Q), which is infinite cyclic and generated by P = (0,0).
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Writing yx = my - P we find Ix = ®my; the integers my appear as Fourier
coefficients of a modular form of weight 3/2 for I'y(4 - 37) [Z; §5)-

2. We will not prove all of Theorem 1.3, but will sketch the proof of a slightly
weaker result to illustrate Kolyvagin’s main argument. In all that follows, we
assume that the curve E does not have complex multiplication over €. (This
excludes only thirteen j-invariants.) Then Serre has shown that the extension
Q(E,) generated by the p-division points of E has Galois group isomorphic
to GL4(2/pt) over Q for all sufficiently large primes p [S; Thm. 2]. In fact,
if E is semi-stable (i.e., if N is square-free), the Galois group of Q(E,)/Q is
isomorphic to GL,(Z/pZ) for all p 2 11 [Ma; Thm. 4].

The first (crucial) observation is the following. If yx has infinite order in
E(K), one does not know a priori that the index [E(K) : Zyk] is finite.
However, since the group E(K) is finitely generated, the point yx is not
infinitely divisible in E(K). In other words, there are only finitely many
integers n such that yx = nP with P € E(K).

Proposition 2.1 Let p be an odd prime such that the extension Q(£,) has
Galois group GL,(Z/pl), and assume that p does not divide yx in E(K).
Then

(1) the group E(K) has rank 1,
(2) the p-torsion subgroup HI(E/K), is trivial.

When yx has infinite order in E(K), Proposition 2.1 applies for almost all
primes p. Our hypotheses imply that p does not divide the index Ix =
[E(K) : Zyk], so the conclusion is consistent with part (2) of Conjecture 1.2.
Kolyvagin obtains Theorem 1.3 by refining the argument for primes p which
divide yx, using the fact that p* does not divide yx for large n. The p-primary
component of I{ E/K) is bounded using his techniques on ideal class groups
(see [R2]). When the Galois group of Q(£,) is strictly contained in GL2(Z/p2),
he uses Serre’s result that the Galois group of Q(E,») has bounded index in
GL,(2/p1) for n — co.

In fact, what we will prove involves the Selmer group Sel(E/K'), at p, which
sits in an exact sequence of Z/pZ-vector spaces

(22) 0 — E(K)/pE(K) = Sel(E/K), — W(E/K), — 0.

By our hypothesis on Q(E,), the group E(K) contains no p-torsion and the
dimension of E(K)/pE(K) over 2/pZ is equal to the rank of E(K).
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Proposition 2.3 Let p be an odd prime such that the extension Q(E, ) has
Galois group GL,(Z/pZ), and assume that p does not divide yx in E(K).
Then the group Sel( £/K), is cyclic, generated by éyx.

The proof of Proposition 2.3 (following Kolyvagin) has three steps. The first is
the construction of certain cohomology classes ¢(n) € H'(K, E;) from Heeg-
ner points of conductor n for K, and the study of their amazing properties.
The second is the use of Tate duality to obtain information on the local com-
ponents of elements in the Selmer group Sel,(E/K) from the classes ¢(n).
The third is the use of the Cebotarev density theorem to convert information
on the local components of the Selmer group to an upper bound on its order.
Propusition 2.1 is an immediate corollary of Proposition 2.3, using (2.2).

3. We begin with a construction of the cohomology classes ¢(n), or rather,
with a description of the properties of Heegner points on which the construc-
tion depends.

Let n > 1 be an integer which is prime to N, and let O, = Z 4+ nOy be the
order of index n in Ok. The ideal N, = A N O, is an invertible O,-module
with O,/N, =~ 2/NZ. Consequently the elliptic curve C/O, (with its cyclic
N-isogeny to C/N!) defines a complex point z,, on Xo(V). The theory of
complex multiplication shows that the point z, is rational over K, the ring
class field of conductor n over K. We have a field diagram with Galois groups
marked;

/(Oh/n(')h) /(Z/nl)"
l\:
“ Pic(0x) Pic(O,)
K
,// (1 ’ T)

Here 7 is complex conjugation, which lifts to an involution of K, and acts on
Gal(K,/K) by: rar~ =o',

We will only consider the points z, on Xo{N), and their images y, = o(z,) in
E(K,), when the integer n is square-free. We insist that every prime factor
¢ of n satisfies:

3.1 ¢ does not divide N - D - p.
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This hypothesis implies that the prime £ is unramified in the extension K(E,).
We let Frob(€) be the conjugacy class in Gal( K (E,)/Q) containing the Frobe-
nius substitutions of the prime factors of £, and further insist that

(3-2) Frob(£) = Frob(co)

as conjugacy classes in Gal(K(£,)/Q). Here Frob(co) is the conjugacy class
of complex conjugation 7. There are an infinite number of primes { satisfying
(3.2), by Cebotarev’s density theorem.

A simple implication of (3.2) is that Frob(¢) = 7 in Gal(K/Q). Hence the
prime (€) remains inert in K; we let A denote its unique prime factor. The
implication Frob(£) = Frob(oco) in Gal(Q(E,)/Q) is equivalent to the congru-
ences:

(3.3) a=0{+1=0 (mod p),

where £ + 1 — a, is the number of points on the reduction E over the finite
field F, = 2/€2. Indeed, the characteristic polynomial of Frob({) acting on
E, is known to be z? — a,z + £, whereas the characteristic polynomial of
Frob(oo) = 7 is known to be 22 — 1 = (z — 1)(z +1).

Let F, denote the residue field of X at A, which has ¢ elements. By (3.2) the
prime A splits completely in the extension A'(£,). Hence E( £, = (Z/pt);
in fact we have:

(3.4) E(R): ~ 1/pt

where + denote the eigenspaces for the automorphism group (1, 7). Indeed
E(F,)* has order £+ 1 —a,, and E(F,)~ has order {4 1+4a; both are divisible

by p by (3.3).

We recall that n is square-free. Write n = [[£€ and let G, be the Galois
group of the extension K,/K,. Then G, = [1G, where, for each {|n, Gy is
the subgroup fixing the subfield &,/ The subgroups G, = Y/ F are cyclic
of order € + 1. Let g, be a fixed generator of Gy; the augmentation ideal of
the group ring 2[G,] is principal and generated by (o, — 1). Let Tr, be the
element Za in Z[G,], and let D, be a solution of

Gy

(3.5) (at—l)-Dl=f+l—Tr,
in 2|G,)- Then D, is well-defined up to a,ddltlon of elements in the subgroup

t41

1 - Tr, (Kolyvagin uses the solution D} = Zz ai = =3 (oi = 1)f(or = })
i= =1
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but this has little advantage over the others). Finally, define D, =[] D, in
Z[G.).

Proposition 3.6 The point D.y. in E(K,) gives a class [Dny.] in
(E(K.)/pE(K,)) which is fixed by G,.

Proof It suffices to show that [D,y,] is fixed by a, for all primes £|n, as
these elements generate G,. Hence we must prove that (o; — 1)Days bes in
pE(K.).

Write n = €-m. By (3.5) we have (0,=1)D, = (6:~1)D¢-Dp = ((+1=Tr)Dm
in Z[G,]. Hence

(U[ - l)Dnyn = (e"l' l)Dmyn - Dm('l‘rlyn)'

Since £+1 = 0 (mod p) by (3.3), it suffices to show that Tr.y, lies in pL(A..).
This follows from part (1) of the following proposition, and the congruence

a, = 0 (mod p) of (3.3).

Proposition 3.7 Let n ={-m. Then

(1) Try. =ac-yn in E(K,).
(2) Each prime factor A, of £ in K, divides a unique prime A, of /', and
we have the congruence y,, = Frob(A.)(ym) (mod A,).

Proof This follows from the corresponding facts about the points x, and z,,
on Xo(N) over K,. If T; denotes the Hecke correspondence, which is self-dual
of bidegree £+ 1, we have: Tr,z, = Ti(z.,) as an equality of divisors of degree
€+ 1 on Xo(N) over K., G; §6). Since o(T'ed) = a, - (d) for any divisor d on
Xo(N), this proves (1).

To prove (2), we note that by class-field theory, the prime A is split completely
in K./ K (as it is principal, and generated by an integer £ prime to m). The
factors A, of A in K,, are totally ramified in K, : A, = (A,)¢*'. In particular,
the residue field F,, has & elements and is canonically isomorphic to Fi. We
have the congruence: =, = Frob(},,)(zm) on Xo(N) over F,. Indeed, the
points in the divisor T;(z.) are the conjugates of z, over K,,; these are all
congruent to z, (mod A,) as A,, is totally ramified in K./Kn. The Fichler-
Shimura congruence relation T, = Fr, + Frj (mod £) shows that at least one
point in the divisor T;Z., is congruent to Frob(Am)(zm) (mod A,). Hence all
points in the divisor are congruent to Frob(A,,)(z.); this also follows from

the fact that the residue field has €? elements, so of = a'/%.

Kolyvagin’s work on modular elliplic curves 241

The two properties of Heegner points in Proposition 3.7 show that the col-
lection {y.} forms an ‘Euler system’, in the language of Kolyvagin (K1; §I].
In the next section, we show how they may be used to construct cohomology
classes ¢(n) in H'(K, E,). We observe that since Tr.yn = @y lics in pE(K.),
the class [D.y.] in E(K.)/pE(K,) is independent of the choice of solutions
D, of (3.5). It depends on the choice of generators o, of G, only up to scaling

by (z/p2)*.

4. We retain the notation n = [[¢ with ¢ satisfying (3.1) and (3.2).
Let G, be the Galois group of K, over K; this sits in an exact sequence
0 - G, —» G, = Gal(K,/K) — 0. Let S be a set of coset representa-
tives for G, in G,, and define

(4.1) P, =Y o(Duy.) in E(K,).

0€S :

By Proposition 3.6, the class [P, in E(K,)/pE(K.) is fixed by G.. Weuse the
same set S to define P, for any m|n; note that P, = ZGy, = Trg,x(n) =

cES
yx. The class [P,] is independent of the choice of S, and depends on the

choice of generators a, of G, for ¢|n, only up to scaling by (Z/pZ)*.

The exact sequence 0 — E, — E X5 E — 0 of group schemes over
gives, on taking cohomology (Galois = étale) over K and K, a commutative
diagram

0
(4.2) H '(Kj]\’, E),
Inf l

0 — E(K)/pE(K) - -+ H\(K,E,) — H'(K,E), — 0

[l

0 — (E(K.)/pE(K.))?»=s H (K., E,)"— H'(K,, E)i".

Both rows of (4.2), and the right column, are exact. The restriction from
H'(K,E,) to H'(K,,E,)° is an isomorphism, as its kernel is
H'(K./K,E,(K,)) via inflation and its cokernel injects into
H*K,/K,E,(K,)) via transgression in the Hochschild-Serre spectral se-
quence. These cohomology groups are both trivial by the following.

Lemma 4.8 The curve F has no p-torsion rational over A,.
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Proof If not, either E,(K,) = 2/pZ or E,(K.) = (Z/pZ)’. The first implies
that E, has a cyclic subgroup scheme over Q, as K, is Galois over Q. Hence
the Galois group of Q(E,) is contained in a Borel subgroup of GL,(Z/p). If

E,(K,) = (2/p1)*, then Q(E,) is a subfield of K, and we have a surjective °

homomorphism G, —» GL,(Z/pZ). This is impossible: when p > 2,
GL,(Z/pZ) is not a quotient of a group of ‘dihedral’ type.

We now define Kolyvagin's cohomology classes. Let ¢(n) be the unique class
in AY(K, E,) such that

(4.4) Res o(n) = 6,[Ps] in H'(K., E,).

Let d(nr) be the image of c(n) in H'(K,E),. Since Res d(n) = 0 by the
commutativity of (4.2) and the exactness of the bottom row, there is a unique
class d(n) in H'(K./K,E), = H'(G., E(K,)), such that

(4.5) Inf d(n) = d(n) in H'(K,E),.

W. McCallum has observed that the class ¢(n) is represented by the l-cocycle

1 1 (o —1)P,

4.6 o)=e(-F)-=PF, - *——

(4.6) flo) (p ) » >

on Gal(K/K). Here % P, is a fixed p™ root of P, in E(K), and (o= DA is

the unique p* root of (o — 1)F, in E(K,), which exists by Lemma 4.3. The
class d(n) is represented by the 1-cocycle

Ho) = _(a—l)P,,
f(a) Y

on G,.

Proposition 4.7 (1) The class ¢(n) is trivial in H'(K, E,) il and only if
F, € pE(K,).

(2) The class d(n) is trivial in H'(K, £),, and the class d(n) is trivial in
H'(K./K,E),, if and only if P, € pE(K,) + E(K).

Proof This follows from their definitions and the diagram (4.2).

Note The class ¢(1) is trivial if and only if P, = yx is divisible by p in E(K),
and the classes d(1) and d(1) are always globally trivial.
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5. We now discuss the action of Gal(K/Q) = (l,7) on the cohomology
classes ¢(n) in H'(K, E,). Since p is odd, we have a direct sum decomposition
into eigenspaces for 7:

(5.1) H'(K,E,) = H\K, E,)* ® H'(K, E,)".

We will see that the class ¢(n) lies in one of these eigenspaces, whose sign
depends both on E and the number of primes £ dividing n.

Let € = 1 be the eigenvalue of the Fricke involution wy on the eigenform
f = Za,q" associated to the modular curve E:

(5.2) floy =¢- f.

Then the L-function of E over Q satisfles a functional equation with sign

= —¢€.

Complex conjugation T acts on the Galois extension K, and hence on the
point ¥, in E(K,).

Proposition 5.9 We have y] = ¢ -y + (torsion) in E(K,), for some o’ € G..

Proof This follows from the identity [G, §5]
2, = wy(z])
for some ¢’ in G,. Hence
(2a = 00)" = wy(Ta — 00)° + (wyoo — o).

Since wyoo is the cusp 0 of X,(N), and the class of (0 ~ oo) is torsion in the
Jacobian, this gives the claim on the curve E.

Proposition 5.4 (1) The class [P,] lies in the ¢, = ¢ (~1)/* eigenspace for 7
in (E(K,)/pE(K,))%", where f, = #{¢: {|n}.

(2) The class ¢(n) lies in the ¢,-eigenspace for T in H'(K, E,), and the class
d(n) lies in the ¢,-eigenspace for 7 in H'(K, E),.

Proof Recall that P, = 3 oDy, in E(K,), where § is a set of cosel
o€
representatives for G, in G,. For any ¢ € G, we have the commutation

relation 7o = ¢7'7. Hence 7P, = Y 077D, y,.
S
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But D, = [[ D, in Z[G.), where D, € Z[G] is a solution (well-defined up to
tn

m Tr,) of (o, — 11D, = €+ 1 — Tr,. Applying 7 on the right and left of this

identity, we find
(01 - l)DgT = T(O’l - l)Dg

= (o7 = 1)7D,
= ~0; (0 — 1)7D,.
Hence 7D, = —o D7 + ler, for some k € Z, as 7D, + 0.D,7 is annihilated
by (o¢ = 1). (For D} = ) io}, one has k = £). Since Tryn = s =0 in
pE(K,), we have l
P = (-1 -T[oe- 3 07" - Da(7ya) (mod pE(R,)).

tn s

But 7y, = € - o’(yn)+ torsion, by Proposition 5.3, for some o' in G.. But
Lemma 4.3 shows that E(K,), = 0. Hence

tha=¢ - [[oc-0- > 0"'Daya (mod pE(Ky)).

2n )
The sum £ 07" Doy i8 = Pa, as [Duyn) is fixed by G, and {o7'} is another
sel of coset representatives for G, in G,. Since [P.] is fixed by G,, we have

TP, = ¢, P, mod pE(K,)

which proves (1). The statements in (2) are an immediate corollary, as all the
maps in the diagram (4.2) commute with the action of Gal(K'/Q) = (1, 7).

Since d(r) € H'(K, E)i", we may refine Proposition 4.7, part (2).

Corollary 5.5 The class d(r) is trivial in H'(K, E);" il and only if P, €
pE(K,) + E(K)*.

6. Recall that
6.1) W(E/K), = ker(H'(K,E), — ]_[H'(I\’.,,E),,)

where the sum is taken over all places v of K. The Selmer group Sel( £/ K),
is, by definition, the largest subgroup of H'(K, E;) which maps to LI(E/K),
in H'(K, E),. We now wish to decide if the class ¢(n) is in the Selmer group,
i.e., il the class d(n) is locally trivial at all places of K. We note that §,[Fn]
is in the Selmer group of E over K,, and is fixed by G,, but restrictiot. does
not necessarily induce an isomorphism: Sel( E/K), — Sel(E/K.)".
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Proposition 6.2 (1) The class d(n), is locally trivial in H YK,, E), at the
archimedean place v = oo, and at all finite places v of K which do not divide
n.

(2) If n = £m and ) is the unique prime of K dividing £, the class d(n), is
locally trivial in H*(K, E), if and only if Pm € pE(K,) = pE(K,) for one
(and hence all) places An, of K, dividing A.

Proof 1f v = oo, K, = C is algebraically closed and the Galois cohomology of
E is trivial. If v [ n then the class d(r) is inflated from the class d(n) of an
extension K,/K which is unramified at v. Hence d(n), lies in the subgroup
H'(K*/K,, E), where K " is the maximal unramified extension. This group
is trivial when E has good reduction at v [M; Ch. 1, §3), so d(n), = 0 for
v JN.

If v|N the curve E has bad reduction: let E® be the connected compo-
nent of the Néron model and ¢ = E/E® the group of components. Then
HY (K" [K,,E°) = 0, so H'(K:"/K,, E) injects into H'(F,,$) [M; Ch. 1,
Prop. 3.8). But the class d(n), is represented by a cocycle with values in
a subgroup E' with (E' : E°) prime to p. Indeed, let J be the Jacobian of
Xs(N). Then for any place w dividing v in K, the class of the Heegner divi-
sor (z,) — (00) in J(K,,) lies, up to translation by the rational torsion point
(0) = (o0), in J° [GZ; 111, 3.1]. Hence y, is, up to translation by rational
torsion on E, in E°. Since E(Q), = 0 by assumption, the points y, (and
hence D,y. and P,) lie in a subgroup E’ whose image in ¢ has order prime
to p. Since d(n), is killed by p, we have d(n), = 0.

(2) We recall that the prime A splits completely in K., and cach factor A, is
totally ramified, of degree { + 1, in K,. The localization d(n), is represented
by the cocycle ¢ — 3"—‘;—’51 on Gal(K,,/K,..) ~ G with values in E(R},).
Since £ Y N the curve E has good reduction at X; let E! denote the subgroup
of points reducing to the identity. Since E* is a pro-{-group and € # p, the
cohomology group H'Y(Gy, E'(K,,)), = 0. Hence d(n), is trivial if and only
if it has trivial image in
H‘(Gl, E(FA")),, = HOI“(G¢, E(F,\)p),

where E = E/E" is the reduced curve. The image of d(n), is represented

(e =1)P,

by the cocycle o — reduction of — . Since G, is cyclic, generated

I)
by 0., we see that the local class d(n), is trivial if and only if the point

—1)F, .. . . .
Q. = (o= 1) has trivial reduction (mod A,). Siuce g, acts trivially on

- g x .~
E(F,,) = E(F,), the reduction Q,, is contained in E(F)),-
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Since P, = z oD,, - D¢ -y, and (0¢ = 1)D, = €+ 1 — Tre, we have
s

f+l [+ ¥] )
n= aDm —¥Yn — " Ym
Q= goon (S -3

by Proposition 3.7, part (1). By part (2) of that proposition, we have the
congruence:

£+1 a _(t+ 1)Frob(A,,) — a,y

n ym

P p p

(mod A,)

at all places A, dividing A in K,.. For any o € G, we conjugate this congruence
(mod 07'),) by o to obtain

S -1 -
, (e+ L fiy,,.) _, ((e+ 1)(Frob o=1),,) a,) yo (mod Au).
P P P

But o - Frob{o~'),,) = Frob(\,.) - ¢, so we obtain
(t + 1 a, )
Ol——V¥Yn— —"¥Ym
P p

Hence

((e +1)(Frob A,,) — a,

ay. (mod A,).
—

2 (e 1)(Frob dn) —ae 0 ).

Qn

The reduction P, lies in the ¢,-eigenspace for Froh(f) on E(F)/pE(F).
Since (£+1)Frob(¢) —a, annihilates E(F,), and the ¢,,-eigenspace of p-torsion
is cyclic, we see that Q. = 0 if and only if P. € pE(F,). Since E' is p-
divisible, this is equivalent to the divisibility P € pE(K).,)-

Note We have seen that the class d(1) is always globally trivial, hence is
locally trivial at all places of K. This is in accord with Proposition 6.2,
part (1). For a more interesting example, assume n = ¢ is prime. Then, by
Proposition 4.7, the class d(€) is globally trivial if and only if P e pE(K,)+
E(K). By Proposition 6.2, the class d(¢) is locally trivial at all places v # A
of K, and is locally trivial at A if and only if P, = yx € pE(K,).

7. We now review the relevant results of Tate local duality [T, §2], [M, Ch.
I] which will be used in the proof of Proposition 2.3. In this scction, we let
K, be a local field, with ring of integers O, and finite residue field F) of
characteristic £. We let E be an elliptic curve over K, with good reduction

over O,.
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Let p be a prime, with p # & Then E, is a finite étale group scheme of rank
p? over Ox. The Kummer sequence 0 — E, — E -+ E — 0 induces an
isomorphism :

(7.1) E(K\)/pE(K)) = H' (O, E,),

as H'(O,,E) = 0. Since the subgroup E'(K,) is ¢-divisible, the group
E(K,)/pE(K,) is isomorphic to E(F,)/pE(F,), so has dimension < 2 over
2/p, with equality holding if all the p-torsion on E is rational over K.

The Weil pairing {, } : E, x E, — p, of finite group schemes over K, induces
a cup-product pairing in Galois (= étale, or flat) cohomology:

(7.2) HY(K\, E,) x H'(K\, E,) — H*K\, u,)-

The invariant map of local ;:lass field theory gives a canonical isomorphism
H¥ K, 1,) = Br(K)), = ;1/1 = 2/p2, and Tate’s local duality theorem
states that the resulting pairing of Z/pZ-vector spaces

(7.3) {,): H'(K\, E,) x HY(Kx, E,) — 2/pt

is alternating and non-degenerate (see [M, Ch. 1, Corollary 2.3]).

The Kummer sequence 0 — E, — £ -+ E — 0 gives a short exact sequence
in cohomology:

(14) 0 — E(KJ)/PE(Ky) — H'(K\, E,) — H'(Ky, E), — 0.

The subspace E(K,)/pE(K,) = H'(O\, E,) is isotropic for the pairing (,)
induced by cup-product, as H*(O,, g,) = 0.

Proposition 7.5 The pairing {,) of (7.3) induces a non-degenerate pairing of
2/ pt-vector spaces (of dimension < 2)

(,) : E(I\)/pE(K,) x H'(K, E), — Z/pL.

Proof It suffices to check that the subspace H'(O,, £} is maximal isotropic,
or equivalently, that dim H'(K,, E), = dim E(K,),. This is a general fact,
due to Tate [T, §2] (see [M, Ch. I, Thm. 2.6]); we give a proof using tame
local class field theory. Let K" be the completion of the maximal unramified
extension of K,; since H'(K"/ K\, E) = H(O,, E) = 0, restriction induces
an isomorphism H'(K,,E), = H'(Ky", E)™™. The latter group is iso-
morphic to H'(K", E,)™™*), using the Kummer sequence and the fact that



248 Gross ~ Kolyvagin’s work on modular elliptic curves

E(Ky") is p-divisible. Since the residue field of K" is algebraically closed,
HY(KP, E,)™" = Hom(Gal(K,/K}"), E,)™"™. But the homowmorphism
of Gal(K,/K**) to E, must kill the wild inertia subgroup (as ¢ # p), and
factor through the maximal pro-p quotient of the tame inertia group. This
quotient is isomorphic to Z,(1) = T,6., as a Frob(A)-module, so H'(K,, E),
is isomorphic to Hom(g,, E,)™®. The latter space has the same dimension
as E(F, p =~ E(K,),, by the Weil pairing.

We henceforth assume that the p-torsion on E is rational over K,, so the
Z/pI-vector spaces in Proposition 7.5 each have dimension = 2. In this case
there is an elegant formula for the pairing (, ), which is due to Kolyvagin and
gives an independent proof of its non-degeneracy. To ¢; € E(H,)/pE(K})
we associate the point ¢; = (; G O E(K,),. To ¢, € H'(K,,E,)
we associate a homomorphism ¢, : g, — E,(K,) as above, using tame local
class field theory. Fix a primitive p* root ¢ of 1 in K}, and let ¢5(¢) = e; in
E(K,),. Then

(7.6) gl = {ey, €3},

where {,} is the Weil pairing on E,. A proof of (7.6) may be found in the
appendix of [W].

8. We now apply Proposition 7.5 in the specific local situation which arises
in the study of Heegner points: K is an imaginary quadratic extension of Q
and K, is the completion of K at an inert prime A = (£). The curve E is
defined over @, so Gal(K/Q) = Gal(K,/Q,) = (1,7} acts on the Z/pZ-vector
spaces E(K,)/pE(K,) and H'(K,,E),.

\Ve assume, as usual, that p is odd and that ¢ satisfies the congruences {+1 =
a; = 0 (mod p) of (3.3). Then the eigenspaces E(K,)¥ for 7 each have
dimeunsion 1 over Z/pZ.

Proposition 8.1 (1) The eigenspaces (E(K,)/pE(K)))* and H'(K,, E)} for
Gal(K,/Q,) each have dimension 1 over Z/pZ.
(2) The pairing {,} of (2.3) induces non-degenerate pairings of Z/pZ-vector
spaces

() : (E(K,)/pE(K)))* x H'(K\, E)f — Z/pL.
In particular, if d # 0 lies in H'(K,, E); and s, € (E(K))/pE(K\))* satis-
ties (sx,dy) =0, then 5, =0 (mod pE(K,)).

Proof (1) We have isomorphisms of Gal( K, /Q,)-modules:
E(K\)/pE(K)) < E(K,), and H(K,, E), < Hom(p,(K,), E(K2),)-
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Since £4+1 = 0 (mod p), p(Kx) = mp(Kn)". Hence EUG)F =
(E(K)\)/pE(K)))E = H'(K, E)F, and all eigenspaces have dimension 1.

(2) It suffices to check that the + and — eigenspaces for 7 are orthogonal
under {,). But the Tate pairing satisfies (c[,c}) = {¢1,¢;), as 7 acts trivially
on H*(K,,p,) = Z/plL. Since p is odd, the result follows. (Alternately, one
can use the formula for the Weil pairing: {e],e]} = {e1,€2}” = —{es, €2} and
Kolyvagin's formula (7.6).)

Actually, we will use the following version of Proposition 8.1, which uses the
full power of global class field theory.

Proposition 8.2 Assume that the class d € H'(K , E)% is locally trivial for
all places v # A of K, but that d; # 0 in H'(K,, E);. Then for any class
s in the subgroup Sel(E/K)¥ C H'(K, E,)* we have s, = Resg,(s) =0 in
H\(K,\,E,)*.

Proof The restriction s, lies in (E(K,)/pE(K,))*, by the definition of the
global Selmer group. Hence it suffices, by Proposition 8.1, to show that
(8;, d,\) =0.

To do this, we lift d to a class cin H'(K, E,), which is well-defined modulo the
image of E(K)/pE(K). The global pairing (s, c)x induced by cup-product lies
in H3(K,p,) = Br(K),, and is completely determined by its local components
(sv,¢) € Br(K,), for all places v of K. But {s,,¢,} = 0 forall v #Aasd, =0
in H'(K,, E),. Since the sum of local invariants is zero, by the reciprocity
law of global class field theory, we must have (sx,¢) = {sa,da} = 0 also.

Kolyvagin’s idea is to use global classes d satisfying Proposition 8.2 to bound
the order of Sel( E/K),. The classes d = d(n) are constructed using Heegner
points of conductors n > 1 for K in §4-5, and their local behavior is analyzed
in Proposition 6.2.

9. In this section we give a concrete description of the Selmer group
Sel(E/K), in H'(K, E,), under the hypothesis that p is odd and that the Ga-
lois group of Q(E,) is isomorphic to GLy(2/pZ) =~ Aut(E,). Let L = K(E,);
the hypothesis that D is prime to Np implies that the numberfields & and
Q(E,) are disjoint. Hence G = Gal(L/K) is isomorphic to GLy(2/p2) and
contains the central subgroup Z = (2/pZ)" of homotheties of £,. Since Z has
order p — 1, which is prime to p, H"(Z, E,) = 0 for n > 1. Since p is odd,
Z #1and E? = H(Z,E;) = 0.
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Proposition 9.1 We have H*(G,E,) = 0 for all n > 0. The restriction of
classes gives an isomorphism of Gal(K /Q)-modules:

Res: H\(K,E,) = H'(L,E,) = Homg(Gal(@/L), E,(L)).

Proof Thespectral sequence H™(G/Z, H*(Z, E,)) => H™*"(G, E,), and the
vanishing of H*(Z, E,) for all n > 0, gives the vanishing of the cohomology
of G in E,. (This elegant proof is due to Serre.) The fact that restriction
is an isomorphism follows, as its kernel is /{'(G, E,) and its cokernel injects

into H¥(G, E,).

From Proposition 9.1 we obtain a pairing:
(9.2) [, ]: H'(K,E,) x Gal(@/L) — E,(L),

which satisfies [s7, p°] = [s,0°] = [8, 0] for all s € H} (K, E,), p € Gal(Q/L),
and o € G = Gal(L/K). If [s,p] = 0 for all p € Gal(§/L), then s = 0 by the
injectivity of restriction.

Let § C H'(K, E,) be a finite subgroup (= finite dimensional vector space
over Z2/pZ). Let Gals(Q/L) be the subgroup of p € Gal(Q/L) such that
[s,) = 0 for all s € S, and let Ls be the fixed field of Galg(Q/L). Then Ly

is a finite normal extension of L.

Proposition 9.3 The induced pairing
[,]:8 xGal(Lg/L) — E,(L)

is non-degenerate: it induces an isomorphism of G-modules:
Gal(Ls/L) = Hom(S, E,(L)),

as well as an isomorphism of Gal(A'/Q)-modules:

S = Homg(Gal(Ls/L), Ep(L})).

Proof From the definition of Ls, and the injectivity of restriction proved in
9.1, the pairing [ ,]: SxGal(Ls/L) — E (L) induces injections Gal(Ls/L) —
Hom(S, E;) and S < Homg(Gal(Ls/L), E;). If r = dim(S), this shows that
Gal(Ls/L) is a G-submodule of Hom(S, £,) =~ E;. Since E, is a simple G-
module, E] is semi-simple. Since any submodule of a semi-simple module is
semi-simple, we have an isomorphism of G-modules: Gal(Ls/L) = E; for s <
r. Hence Homg(Gal(Ls/L), E,) =~ (2/pZ)’; since this contains S =~ (2/pZ)
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we must have s > r. Consequently s = r and the injections induced by [, ]
are both isomorphisms.

We apply Proposition 9.3 to the finite subgroup S = Sel(E/K), of I'(K, E,).
For simplicity in notation, we let M = Ls and H = Gal(M/L) = Gal(Ls/L).
We assume, in preparation for the proof of Proposition 2.3, that yx is not
divisible by p in E(K), and let 8yx be its non-zero image in Sel(E/K),. Let
I be the subgroup of H which fixes the subfield L(}yx) = L,y of M. Here
is a field diagram.

, M
L(tyx) H =~ Hom(Sel(E/K),, E,))
BN x
G ~ Aut(E,)
;
Q

Let 7 be a fixed complex conjugation in Gal(M/Q), and let H* and I+ denote
the +1 eigenspace for 7 (acting by conjugation) on H and /.

Proposition 9.5 (1) We have H* = {(th)*: h € H}, I* = {(i)* :i € I},
and H+/I* ~2/p1.
(2) Let s € Sel(E/K);. Then the following are equivalent:

(@) [s,p]=0 forall pe H

(b) {s,pl=0 forall pe H

(c) [sspl=0 forall pe H* - I*

(d) s=0.

Proof (1) Since p is odd, H*
thr™' = thras r* = 1,s0 h"h
H*[I* = (H/I)* = EX ~1/p1.

HY = {h-h:h e H}) Buth =
(th)®. The same works for /*. Finally,

|

(2) Clearly (d) <= (a) = (b) = (c), so it suffices to prove that (c) =
(b) = (a). Since s : H* — E, is a group homomorphism and I* # H*,
the fact that s vanishes on H* — I* implies that it vanishes on the entire
group H*. Since s € Sel(E/K)#, it induces a G-homomorphism / — E,
which maps H* — E* and H~ — EF. If s vanishes on H*, the image
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s(H) is therefore contained in EF. But s(H) is a G-submodule of the simple
module E,, so if s(H) # £, we must have s(H) = 0.

Let A be a prime of K which does not divide Np. Then A is unramified in
M/K; we assume further that A splits completely in L/K and let Ay be a
prime factor of A in M. The Frobenius substitution of Ay in Gal(M/K) lics
in the subgroup H, and its G-orbit - which we denote by Frob(}) - depends
only on the place A of K. We write [s,Frob(A)] = 0 iff {s,p] = 0 for all
p € Frob()).

Proposition 9.6 For s € Sel(E/K), C H'(K, E,) the following are equivalent:

(a) [5,8) = 0, where p is the Frobenius substitution associated tu the factor
Mg of Ain Gal(M/L)=H

(b) [s, Frob(A)] = 0.

(c) sx =0 in H'(K,, E,).

Proof Clearly (a) and (b) are equivalent, as for all 0 € G we have [s,p°] =
[s,0]°. To prove the equivalence of (a) and (c) we assume s, = Py in
E(K,)/pE(K,) = H'(K,, ). Then ,%P,\ is rational over Af,,,, and [s,p] =
(iP,\)““ in E(M,,,)p ~ E(M),. Hence [s,p] = 0 if and only if I, € pE(K,).

10. We now give the proof of Proposition 2.3, treating the eigenspaces of
Sel(E/K), in turn. Recall that the Heegner point yx = P, lies in the ¢
eigenspace for complex conjugation on E(K)/pE(K) (where ¢ is the eigen-
value of the Fricke involution on the eigenform f associated to E). Hence
yx lies in the e-eigenspace of Sel( E/ K),.

Claim 10.1 Sel(E/K);¢=0.

Proof Assume that s € Sel( £/K);*. To show s = 0 it suffices, by Proposition
9.5, to show that [s,p] = 0 for all p € H* - I*. Such elements have the form
p = (7h)?, for some h € H.

Let ¢ be a rational prime which is unramified in the extension M/Q, and
has a factor Ay whose Frobenius substitution is equal to 7h in Gal(AM/Q).
Such primes exist. and have positive density, by Cebotarev’s density theorem.
Then (£) = A 1~ inert in K and A splits completely in L. The Frobenius
substitution of F;,,/F, is equal to (7h)?, so to prove that (s, p] = 0 it suffices,
by Proposition 9.6, to show that s, =0 in H'(K,, ;).
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Let ¢(£) be the global cohomology class in H'(K, ;) constructed in §4, and
let d(£) be its image in H'(K,E),. By Proposition 5.4, both classes lie in
the —e-eigenspace for complex conjugation and, by Proposition 6.2, d(¢) is
locally trivial except at A. We claim that d(€), # 0 in H'(Kx, E),. Indecd,
by Proposition 6.2, d(€), is trivial if and only if yx = P, € p E(K)), or
equivalently, if the prime A splits completely in the extension L(i ¥y ). Since
Frob(\) = p is not in I* = I N H* by hypothesis. this splitting docs not
occur.

We therefore may apply Proposition 8.2, with d = d(¢), to conclude that
s» = 0. Since this argument works to show [s,p] = 0 for any p € H* — I*
(choosing £ correctly) we have shown that s = 0.

Proposition 10.2 Assume that yx is not divisible by p in E(K). Lev {
be a rational prime which is unramified in M/Q and has a factor Ay whose
Frobenius substitution is equal to 7k in Gal(M/Q), with & € H. Then (£) = A
is inert in K and A splits completely in L = K(E,). The following are all
equivalent:

(1) c(¢)=0 in H'(K,E,)

(2) c(€) € Sel(E/K), C H'(K, E,)

(3) P is divisible by p in E(K,)

(4) d(€)=0 in H'(K,E,)

(5) d(&)A=0 in H(K,,E;)

(6) P, = yx is locally divisible by p in E(K})

(7) A" lies in the subgroup It = H* N[ of H*.

Proof We have (1) <= (2) as Sel( EfK);‘ = 0 by 10.1. But ¢(¢) =0 if and
only if P, € p E(I}), so (1) <> (3).

Since (E(K)/pE(K))~* = 0 by 10.1, ¢(£) = 0 is equivalent to d({) = 0. Since
d(¢) is locally trivial except perhaps at A, and II(E/K) ¢ = 0 by 10.1, we
have d(¢) = 0 if and only if d(£), = 0. Conditions (6) and (7) are equivalent
to d(€), = 0, by Proposition 6.2.

Claim 10.3 Sel(E/K), ~1ZfpT - byx.

Proof Let s € Sel(E/K);. To show s is a multiple of §yx it suffices to prove
that [s,p] = 0 for all p € I. For then s € Homg(///1,E,) ~2/pZ - byx. By
the argument of Proposition 9.5, it suffices to show [s,p] = 0 for all p € J*.
These elements all have the form p = (7i)*, for i € I
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Let ¢ be a prime such that ¢(¢) is non-trivial in H'(K, E,); by Proposition
10.2 we may obtain ¢ by insisting that its Frobenius substitution is conjugate
to Th in Gal(M/Q), where h € H and h'** ¢ I*. Then c(£) is not in
Sel(E/K),, so the extension L' = L of L = K(E,) described in (9.3) has
Galois group isomorphic to £, and is disjoint from the extension M/L. A
prime ideal (£) = A of K, which splits completely in L, splits completely in
L’ if and only if Py is locally a p** power in E(K,,) = E(K,), for all factors
’\l' of Ain I{ll.

Let £ be a prime whose Frobenius substitution is conjugate to 7i in Gal(M/Q),
with i € I and whose Frobenius substitution is conjugate to 7j in Gal(L'/Q),
where j € Gal(L’'/L) satisfies j'** # 1. (Since L' N M = L, these two
conditions may be satisfied simultaneously.) We claim that the class d{£¢')
in H'(K, E); is locally trivial for all places v # A, but that d(é(’), # 0. The
local triviality for v # A, X’ follows from Proposition 6.2. Since i € I, the
global class ¢(¢) is zero by Proposition 10.2, and P, is divisible by p in E(K,).
Hence it is locally divisible by p in the completion at a place dividing X’,
and d(€¢'),» = 0 by Proposition 6.2. Finally d(€¢), is trivial if and only if
Py is locally divisible by p in £(K,). But this implies that A splits in L', or
equivalently that {77)? = j"** = 1. This contradicts our hypothesis on j.

We may now apply Proposition 8.2, with d = d(€¢'), to conclude that s, = 0.
Consequently [s, p] = 0, where p = (7i)%. Since this argument works for any
p € I* (choosing £ judiciously) we have shown that s(/*) = 5(/) = 0.

11. When the Heegner point yy has infinite order, but is divisible by p in
E(K), the cohomology classes d(n) constructed by Kolyvagin in §3-4 are
candidates for non-trivial elements in IW(E/K),. Indeed, the condition that
P, € pE(K) is equivalent to ¢(1) = 0. This implies, by Proposition 6.2, that
the classes d(¢) all lie in L E/K),. Similarly, if ¢(¢;) = ¢({,) = 0 then the
class d(£,¢;) lies in WI(E/K),, if c(614;) = c(€€5) = c(€263) = 0, then the
class d(£,8,43) lies in LWI{E/K),, etc. What subgroup of WI(£/K), can be
constructed in this manner?

A related question is the following. Assume that p does not divide the integer
c-[Tyv m, in Conjecture 1.2. Can one show that the class c(n) is non-zero in
HY(K,E,) for some valueof n = {,4;---{,7

12. Let A be an abelian variety of dimension d > 1 over § such that the
algebra Endg(A) ® Q is isomorphic to a totally real numberficld of degree
d. A generalization of the conjecture of Taniyama and Weil states that A is
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the quotient of the Jacobian Jo(N) of some Xo(N). Assume that a surjective
homomorphism ¢ : Jo(N) — A exists, and define the points y, = o((x1) —
(00)) in A(K,) and yx = Trg, x4 in A(K) as in §1. It is easy to show that
the L-function of A over K vanishes to order > d at s = 1. Zagier and 1
proved that the order of vanishing is equal to d if and only if the Heegner
point yx has infinite order in A(K) [GZ; V, 2.4]. Assuming this, Kolyvagin’s
method can be used to show that the finitely generated group A(X') has
rank d and that III(A/K) is finite [K2].

Another generalization is the following. Let x be a complex character of
Gal(K,/K), and define the point y, = Y _x~'(0)y{ in (E(K,)@C)*. Following
Kolyvagin, one can show [B-D] that thae hypothesis y, # 0 implies that the
complex vector space (E(K,) ® C)* has dimension one.

13. Acknowledgements. 1 would like to thank K. Rubin, J.-P. Serre, and J.
Tate for their help.
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Index theory, potential theory, and the Riemann
hypothesis

SHAI HARAN

In this survey we would like to paint, in expressionistic brushstrokes, our hunch
concerning the problem of the Riemann hypothesis. Langlands said it best [38]):
‘... I have exceeded my commission and been seduced into describing things as they
may be and, as seems to me al present, are likely to be. They could be otherwise.
Nonetheless, it is useful to have a conception of the whole to which one can refer
during the daily, close work with technical difficulties, provided one does not become
too attached to it ... I have simply fused my own observations and reflections with
ideas of others and with commonly accepted tenets’.

Let us begin by recalling the well known analogies between number fields and func-
tion fields. For function fields the Riemann hypothesis was solved by Weil, over a fi-
nite field [49], and by Selberg, over the complex numbers [43]. Most attempts to date
in solving the Riemann hypothesis for number fields follow Hilbert's old suggestion:
find an operator, A, acting on a Hilbert space such that (Az,y) + {z, Ay) = (=, ¥),
and such that i( — A) is self adjoint, and identify its eigenvalues with the zeros of
the zeta function. This approach received scrutiny [22; 25], especially after the suc-
cess of Selberg’s theory, where such an operator, the Laplacian, does in fact exists.
Such an operator also exists in the context of Weil’s theory, namely the Frobenius
operator acting on £-adic cohomology (or equivalently, the £th power torsion points
of the Jacobian), but here such a realization exists only over Q;, £ # p, oo, a fact
which hints of the difficulties of this approach to number fields.

Let us review the ‘roundabout’ proof of the Riemann hypothesis for a curve C over
a finite field F,, as elucidated in [23; 40]. Given a function f : p*f — Z of finite
support, we associate with it its Mellin transform f(s) = L, f(p") - p™,s € C, and
a divisor f(A) = ¥, f(p") - A on the surface C x C, where A" are the Frobenius
correspondences given by A = {(z,2*")}, A="=p™-(A"), n20; *denoting
the involution (z,¥)" = (y,7). On the surface C x C we have intersection theory
which is given explicitly for our divisors by:

-
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