1 Algebraic correspondences

Let C be a smooth projective curve defined over an algebraic closed field K. Let Div(C)
be the divisor group, that is the free abelian group generated by the points of C(K). Let
D =" npP be a divisor and define deg(D) = > np. Define

Div?(C) = {D € Div(C) | deg D = 0}.

Given f € K(C)*, let div(f) = > ordp(f)(P) and note that deg(div(f)) = 0. Define
Jac(C) as the quotient of Div?(C) by the subgroup of principal divisor, that is the subgroup
of divisors of the form div(f).

Let C be a curve defined over a field K of positive characteristic p > 0. Let ¢ = p".
Let Frob, : C' — C@ be the Frobenius of C. Recall that if C' is defined by an equation
F(z,y) = 0, then Frob,(z,y) = (29,y9) and C@ is defined by the equation F@(z,y) = 0.

Let X, X', Y be three non singular projective curves defined over a field K. An algebraic
correspondence from X to X’ is a pair

x&y S x
with a and 8 finite. Given an algebraic correspondence, we can define a map
By o a* : Div(X) — Div(X')

that sends
P— Y e@QBQ)

Qea~1(P)

One can easily show that this map sends Div’(X) to Div®(X’) and sends principal divisors
to principal divisors. Hence, passing through the quotient, we can define a map J(fx o o)
from Jac(X) to Jac(X").
Given f: X — X a morphism, let Y = {(z, f(z)) | € X} be the graph of f. Consider
the correspondence
X<y 2 X

and so we can define a map
J(f) = J(mas omy) : Div(X) — Div(X)

that sends
P — f(P).

In the same way, take the algebraic correspondence

Xy Ly



and so we can define a map
J(f) = J(m1. o 73) : Div(X) — Div(X)

that sends
P Y QR
Qef~H(P)
Note that J(f) and J(f) are usually defined as f, and f*.
Let p be a prime and let C be a non-singular projective curve defined over [F,. So,
CP) = C. We can define J(Frob,) : Jac(C) — Jac(C) and J(Frob,)’ : Jac(C) — Jac(C) as
above. We will simply denote these maps by Frob, and Frob;.

Theorem 1.1. Let N > 1. There ezists a polynomial ®n(X,Y) € Z[X,Y] with the
following property: Let C' be the curve defined by ®n(X,Y) = 0. Let C™ be the curve
obtained by removing the non-singular points of C and there is an embedding C™ in a
complete and regular curve C. There is an isomorphism Xo(N) — C (over C). On an open
subset, the map sends z to (j(z),j(Nz)).

Proof. See |1, End of Section 7 and before Theorem 10.3| O

On the open subset of X((N) of the previous theorem, every point z is associated with
a couple (j(E),j(E’)) with E and E’ two elliptic curves, j(F) = j(z), and an isogeny
¢ : E — E' with kernel a cyclic group of order N.

Let (p, N) = 1. We denote by X,(N) the reduction of C' modulo p. Since p is coprime
with NV (we will not prove this, it is difficult!!), we have that Xo(N) is non-singular. On an
open subset of Xo(N)(F,), the points can be seen as couples (j(E),j(E’)) with E and E’
two elliptic curves defined over F,, with an isogeny of kernel a cyclic group of order N.

Question 1.2. Let p be a prime and N be a positive integer coprime with p. Describe

Frob,, + Froby, : Jac(Xo(N)) — Jac(Xo(N)). In particular, can we find a global (that is, an
endomorphism of Jac(Xo(NV))) whose reduction modulo p is Frob, 4 Frob;,?

2 Hecke algebra

Let I' be a subgroup of I'(1) = SL2(Z) of finite index. Let A be the set of integer matrices
of positive determinant. Given a € A, define I'* =T Na~'T'a. One can easily check that
I'* has finite index in I'(1). So, I' = UT"*q; for finitely many «; € T.

Lemma 2.1. If ' = L;["%«y, then T'al’ = ;T aqy.
Proof. Note that
al’al’ = Ujal'a(I' N oflfa)ai = Uj(al'al' N al'a)a; = U;alaq;.

We conclude by multiplying by a1 on the left. O



Let o, 8 € A and assume that I' = L;I"®q; and ' = Lljl“ﬂﬂj. Then,
(Tal’) - ([BT) =Tal' BT = LljFOéFBBj = ui7jFOéOéiﬁBj.

Definition 2.2. Let I' and A be as above. Let H(I', A) be the free abelian group generated
by the elements {T'al’ | a € A}. We want to give to this group a multiplication. Define

(Tal') - (TAT) = Y _Taa;B;T.
ij

So, H(I', A) is a Z-module with a compatible multiplication and then it is an algebra. It is
called an Hecke algebra.

Let I" be a subgroup of I'(1) of finite index and let o be a matrix with integer coefficients
and positive determinant. Let X(I') = I'\H* and X (I'*) = I'*\H*. Since I'* < T, we can
define the map 7= : I'*z — T'z from X(I'*) to X(I'). In the same way, we can define
o - I'*2 = Taz. So, we have the algebraic correspondence

XT) & X1 I X(T)

and we define
T(a) = J(mas om™) : Jac(X(T")) — Jac(X(I)).

If I' = UM, then 77 1(T'2) = {T%;z}. So,
T(a)(Tz) = ZFaaiz.

Remark 2.3. The map H(I',A) — End(Jac(X(I"))) that sends I'al’ to T'(«) is a ring
homomorphism.

3 The morphism T(p)

Now, we show an example of an element of H(I', A), that will be very useful for the next
sections.

Example 3.1. Let I' = T'g(N). Let p be a prime with (p, N) = 1. Let a = <(1) 2) So,

I' = Ul'*q; for some «; € I'. We want to explicitly write these a;. Note that

S {a_l (i Z) alec=0 (mod N) and ad — bec = 1}

_ a bp . o
_{(cp_l d)|c:0 (mod N) and ad bc—l}



and then
Fa:{(a bf;) |lc=0 (mod N) and ad—bpc:l}.

C

1 4
Define «o; = <0 1

)fori:(),l,...,p—l. So,

o a ai+bp _ B _
Fal_{(c d—l—ci>|c_0 (mod N) and ad bpc—l}.

]]\?[ ;f) with z and y two integers such that py+x/N = 1. One can easily check
that 'y # I'*a; if @ # j. We just need to show that o; ¢ I'*a; for i <p—1. lf j #p

and a; = (¢ @ i bp € I'*q;, then @ = 1 and then i + bp = j. We find a contradiction
J c d+ci

Let oy =

a ai+bp
c d+c
this is absurd since the matrix has determinant divisible by p. With similar techniques, we
can easily show that

looking at the equation modulo p. If j = p and «o; = ) € I'*a;, then a = p and

I'= UOSiSpFaai-

Lemma 3.2. Using the notation of the previous example, the matriz (18 (1)> belongs to

p 0\ (wyp =x
(0 1>_<—N 1) aQp-

As before, let I' = T'g(NN) and p be a prime with (p, N) = 1. So, X(I') = Xo(N) and
take o — (é 2) Define T(p) = T(a) : Jac(Xo(N)) — Jac(Xo(N)).

lacay,.

Proof.

O]

Lemma 3.3. Let (j(E),j(E') € Xo(N). Let ¢ : E — E’ be the isogeny with ker ¢ =

Z/NZ. We have
P

T(p)(H(E),J(E") = Y _(I(E/S:), j(E'[$(5:)))

=0
where {S; | i =0,...p} is the set of subgroups of E of order p.

Proof. Let 7 € C be such that £~ C/ < 1,7 >. By definition,
P
T(p)(Tz) = Z lao;z
i=0

4



where «; are defined in Example 3.1. For 0 <¢<p—1,

Faanzf’(l Z)T:FT+Z.
0 p P

Let S; be the subgroup of C/ < 1,7 > generated by (7 + i)/p, that is a group of order
p. So, the elliptic curve E/S; is isomorphic to C/ < 1,7 + i/p >. Hence, l'aq;T can be
associated to the couple (j(E/S;),j(E'/$(S;))). Let S, be the subgroup of C/ < 1,7 >
generated by 1/p, that is a group of order p. By Lemma 3.2, I'a,,7 can be associated with
the couple (j(E/Sp), (E'/¢(Sp))). Note that the subgroups of order p in Z/p x Z/p are
p+ 1 and then the set {S; | 0 < i < p} is the set of all the subgroups of C/ < 1,7 > of
order p. In conclusion

p

T(p)(r) = T(p)(G(E), J(E) = Y _(i(E/Si), j(E'/$(S)))

1=0

where S; are the subgroups of order p of E. O

4 The Eichler-Shimura congruence

Lemma 4.1. Let q be the power of a prime and let E be an elliptic curve defined over E.

e The map Frob, : E — E(@) has degree q and it is purely inseparable. If there is an
elliptic curve E' defined over Fy, and ¢ : E — E' of degree q and purely inseparable,
then E' is isomorphic to E(9.

e The multiplication by q has degree ¢°.
Recall that @p Cc C.

Theorem 4.2. Let (p, N) = 1. Let Xo(N) be the reduction modulo p and T(p) be the
reduction of T'(p). Then,
Frob, + Frob;, = T(p).

Note that these maps are from Jac(Xo(N)) to itself.

Remark 4.3. With T'(p) we mean the following. Let R € Jac(Xo(N))(F,). Let R €
Jac(Xo(N))(Qp) be alift of R. So, T'(p)(R) € Jac(Xo(N))(Qp) and define T'(p)(R) as the
reduction modulo p of T'(p)(R). During the proof of the theorem we will show that this
definition does not depend on the choice of the lift of R and then T(p) is well-defined.

Proof. Let R € Xo(N)(F,). Since we are working with morphisms of abelian varieties, we
e

can focus on points of the form (j(E), j(E')) as above. Note that E and E’ are defined over
F,. Ignoring finitely many points, we can assume that j(E) ¢ Fp2. If we prove the identity

5



for these points, then we are done. Consider the multiplication by p in E. This map has
degree p? and has kernel with cardinality 1 or p.
If it has trivial kernel, then the multiplication by p is purely inseparable and then F is

isomorphic to B So, j(E)P* = j(E(pz)) = j(£) and then j(E) € [z, contradiction. So,
ker(p : E — E) has order p.

Let £ 2% E' be alift of E 5 E to Qp- The reduction map E[p] — E[p] has kernel of
order p and let S” be this group. As above, let {S; | i =0,...p} be the set of p-subgroups
of E. Reordering the indexes, we can assume S’ = Sy. Counsider ¢y : E — E/Sp, that is
an isogeny with kernel Sp. Let ¢f : E/So — E be the dual of ¢g and ¢ o ¢g = [p]. Since
[p] has degree p? and the reduction modulo p of ¢y and ¢f) have degree at most p, we have
that reduction modulo p of ¢ has degree p. Moreover, it is purely inseparable (since it has
trivial kernel). Hence, E /Sy is isomorphic to B In the same way, E’/¢(Sp) is isomorphic

to F(p) . Hence,

Frob(j(E), j(E")) = GEY, j(EP) = GE), jE™)) = ((E[S0), (EH(50))).

Let 1 < i < p. Counsider ¢; : E — E/S;. This map has degree p and its reduction
modulo p is separable since it has kernel of cardinality p. Let ¢/ be the dual of ¢; and then

with ¢; o ¢}, = [p]. So, the reduction E/S; & E has degree p and trivial kernel. As above,
E is isomorphic to (E/S;)®). Hence,

Froby (j(E/S:), j(E'[$i(S:))) = (7(E), i(E"))

and (j(E/S:), j(E'/$:i(Si))) < Frob),(j(E), j(E")). Therefore,

> G(E/S:), j(E]$:(S:))) < Frob,((j(E), i (E"))).

1<i<p

The divisors of the LHS and of the RHS are both positive and of degree p (since Frob,, has
degree p) and then

> (G(E/S:), j(E/$:(Si))) = Frob,(((E), i (E")).

1<i<p

So,

Frob,((§(E), j(E"))) + Froby,((E), j(E")) = Y (i(E/Si),i(E[$:(5)).

0<i<p



By the previous section,

p
T(p)(§(E), J(E) = Y _(I(E/S:), j(E'/$:(5:))

1=0

and so we are done. O

5 Comments on References

For the basic facts, see |2, Section 2 & 3]. For more details on Hecke algebra, see [1, Section
5]. The second part of the note is taken from [1, Section 10].
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