1 Algebraic correspondences

Let C be a smooth projective curve defined over an algebraic closed field K. Let $\operatorname{Div}(C)$ be the divisor group, that is the free abelian group generated by the points of $C(K)$. Let $D=\sum n_{P} P$ be a divisor and define $\operatorname{deg}(D)=\sum n_{P}$. Define

$$
\operatorname{Div}^{0}(C)=\{D \in \operatorname{Div}(C) \mid \operatorname{deg} D=0\}
$$

Given $f \in K(C)^{*}$, let $\operatorname{div}(f)=\sum \operatorname{ord}_{P}(f)(P)$ and note that $\operatorname{deg}(\operatorname{div}(f))=0$. Define $\operatorname{Jac}(C)$ as the quotient of $\operatorname{Div}^{0}(C)$ by the subgroup of principal divisor, that is the subgroup of divisors of the form $\operatorname{div}(f)$.

Let C be a curve defined over a field K of positive characteristic $p>0$. Let $q=p^{r}$. Let $\mathrm{Frob}_{q}: C \rightarrow C^{(q)}$ be the Frobenius of C. Recall that if C is defined by an equation $F(x, y)=0$, then $\operatorname{Frob}_{q}(x, y)=\left(x^{q}, y^{q}\right)$ and $C^{(q)}$ is defined by the equation $F^{(q)}(x, y)=0$.

Let X, X^{\prime}, Y be three non singular projective curves defined over a field K. An algebraic correspondence from X to X^{\prime} is a pair

$$
X \stackrel{\alpha}{\leftarrow} Y \xrightarrow{\beta} X^{\prime}
$$

with α and β finite. Given an algebraic correspondence, we can define a map

$$
\beta_{*} \circ \alpha^{*}: \operatorname{Div}(X) \rightarrow \operatorname{Div}\left(X^{\prime}\right)
$$

that sends

$$
P \rightarrow \sum_{Q \in \alpha^{-1}(P)} e_{\phi}(Q) \beta(Q) .
$$

One can easily show that this map sends $\operatorname{Div}^{0}(X)$ to $\operatorname{Div}^{0}\left(X^{\prime}\right)$ and sends principal divisors to principal divisors. Hence, passing through the quotient, we can define a map $J\left(\beta_{*} \circ \alpha^{*}\right)$ from $\operatorname{Jac}(X)$ to $\operatorname{Jac}\left(X^{\prime}\right)$.

Given $f: X \rightarrow X$ a morphism, let $Y=\{(x, f(x)) \mid x \in X\}$ be the graph of f. Consider the correspondence

$$
X \stackrel{\pi_{1}}{\rightleftarrows} Y \xrightarrow{\pi_{2}} X
$$

and so we can define a map

$$
J(f)=J\left(\pi_{2 *} \circ \pi_{1}^{*}\right): \operatorname{Div}(X) \rightarrow \operatorname{Div}(X)
$$

that sends

$$
P \rightarrow f(P) .
$$

In the same way, take the algebraic correspondence

$$
X \stackrel{\pi_{2}}{\rightleftarrows} Y \xrightarrow{\pi_{1}} X
$$

and so we can define a map

$$
J(f)^{\prime}=J\left(\pi_{1 *} \circ \pi_{2}^{*}\right): \operatorname{Div}(X) \rightarrow \operatorname{Div}(X)
$$

that sends

$$
P \rightarrow \sum_{Q \in f^{-1}(P)} e_{f}(Q) Q
$$

Note that $J(f)$ and $J(f)^{\prime}$ are usually defined as f_{*} and f^{*}.
Let p be a prime and let C be a non-singular projective curve defined over \mathbb{F}_{p}. So, $C^{(p)}=C$. We can define $J\left(\operatorname{Frob}_{p}\right): \operatorname{Jac}(C) \rightarrow \operatorname{Jac}(C)$ and $J\left(\operatorname{Frob}_{p}\right)^{\prime}: \operatorname{Jac}(C) \rightarrow \operatorname{Jac}(C)$ as above. We will simply denote these maps by Frob_{p} and $\mathrm{Frob}_{p}^{\prime}$.
Theorem 1.1. Let $N \geq 1$. There exists a polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ with the following property: Let C be the curve defined by $\Phi_{N}(X, Y)=0$. Let C^{ns} be the curve obtained by removing the non-singular points of C and there is an embedding C^{ns} in a complete and regular curve \tilde{C}. There is an isomorphism $X_{0}(N) \rightarrow \tilde{C}$ (over \mathbb{C}). On an open subset, the map sends z to $(j(z), j(N z))$.

Proof. See [1, End of Section 7 and before Theorem 10.3]
On the open subset of $X_{0}(N)$ of the previous theorem, every point z is associated with a couple $\left(j(E), j\left(E^{\prime}\right)\right)$ with E and E^{\prime} two elliptic curves, $j(E)=j(z)$, and an isogeny $\phi: E \rightarrow E^{\prime}$ with kernel a cyclic group of order N.

Let $(p, N)=1$. We denote by $\overline{X_{0}(N)}$ the reduction of \tilde{C} modulo p. Since p is coprime with N (we will not prove this, it is difficult!!), we have that $\overline{X_{0}(N)}$ is non-singular. On an open subset of $\overline{X_{0}(N)}\left(\overline{\mathbb{F}}_{p}\right)$, the points can be seen as couples $\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)$ with \bar{E} and $\overline{E^{\prime}}$ two elliptic curves defined over $\overline{\mathbb{F}}_{p}$ with an isogeny of kernel a cyclic group of order N.

Question 1.2. Let p be a prime and N be a positive integer coprime with p. Describe $\operatorname{Frob}_{p}+\operatorname{Frob}_{p}^{\prime}: \operatorname{Jac}\left(\overline{X_{0}(N)}\right) \rightarrow \operatorname{Jac}\left(\overline{X_{0}(N)}\right)$. In particular, can we find a global (that is, an endomorphism of $\operatorname{Jac}\left(X_{0}(N)\right)$) whose reduction modulo p is $\mathrm{Frob}_{p}+\mathrm{Frob}_{p}^{\prime}$?

2 Hecke algebra

Let Γ be a subgroup of $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$ of finite index. Let Δ be the set of integer matrices of positive determinant. Given $\alpha \in \Delta$, define $\Gamma^{\alpha}=\Gamma \cap \alpha^{-1} \Gamma \alpha$. One can easily check that Γ^{α} has finite index in $\Gamma(1)$. So, $\Gamma=\sqcup \Gamma^{\alpha} \alpha_{i}$ for finitely many $\alpha_{i} \in \Gamma$.

Lemma 2.1. If $\Gamma=\sqcup_{i} \Gamma^{\alpha} \alpha_{i}$, then $\Gamma \alpha \Gamma=\sqcup_{i} \Gamma \alpha \alpha_{i}$.
Proof. Note that

$$
\alpha \Gamma \alpha \Gamma=\sqcup_{i} \alpha \Gamma \alpha\left(\Gamma \cap \alpha^{-1} \Gamma \alpha\right) \alpha_{i}=\sqcup_{i}(\alpha \Gamma \alpha \Gamma \cap \alpha \Gamma \alpha) \alpha_{i}=\sqcup_{i} \alpha \Gamma \alpha \alpha_{i} .
$$

We conclude by multiplying by α^{-1} on the left.

Let $\alpha, \beta \in \Delta$ and assume that $\Gamma=\sqcup_{i} \Gamma^{\alpha} \alpha_{i}$ and $\Gamma=\sqcup_{j} \Gamma^{\beta} \beta_{j}$. Then,

$$
(\Gamma \alpha \Gamma) \cdot(\Gamma \beta \Gamma)=\Gamma \alpha \Gamma \beta \Gamma=\sqcup_{j} \Gamma \alpha \Gamma \beta \beta_{j}=\sqcup_{i, j} \Gamma \alpha \alpha_{i} \beta \beta_{j} .
$$

Definition 2.2. Let Γ and Δ be as above. Let $H(\Gamma, \Delta)$ be the free abelian group generated by the elements $\{\Gamma \alpha \Gamma \mid \alpha \in \Delta\}$. We want to give to this group a multiplication. Define

$$
(\Gamma \alpha \Gamma) \cdot(\Gamma \beta \Gamma)=\sum_{i, j} \Gamma \alpha \alpha_{i} \beta \beta_{j} \Gamma .
$$

So, $H(\Gamma, \Delta)$ is a \mathbb{Z}-module with a compatible multiplication and then it is an algebra. It is called an Hecke algebra.

Let Γ be a subgroup of $\Gamma(1)$ of finite index and let α be a matrix with integer coefficients and positive determinant. Let $X(\Gamma)=\Gamma \backslash \mathcal{H}^{*}$ and $X\left(\Gamma^{\alpha}\right)=\Gamma^{\alpha} \backslash \mathcal{H}^{*}$. Since $\Gamma^{\alpha}<\Gamma$, we can define the map $\pi: \Gamma^{\alpha} z \rightarrow \Gamma z$ from $X\left(\Gamma^{\alpha}\right)$ to $X(\Gamma)$. In the same way, we can define $\pi_{\alpha}: \Gamma^{\alpha} z \rightarrow \Gamma \alpha z$. So, we have the algebraic correspondence

$$
X(\Gamma) \stackrel{\pi}{\leftarrow} X\left(\Gamma^{\alpha}\right) \xrightarrow{\pi_{\alpha}} X(\Gamma)
$$

and we define

$$
T(\alpha)=J\left(\pi_{\alpha *} \circ \pi^{*}\right): \operatorname{Jac}(X(\Gamma)) \rightarrow \operatorname{Jac}(X(\Gamma))
$$

If $\Gamma=\sqcup \Gamma^{\alpha} \alpha_{i}$, then $\pi^{-1}(\Gamma z)=\left\{\Gamma^{\alpha} \alpha_{i} z\right\}$. So,

$$
T(\alpha)(\Gamma z)=\sum_{i} \Gamma \alpha \alpha_{i} z
$$

Remark 2.3. The map $H(\Gamma, \Delta) \rightarrow \operatorname{End}(\operatorname{Jac}(X(\Gamma)))$ that sends $\Gamma \alpha \Gamma$ to $T(\alpha)$ is a ring homomorphism.

3 The morphism T(p)

Now, we show an example of an element of $H(\Gamma, \Delta)$, that will be very useful for the next sections.

Example 3.1. Let $\Gamma=\Gamma_{0}(N)$. Let p be a prime with $(p, N)=1$. Let $\alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$. So, $\Gamma=\sqcup \Gamma^{\alpha} \alpha_{i}$ for some $\alpha_{i} \in \Gamma$. We want to explicitly write these α_{i}. Note that

$$
\begin{aligned}
& \alpha^{-1} \Gamma \alpha=\left\{\left.\alpha^{-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \alpha \right\rvert\, c \equiv 0 \quad(\bmod N) \text { and } a d-b c=1\right\} \\
& =\left\{\left.\left(\begin{array}{cc}
a & b p \\
c p^{-1} & d
\end{array}\right) \right\rvert\, c \equiv 0 \quad(\bmod N) \text { and } a d-b c=1\right\}
\end{aligned}
$$

and then

$$
\Gamma^{\alpha}=\left\{\left.\left(\begin{array}{cc}
a & b p \\
c & d
\end{array}\right) \right\rvert\, c \equiv 0 \quad(\bmod N) \text { and } a d-b p c=1\right\} .
$$

Define $\alpha_{i}=\left(\begin{array}{ll}1 & i \\ 0 & 1\end{array}\right)$ for $i=0,1, \ldots, p-1$. So,

$$
\Gamma^{\alpha} \alpha_{i}=\left\{\left.\left(\begin{array}{cc}
a & a i+b p \\
c & d+c i
\end{array}\right) \right\rvert\, c \equiv 0 \quad(\bmod N) \text { and } a d-b p c=1\right\} .
$$

Let $\alpha_{p}=\left(\begin{array}{cc}p & -x \\ N & y\end{array}\right)$ with x and y two integers such that $p y+x N=1$. One can easily check that $\Gamma^{\alpha} \alpha_{i} \neq \Gamma^{\alpha} \alpha_{j}$ if $i \neq j$. We just need to show that $\alpha_{j} \notin \Gamma^{\alpha} \alpha_{i}$ for $i \leq p-1$. If $j \neq p$ and $\alpha_{j}=\left(\begin{array}{cc}a & a i+b p \\ c & d+c i\end{array}\right) \in \Gamma^{\alpha} \alpha_{i}$, then $a=1$ and then $i+b p=j$. We find a contradiction looking at the equation modulo p. If $j=p$ and $\alpha_{j}=\left(\begin{array}{cc}a & a i+b p \\ c & d+c i\end{array}\right) \in \Gamma^{\alpha} \alpha_{i}$, then $a=p$ and this is absurd since the matrix has determinant divisible by p. With similar techniques, we can easily show that

$$
\Gamma=\sqcup_{0 \leq i \leq p} \Gamma^{\alpha} \alpha_{i} .
$$

Lemma 3.2. Using the notation of the previous example, the matrix $\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right)$ belongs to $\Gamma \alpha \alpha_{p}$.
Proof.

$$
\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
y p & x \\
-N & 1
\end{array}\right) \alpha \alpha_{p} .
$$

As before, let $\Gamma=\Gamma_{0}(N)$ and p be a prime with $(p, N)=1$. So, $X(\Gamma)=X_{0}(N)$ and take $\alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$. Define $T(p)=T(\alpha): \operatorname{Jac}\left(X_{0}(N)\right) \rightarrow \operatorname{Jac}\left(X_{0}(N)\right)$.
Lemma 3.3. Let $\left(j(E), j\left(E^{\prime}\right)\right) \in X_{0}(N)$. Let $\phi: E \rightarrow E^{\prime}$ be the isogeny with $\operatorname{ker} \phi=$ $\mathbb{Z} / N \mathbb{Z}$. We have

$$
T(p)\left(j(E), j\left(E^{\prime}\right)\right)=\sum_{i=0}^{p}\left(j\left(E / S_{i}\right), j\left(E^{\prime} / \phi\left(S_{i}\right)\right)\right)
$$

where $\left\{S_{i} \mid i=0, \ldots p\right\}$ is the set of subgroups of E of order p.
Proof. Let $\tau \in \mathbb{C}$ be such that $E \cong \mathbb{C} /<1, \tau\rangle$. By definition,

$$
T(p)(\Gamma z)=\sum_{i=0}^{p} \Gamma \alpha \alpha_{i} z
$$

where α_{i} are defined in Example 3.1. For $0 \leq i \leq p-1$,

$$
\Gamma \alpha \alpha_{i} \tau=\Gamma\left(\begin{array}{ll}
1 & i \\
0 & p
\end{array}\right) \tau=\Gamma \frac{\tau+i}{p} .
$$

Let S_{i} be the subgroup of $\mathbb{C} /<1, \tau>$ generated by $(\tau+i) / p$, that is a group of order p. So, the elliptic curve E / S_{i} is isomorphic to $\mathbb{C} /\langle 1, \tau+i / p\rangle$. Hence, $\Gamma \alpha \alpha_{i} \tau$ can be associated to the couple $\left(j\left(E / S_{i}\right), j\left(E^{\prime} / \phi\left(S_{i}\right)\right)\right)$. Let S_{p} be the subgroup of $\mathbb{C} /<1, \tau>$ generated by $1 / p$, that is a group of order p. By Lemma 3.2, $\Gamma \alpha \alpha_{p} \tau$ can be associated with the couple $\left(j\left(E / S_{p}\right), j\left(E^{\prime} / \phi\left(S_{p}\right)\right)\right)$. Note that the subgroups of order p in $\mathbb{Z} / p \times \mathbb{Z} / p$ are $p+1$ and then the set $\left\{S_{i} \mid 0 \leq i \leq p\right\}$ is the set of all the subgroups of $\mathbb{C} /<1, \tau>$ of order p. In conclusion

$$
T(p)(\tau)=T(p)\left(j(E), j\left(E^{\prime}\right)\right)=\sum_{i=0}^{p}\left(j\left(E / S_{i}\right), j\left(E^{\prime} / \phi\left(S_{i}\right)\right)\right)
$$

where S_{i} are the subgroups of order p of E.

4 The Eichler-Shimura congruence

Lemma 4.1. Let q be the power of a prime and let E be an elliptic curve defined over $\overline{\mathbb{F}_{q}}$.

- The map $\operatorname{Frob}_{q}: E \rightarrow E^{(q)}$ has degree q and it is purely inseparable. If there is an elliptic curve E^{\prime} defined over $\overline{\mathbb{F}_{q}}$, and $\phi: E \rightarrow E^{\prime}$ of degree q and purely inseparable, then E^{\prime} is isomorphic to $E^{(q)}$.
- The multiplication by q has degree q^{2}.

Recall that $\overline{\mathbb{Q}_{p}} \subseteq \mathbb{C}$.
Theorem 4.2. Let $(p, N)=1$. Let $\overline{X_{0}(N)}$ be the reduction modulo p and $\bar{T}(p)$ be the reduction of $T(p)$. Then,

$$
\operatorname{Frob}_{p}+\operatorname{Frob}_{p}^{\prime}=\bar{T}(p)
$$

Note that these maps are from $\operatorname{Jac}\left(\overline{X_{0}(N)}\right)$ to itself.
Remark 4.3. With $\overline{T(p)}$ we mean the following. Let $\bar{R} \in \operatorname{Jac}\left(\overline{X_{0}(N)}\right)\left(\overline{\mathbb{F}_{p}}\right)$. Let $R \in$ $\operatorname{Jac}\left(X_{0}(N)\right)\left(\overline{\mathbb{Q}_{p}}\right)$ be a lift of R. So, $T(p)(R) \in \operatorname{Jac}\left(X_{0}(N)\right)\left(\overline{\mathbb{Q}_{p}}\right)$ and define $\bar{T}(p)(\bar{R})$ as the reduction modulo p of $T(p)(R)$. During the proof of the theorem we will show that this definition does not depend on the choice of the lift of \bar{R} and then $\overline{T(p)}$ is well-defined.

Proof. Let $\bar{R} \in \overline{X_{0}(N)}\left(\overline{\mathbb{F}_{p}}\right)$. Since we are working with morphisms of abelian varieties, we can focus on points of the form $\left(j(\bar{E}), j\left(\bar{E}^{\prime}\right)\right)$ as above. Note that \bar{E} and $\overline{E^{\prime}}$ are defined over $\overline{\mathbb{F}_{p}}$. Ignoring finitely many points, we can assume that $j(\bar{E}) \notin \mathbb{F}_{p^{2}}$. If we prove the identity
for these points, then we are done. Consider the multiplication by p in \bar{E}. This map has degree p^{2} and has kernel with cardinality 1 or p.

If it has trivial kernel, then the multiplication by p is purely inseparable and then \bar{E} is isomorphic to $\bar{E}^{\left(p^{2}\right)}$. So, $j(\bar{E})^{p^{2}}=j\left(\bar{E}^{\left(p^{2}\right)}\right)=j(\bar{E})$ and then $j(\bar{E}) \in \mathbb{F}_{p^{2}}$, contradiction. So, $\operatorname{ker}(p: \bar{E} \rightarrow \bar{E})$ has order p.

Let $E \xrightarrow{\phi} E^{\prime}$ be a lift of $\bar{E} \xrightarrow{\bar{\phi}} \overline{E^{\prime}}$ to $\overline{\mathbb{Q}_{p}}$. The reduction map $E[p] \rightarrow \bar{E}[p]$ has kernel of order p and let S^{\prime} be this group. As above, let $\left\{S_{i} \mid i=0, \ldots p\right\}$ be the set of p-subgroups of E. Reordering the indexes, we can assume $S^{\prime}=S_{0}$. Consider $\phi_{0}: E \rightarrow E / S_{0}$, that is an isogeny with kernel S_{0}. Let $\phi_{0}^{\prime}: E / S_{0} \rightarrow E$ be the dual of ϕ_{0} and $\phi \circ \phi_{0}=[p]$. Since $[p]$ has degree p^{2} and the reduction modulo p of ϕ_{0} and ϕ_{0}^{\prime} have degree at most p, we have that reduction modulo p of ϕ_{0} has degree p. Moreover, it is purely inseparable (since it has trivial kernel). Hence, $\overline{E / S_{0}}$ is isomorphic to $\bar{E}^{(p)}$. In the same way, $\overline{E^{\prime} / \phi\left(S_{0}\right)}$ is isomorphic to ${\overline{E^{\prime}}}^{(p)}$. Hence,

$$
\operatorname{Frob}\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)=\left(j(\bar{E})^{p}, j\left(\overline{E^{\prime}}\right)^{p}\right)=\left(j\left(\bar{E}^{(p)}\right), j\left(\overline{E^{\prime}}(p)\right)\right)=\left(j\left(\overline{E / S_{0}}\right), j\left(\overline{E^{\prime} / \phi\left(S_{0}\right)}\right)\right)
$$

Let $1 \leq i \leq p$. Consider $\phi_{i}: E \rightarrow E / S_{i}$. This map has degree p and its reduction modulo p is separable since it has kernel of cardinality p. Let ϕ_{i}^{\prime} be the dual of ϕ_{i} and then

$$
E \xrightarrow{\phi_{i}} E / S_{i} \xrightarrow{\phi_{i}^{\prime}} E
$$

with $\phi_{i} \circ \phi_{i}^{\prime}=[p]$. So, the reduction $\overline{E / S_{i}} \stackrel{\overline{\phi_{i}^{\prime}}}{\longrightarrow} \bar{E}$ has degree p and trivial kernel. As above, \bar{E} is isomorphic to $\overline{\left(E / S_{i}\right)^{(p)}}$. Hence,

$$
\operatorname{Frob}_{p}\left(j\left(\overline{E / S_{i}}\right), j\left(\overline{E^{\prime} / \phi_{i}\left(S_{i}\right)}\right)\right)=\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)
$$

and $\left(j\left(\overline{E / S_{i}}\right), j\left(\overline{E^{\prime} / \phi_{i}\left(S_{i}\right)}\right)\right)<\operatorname{Frob}_{p}^{\prime}\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)$. Therefore,

$$
\sum_{1 \leq i \leq p}\left(j\left(\overline{E / S_{i}}\right), j\left(\overline{E / \phi_{i}\left(S_{i}\right)}\right)\right)<\operatorname{Frob}_{p}^{\prime}\left(\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)\right) .
$$

The divisors of the LHS and of the RHS are both positive and of degree p (since Frob ${ }_{p}$ has degree p) and then

$$
\sum_{1 \leq i \leq p}\left(j\left(\overline{E / S_{i}}\right), j\left(\overline{E / \phi_{i}\left(S_{i}\right)}\right)\right)=\operatorname{Frob}_{p}^{\prime}\left(\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)\right)
$$

So,

$$
\operatorname{Frob}_{p}\left(\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)\right)+\operatorname{Frob}_{p}^{\prime}\left(\left(j(\bar{E}), j\left(\overline{E^{\prime}}\right)\right)\right)=\sum_{0 \leq i \leq p}\left(j\left(\overline{E / S_{i}}\right), j\left(\overline{E / \phi_{i}\left(S_{i}\right)}\right)\right)
$$

By the previous section,

$$
T(p)\left(j(E), j\left(E^{\prime}\right)\right)=\sum_{i=0}^{p}\left(j\left(E / S_{i}\right), j\left(E^{\prime} / \phi_{i}\left(S_{i}\right)\right)\right)
$$

and so we are done.

5 Comments on References

For the basic facts, see [2, Section $2 \& 3]$. For more details on Hecke algebra, see [1, Section $5]$. The second part of the note is taken from [1, Section 10].

References

[1] James S. Milne. Modular functions and modular forms (v1.31), 2017. Available at www.jmilne.org/math/.
[2] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.

