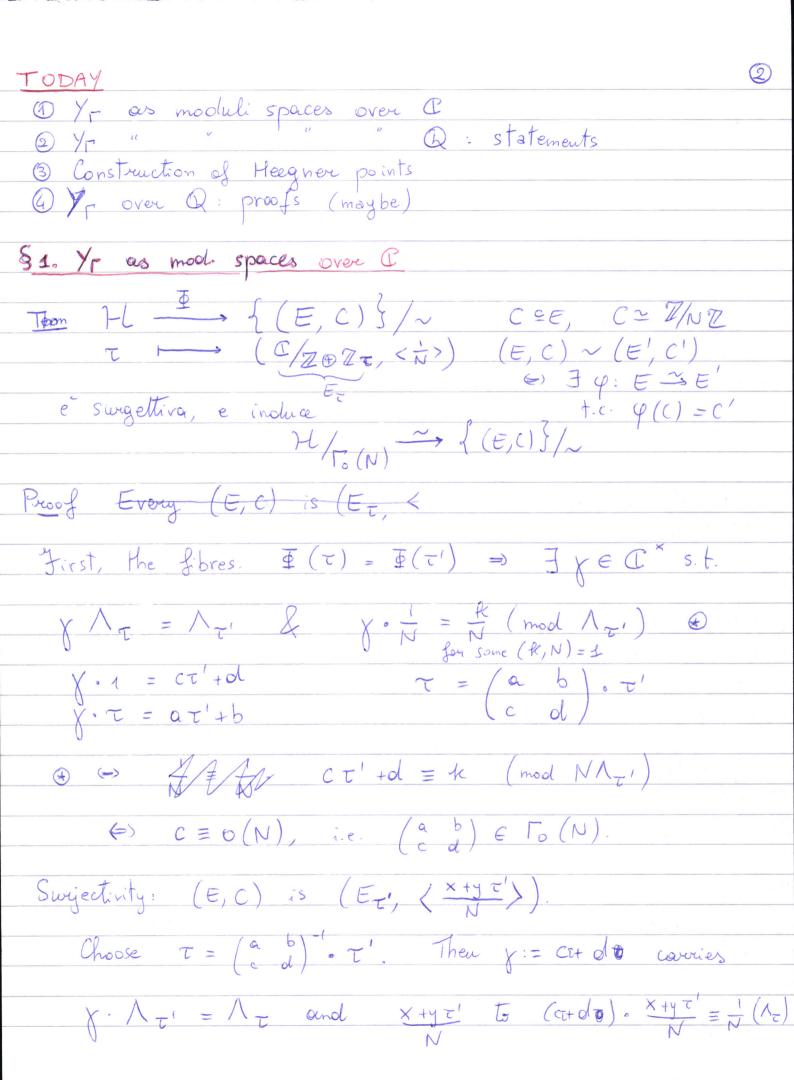
Last week we defined an action of St2 (Z) on H := {zec | Re z >0} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ T = \frac{a + b}{c + d}$ We considered the groups M(N) = Ker (SL2(Z) -> SL2(Z/NZ)) $\Gamma_1(N) = \begin{cases} \begin{pmatrix} a & b \\ e & d \end{pmatrix} \equiv \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mod N \end{cases}$ $\Gamma_0(N) = \begin{cases} (a & b) = (* *) & mod N \end{cases}$ We obtained (affine) Riemann surfaces $Y_{\Gamma} := \mathcal{H}/\Gamma$; for $\Gamma = \Gamma(N)$, $\Gamma_1(N)$, $\Gamma_0(N)$, these are denoted by Y(N), Y1(N), Y0 (N). The corresponding compact surfaces are denoted by X(N), X, (N), Xo(N) We computed the function fields of these: letting $\int_{-\infty}^{\infty} (T) = \int_{-\infty}^{\infty} \left(\frac{c + d\tau}{N} \right) \quad \text{for } v = (c, d) \in (2/\sqrt{2})^{2}$ equal for $\pm v$ obtained $C(j, j^{\nu})$



RmK These conditions imply $j(E) \in K$, $j(E/C) \in K$.

But they are stronger: consider $E = E/C = y^2 = x^3 + x$ and $C = \ker [2-i]$. Then j(E), $j(E/C) \in \Omega$, but C is NOT Galois-stable. Thus, $E \to E/C$ bloes NOT

give a point of $Y_0(5)(\Omega)$.

We say that E is MODULAR if FN>0 and a non-constant algebraic morphism, defined over Q, from Xo (N) to E. These is called a MODULAR PARAMETRISATION; it can be chosen so that $\psi(\infty) = 0$

Thm (Wiles: Breuil - Conrod - Dismond - Touylon)
Every E/Q is modular; the optimal N coincides with
the conductor of E.

Setup E/Q an ell. curve, Eo without cm, N = constrator E, $\varphi : X_0(N) \rightarrow E$ a modular

parametrisation, K = Q(V-D) a quadratic field

Satisfying the $D \neq 3$, 4

Heagner condition: every prime ℓ dividing N is split in K,

hence $N = \ell \cdot \ell \cdot \ell$ for some $\ell \cdot \ell \cdot \ell$ with $\ell \cdot \ell \cdot \ell \cdot \ell = \ell \cdot \ell \cdot \ell$ $\ell \cdot \ell \cdot \ell \cdot \ell \cdot \ell \cdot \ell$ Prime to N

Def. (Heegner points) Fix a positive integer n, let

On := Z + n Ox be the order of conductor n, and let

eVn:= eVnOn. Then (eV, n) = 1, hence eVn is an invertible

ideal of On.

Consider On/eVn = On/eVn On = On+eV = O/eV = Z/NZ.

Let $E = \mathbb{C}/\mathbb{O}_n$, and $\mathbb{G}_n = eV_n^{-1}/\mathbb{O}_n \cong \mathbb{Z}/N\mathbb{Z} \subset E$, and $E/\mathbb{G}_n \cong \mathbb{C}/\mathbb{G}_n^{-1} = :E'$. Note that E, \mathbb{G}_n and E' are all defined over K_n : this is because $\mathbb{G}_n = E[eV_n]$, and the action of eV_n on E is def'd over K_n .

Hence (E, gn) = 2 E Xo(N) (Kn).

We may then set yn := 4 (xn) and Ym, K := Tukn/K (q(xn)) These are the famous Heegner points! §4. Moduli spaces over Q: proofs The Proof of a weak version $\mathbb{Q}\left(X_{o}(N)\right) = \mathbb{Q}\left(j(z), j(Nz)\right)$ On an open subscheme, U = {FN(x,y) = 0}, where FN (x, y) =0 is the minpoly of jn over y m) on an open, $(f(E), f(E')) \in K^2$ s.t. f(E) with $j(E') = j(N\tau), \quad j(E) = j(\tau).$ $E \simeq \mathbb{C}/\qquad \simeq \mathbb{C}$ $\mathbb{Z} \oplus \tau \mathbb{Z} \qquad \mathbb{Z} \oplus \mathbb{Z} \cdot N\tau$ Vow suppose $\varphi: E \to E'$ not obe of over K. Then $\exists \varphi: \varphi = E \to E' = E'$. However, $\forall \varphi \circ \varphi': E' \to E$ has deg N^2 but is not [N]otherwise $\forall \varphi \circ \varphi' = [N] = \varphi \circ \varphi' = \emptyset$. In fact, one also needs to consider the case that \sigma \phi * \phi dual = [-N]. In that case, one shows that ker \phi is still Galois-stable, hence that 口 \phi is (up to isomorphism on the target) defined over K Problem: j, j, do Not separate all pts.

This is akin to Frac ($\Omega[x,y]$): x=y=0 is not a pt! $(y^2-x^2(x-1))$ Need a set of functions that embed Yo(N) C> A. For simplicity, assume N is odd

Thm (Vélu) $E: y^2 = x^3 + Ax + B$, $G < E(\overline{R})$, #G oold.

For (xq, yq) & G define

 $t_Q := 3x_Q^2 + A$, $u_Q := 2y_Q^2$, $w_Q := u_Q + t_Q \times Q$,

 $t := \sum_{Q \neq 0} t_Q, \quad w = \sum_{Q \neq 0} w_Q, \quad x(x) = x + \sum_{Q \neq 0} \left(\frac{t_Q}{x - x_Q} + \frac{u_Q}{(x - x_Q)^2} \right)$

Then, letting $E': y^2 = x^3 + (A - st)x + (B - 7\omega)$,

the map E -> E/G -> E' can be taken to be

 $\alpha(x,y) = (r(x), r'(x) \cdot y),$

[Maybe I don't even need this!]

RmK $Q(X_0(N)) \ni symm.$ fcts in $f(0,0)(\tau)$ call them $e_i(\tau)$. From $fe_i(\tau)$ we can reconstruct the set of x-coords $f(0,i)(\tau)$ hence C. So $t \mapsto (j(\tau), e_i(\tau), -, e_i(\tau))$ is injective. Thus, $Y_i(N)_Q$ has coords $f(0,0)(\tau)$ exp. --, $e_i(\tau)$.

a pt is k-rotional iff j, e, -, en are, iff the counts

§ 5. Bonus track: constructing X(3) over Q Let E be an ell. curve over a field K of charo. Suppose P is a pt of order 3. By def'n, this means that I a function for E s.t. div f = 3(P)-3(00). Now, functions with a triple pole act or lie in < 1, 2, 47, and in order to have an actual pole of order 3, one needs f= ay +bx+c with a to. Replacing y with f, we may as well assume that y=f, that is, div y = 3(P1-3(00), y² + a, xy + a, y = x3 + a, x² + a, x + a6. Translating $x \to x - x(P)$, we can assume $q_6 = 0$. Now P is the only pt with y=0, so x3 +9, x2+9, x = x3,

Hhat is, Q2 = Q4 = 0. Rescaling x + 2x, y + x3y Moreover: fcts with a double pole at & oure of the form 0x+3, 0+0; if we want such a funct to vanish at P B=0. Similarly, y is uniquely obef'd up to Now suppose Q is a 2nd pt of order 3, (Q \neq \pm) $3(Q)-3(\infty)=\text{oliv}(y-Ax-B).$ If A=0 then y(Q)=B and $B^2+Q,B\times+Q_3B=X^3$ has a triple root: $X^3-Q,B\times-(B^2+Q_3B)=(X-X(Q))^3$.

But then X(Q)=0 (look at coeff. of X^2), so $y^2(Q)+Q_3y(Q)=0$.

The pts (0,0) and $(0,-Q_3)$ one $\pm P$, contractiction.

So $A \neq 0$; replacing $y \Rightarrow y/A^3$ and $X \Rightarrow X/A^2$ we can assume A=1. Finally y=X-B variables only get A=1. A=1. Finally, y-x-B vanishes only at Q, so $x^3 - [(x+B)^2 + Q, x(x+B) + Q_3 (x+B)] = (x-C)^3$

Compare coeffs to get

(1)
$$\int 3C = 9.11$$

(2) $\int -3C^2 = 2B + 9.1 B + 9.3$
(3) $\int C^3 = B^2 + 9.3 B$

(3)-B(2):
$$C^3 + 3C^2B = B^2 - 2B^2 - 9.B^2$$

= $B^2(-1-9.) = -3CB^2$

(c)
$$(c+B)^3 = B^3$$
.

$$S_0 = Y(3): (B+C)^3 = B^3$$

$$y^{2} + (3C-1) \times y + (-3C^{2}-B-3BC) y = x^{3}$$

RmK The function field contains (B+C), a primitive 3rd root of 1. Over $Q(5_3)$, Y(3) decomposes;

one component is B+C = 53B, which gives a P'