Test di Calcolo Numerico

Ingegneria Elettronica, Informatica, Nucleare... 12/07/2011

\mathbf{C}	OGNOME		NOME	
Μ	ATRICOLA			
Risposte				
1)				
2)				
3)				
4)				
5)				

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Elettronica, Informatica, Nucleare... 12/07/2011

- 1) Si consideri l'insieme dei numeri di macchina $\mathcal{F}(10, 2, -3, 3)$. Dati i numeri $x_1 = 12.23, x_2 = 1.76$ e $x_3 = 0.01$, determinare le loro rappresentazioni e quelle di x_3^2 e x_3^3 nell'insieme \mathcal{F} .
- 2) Il sistema lineare

$$\begin{pmatrix} 3 & 1 & 0 & 1 \\ 2 & -7 & 1 & 0 \\ 1 & 0 & 4 & -1 \\ 1 & 1 & 1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

ha una soluzione unica?

Il metodo iterativo di Jacobi risulta convergente?

Il metodo iterativo di Gauss-Seidel risulta convergente?

3) La matrice

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

è riducibile?

- 4) È data la funzione $f(x) = 2x^2 x$. Calcolare il polinomio di interpolazione relativo ai due punti $x_0 = 0$ e $x_1 = 1$. Determinare l'espressione dell'errore stabilendone anche il massimo valore assoluto sull'intervallo [0, 1].
- 5) Si vuole approssimare il numero

$$\log 2 = \int_0^1 \frac{1}{x+1} \, dx$$

con massimo errore assoluto $T \leq 10^{-3}$. Utilizzando la formula dei trapezi, in quanti intervalli si deve suddividere l'intervallo [0,1] per avere una approssimazione dell'integrale che soddisfi la richiesta?

SOLUZIONE

1) Le rappresentazioni richieste sono

$$\bar{x}_1 = 0.12 \times 10^2$$
, $\bar{x}_2 = 0.18 \times 10^1$, $\bar{x}_3 = 0.1 \times 10^{-1}$, $\bar{x}_3^2 = 0.1 \times 10^{-3}$, $\bar{x}_3^3 = 0$ (underflow).

- 2) La matrice A risulta a predominanza diagonale forte per cui si ha $det(A) \neq 0$ ed i metodi di Jacobi e di Gauss-Seidel sono convergenti.
- 3) Il grafo della matrice è fortemente connesso per cui la matrice risulta irriducibile.
- 4) Il polinomio di interpolazione nei punti (0,0) e (1,1) è $P_1(x)=x$. Risulta $E(x)=f(x)-P_1(x)=2x^2-2x$ per cui $\max_{x\in[0,1]}|E(x)|=1/2$.
- 5) Da $f(x)=(x+1)^{-1}$ si ha $f'(x)=-(x+1)^{-2}$ e $f''(x)=2(x+1)^{-3}$ per cui risulta $M_2=\sup_{x\in[0,1]}|f''(x)|=2$. Considerando l'espressione dell'errore della formula dei trapezi, in questo caso, si ha $|E_1^{(G)}(f)|\leq \frac{1}{k^2}$ dove k indica il numero di sottointervalli in cui si è suddiviso l'intervallo di integrazione. Considerando di riservare una parte dell'errore per il calcolo della formula, imponendo $\frac{1}{k^2}\leq \frac{T}{2}$ si ottiene $k\geq 19$.