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Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the
U(1) Higgs model of particle physics are described by the
Ginzburg-Landau equations:

—ApV = K2(1 - V2 W
cur? A = Im(UV 4 V)

where (W, A) 'R 5 CxRY, d=2,3, Va=V —iA Ay = va.
the covariant derivative and covariant Laplacian, respectively, and
k is the Ginzburg-Landau material constant.
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Origin of Ginzburg-Landau Equations

Superconductivity. W : RY — C is called the order parameter, |W|?
gives the density of (Cooper pairs of) superconducting electrons.
A:RY — RY is the magnetic potential. Im(WV 4W¥) is the
superconducting current.

Particle physics. W and A are the Higgs and U(1) gauge
(electro-magnetic) fields, respectively. (Part of Weinberg - Salam
model of electro-weak interactions/ a standard model.)

Geometrically, A is a connection on the principal U(1)- bundle
R? x U(1), and W, a section of the associated bundle.

Similar equations appear in superfluidity, Bose-Einstein
condensation and fractional quantum Hall effect.
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Ginzburg-Landau Energy

Ginzburg-Landau equations are the Euler-Lagrange equations for
the Ginzburg-Landau energy functional

Eq(V,A) = ;/Q {yvAw\z + (curl A)? + ’f(\w\z ~ 1)2} .

Superconductors: £(V, A) is the difference in (Helmhotz) free
energy between the superconducting and normal states.

In the U(1) Higgs model case, £q(W, A) is the energy of a static
configuration in the U(1) Yang-Mills-Higgs classical gauge theory.
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The Ginzburg-Landau equations admit several symmetries, that is,
transformations which map solutions to solutions.

Gauge symmetry: for any sufficiently regular function v : R? — R,
TEE - (W(x), A(x)) = (€W (x), A(x) + Vy(x));
Translation symmetry: for any h € R?,
T s (W(x), A(x)) = (W(x + h), A(x + h));
Rotation symmetry: for any p € SO(2),
T2t (W(x), A(x) = (W(p ™ x), 0 HA((p™ ) TX).

One of the analytically interesting aspects of the Ginzburg-Landau
theory is the fact that, because of the gauge transformations, the
symmetry group is infinite-dimensional.
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Type | and Il Superconductors

Two types of superconductors:

k < 1/v/2: Type | superconductors, exhibit first-order phase
transitions from the non-superconducting state to the
superconducting state (essentially, all pure metals);

K > 1/\@: Type Il superconductors, exhibit second-order phase
transitions and the formation of vortex lattices (dirty metals and
alloys).

For k = 1/+/2, Bogomolnyi has shown that the Ginzburg-Landau
equations are equivalent to a pair of first-order equations.
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Quantization of Flux

From now on we let d = 2. Finite energy states (W, A) are
classified by the topological degree
|x|—R> ’

where R > 1. For each such state we have the quantization of
magnetic flux:

v
deg(V) := deg ("U’

/ B = 2mdeg(V) € 27Z,
R2

where B := curl A is the magnetic field associated with the vector
potential A.
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Homogenous and Self-dual Solutions

Homogenous solutions:
(a) (W =1, A=0), the perfect superconductor,

(b) (W =0, A with curl A constant), the normal metal.)

Self-dual case x = 1/v/2:

For k = 1/v/2 in GLE, Bogomolnyi found the lower bound for
energy
EW,A)l,_y/yz > | deg(V)

and showed that this bound is saturated when certain first-order
equations are satisfied.
Using this Taubes described completely solutions of a given degree.
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“Radially symmetric” (more precisely, equivariant) solutions:

VM (x) = FM(r)em and  AM(x) = aM(r)V(nb),

where n = integer and (r,0) = polar coordinates of x € R2.
% Jge curl Al = deg(V(M) = n e Z. (Berger-Chen)

(W A" = the magnetic n-vortex (superconductors) or
Nielsen-Olesen or Nambu string (the particle physics).
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Vortex Profile

The profiles are exponentially localized:
11— ()| <ce™s, |1 —aD(r)] < e/,

Here £ = coherence length and \ = penetration depth.

V2K = NE.

The exponential decay is due to the Higgs mechanism of mass
generation: massless A = massive A, with mg = AL
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Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is
described by the gradient-flow-type equations

(0 4 iP)W = AV + £2(1 — VPV
0(0:A— V) = —curl? A+ Im(WV 4¥),

Re~y > 0, the time-dependent Ginzburg-Landau equations or the
Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen
and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with —0;E
neglected, (Ampere's and Faraday’s laws) and the relations
J = Js + Jn, where Js = Im(WV 4V), and J, = oE.

1.M.Sigal, Pisa, May, 2014 Magnetic Vortices, Abrikosov Lattices, Automorphic Functions



Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by
U(1)—Higgs (or Maxwell-Higgs) equations (¢ = 0)
(0 + iD)2W = AV + K2(1 — W2 )W
—0:(0:A+ VO)A = curl? A — Im(UV 4¥),
coupled (covariant) wave equations describing the U(1)-gauge
Higgs model of elementary particle physics.

In what follows we use the temporal gauge & = 0.
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Stability: Definition

We say the n-vortex is asymptotic stable, if for any initial data
sufficiently close to the n-vortex, u(" := (W(") A(") the solution
converges, in the sense of the H!—distance, as t — oo, to an
element of the the manifold,

M(n) _ {Tﬁrans T$;augeu(”) ‘he R2’ v E H2(R2,R)}.

This means that 3 g(t) := (h(t),~(t)) € R? x H?(R?,R), s.t.
the solution u(t) of the time-dependent equation satisfies

[|u(t) — TEE??S ng?;;geu(")HHl — 0, as t— oo.

The weaker notion: orbital (cf. Lyapunov) stability.
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Stability /Instability of Vortices

From now on, d = 2.
Theorem

1. For Type | superconductors all vortices are stable.

2. For Type Il superconductors, the +1-vortices are stable, while
the n-vortices with |n| > 2, are not.

The statement of Theorem | was conjectured by Jaffe and Taubes
on the basis of numerical observations (Jacobs and Rebbi, ... ).

Vortex stability <= Change in the surface tension.

In the self-dual case k = 1/+/2 in GLE, the surface tension is zero.
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Ginzburg-Landau Equations. |l

Recall that we are interested in solutions of the Ginzburg-Landau
equations:
—ApV = K2(1 - V2V
cur? A = Im(UV 4 V)

where (W, A) :RY - CxRY, d=2,3, Vo=V —iA Ap= V2,
the covariant derivative and covariant Laplacian, respectively, and
k is the Ginzburg-Landau material constant.

These equations describe equilibrium states of superconductors and
of the U(1) Higgs model of particle physics.

We are also interested in dynamical versions of these equations.
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Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is
described by the gradient-flow-type equations

(0 4 iP)W = AV + £2(1 — VPV
0(0:A— V) = —curl? A+ Im(WV 4¥),

Re~y > 0, the time-dependent Ginzburg-Landau equations or the
Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen
and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with —0;E
neglected, (Ampere's and Faraday’s laws) and the relations
J = Js + Jn, where Js = Im(WV 4V), and J, = oE.
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Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by
U(1)—Higgs (or Maxwell-Higgs) equations (¢ = 0)
(0r + D)V = AV + £2(1 — W2 W
—0:(0tA+ VO)A = curl? A — Im(UV V),
coupled (covariant) wave equations describing the U(1)-gauge
Higgs model of elementary particle physics.

In what follows we use the temporal gauge = 0.

* ok ok ok ok ok ok % % % %

Both sets of time-dependent equations have the same static
solution. We are interested in existence of these solutions and their
stability w.r.to the both dynamics.
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Abrikosov Vortex Lattice States

A pair (W, A) for which all the physical characteristics
W2, B(x):=curlA(x), J(x):=Im(WV V)

are doubly periodic with respect to a lattice A is called the
Abrikosov (vortex) lattice state.

e o o e o &< o o o

Quantization of magnetic flux: [, curl A =27 deg(V) € 27Z,
where w be an elementary cell of the lattice \.

Vortices and vortex lattices are equivariant solutions for different
subgroups of the group of rigid motions (subgroups of rotations
and lattice translations, respectively).
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Existence of Abrikosov Lattices

Let Hc1 and Hep = k2 be the 1st and 2nd critical magnetic fields
and let w be an elementary cell of the lattice A.

Theorem (Existence for high magnetic fields)

For for every A satisfying ‘— — /4;2| < 1 and (), 3 an Abrikosov
lattice sol., with this X an
b= ﬁ J, curl A= %rl (magnetic flux quantization).

Theorem (Energy for high magnetic fields)

If k > 1/+/2 (Type Il superconductors), then the minimum of the
average energy per cell is achieved for the hexagonal lattice.

Theorem (Existence for low magnetic fields)

For every A\, with |w]| sufficiently large, 3 an Abrikosov lattice
solution, with this A and b := " |f curl A = |w|
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- Aver. magn. field ~ Hep = k2.

Existence for () b < k2 and x > %: Odeh, Barany -
Golubitsky - Tursky, Dutour, Tzaneteas - IMS

Existence for

(x) b < k% and K > Kke(A) or b> K? and K < Ke(N),

where rc(\) == /3 (1 - ﬁ) (< %) (a new threshold in k):
Tzaneteas - IMS

Energy minim. by triangular lattices: Dutour, Tzaneteas - IMS,
using results of Aftalion - Blanc - Nier, Nonnenmacher - Voros.

- Aver. magn. field =~ H¢; (Jw| — o0).
Existence: Aydi - Sandier and others (k — o0) and Tzaneteas -
IMS (all 's).
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Stability of Abrikosov Lattices. |

Gauge -periodic perturbations: perturbations of the same
periodicity as the Abrikosov lattice.

Recall ric(\) := 751 /1 = g5y Note that rc()) < %
Theorem (Tzaneteas - IMS)

The Abrikosov vortex lattice solutions for high magnetic fields are

(i) asymptotically stable for k > kc(\);

(ii) unstable for k < Kc(N).
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Stability of Abrikosov Lattices. Il

Let (W, Ay) = Abrikosov lattice solution specified by a lattice A
and &,(V, A) = Ginzburg-Landau energy functional

1 2 2 K2 2 2
::2/{\VA\U] + (curl A) +?(|\U] -1) }

Eu(V, A)
Finite-energy perturbations: perturbations satisfying,
li Eo(V,A) — Eo(Wy, Ay)) < o0, fi A\
QI_TR2( ol ) Q(Wx A)) 00, for some

Theorem (Tzaneteas - IMS)
Let b:= ﬁ fw culA= 22 ~ H., (high magnetic fields).

jwl
There is () s.t. the Abrikosov vortex lattice solutions are

(i) asymptotically stable if k > % and y(\) > 0,

(ii) unstable otherwise.
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Gamma Function

Let \=r(Z+71Z), r >0, 7€ C,Im7 >0, and (1) = v(A).
Then the function () is invariant under modular group SL(2,7Z)
and therefore can be reduced to the Poincaré strip, M*/SL(2,Z),

Imt

AR

-1 -05 0 05 1

Symmetries: y(—7) = v(7) and y(1 — 7) = (1)
= critical points at 7 = e/™/2 and T = €/™/3

Work in progress: Estimating (7) and checking the critical points.
So far we have y(e'™/3) > 0 (numerics).
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Stability Definition

The stability is defined w.r.to distance to the infinite-dimensional
manifold of A—lattice solutions

M={T2"uy : g € G},

where T'™ = T$8°TIt g = (v,p), is the action of the
symmetry group
G = H*(R?%;R) x SO(2)

(semi-direct product) on Abrikosov vortex lattices uy = (W), Ay).
Here T5*"® and T/ are the gauge transformations and rotations,
i.e.

Trgauge : (\U(X), A(X)) s (el"}’(X)\II(X)7 A(X) + V’Y(X))
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Signature of Stability

Consider the hessian, £”(uy), of Ginzburg-Landau energy
functional £(W, A) at a Abrikosov lattice solution uy = (W, Ay).

(Recall that the Ginzburg-Landau equations are the Euler-Lagrange
equations for £.)

1"

& (uy) has zero eigenvalues along the tangent space to
M= Gsme)\ and uy

Signature of stability/instability is the sign of the lowest eigenvalue
of £ (uy) in transversal direction to M

—> estimate the lowest eigenvalue of [£” (uy )]sV
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Abrikosov Lattices and Equivariance

Recall: the Abrikosov (vortex) lattice is a pair (W, A) for which all
the physical characteristics

W2, B(x):=curlA(x), J(x):=Im(WV4V¥)

are doubly periodic with respect to a lattice A.

Theorem. (W, A) is an Abrikosov lattice state if and only if it is an
equivariant pair for the group of lattice translations for a lattice A:

Tstransl(w’A) — -,-Vgsauge(w’/\)7 Vs € )\, (1)

where Tfransl and TE*8° are the translations and gauge
transformations,

T’%auge . (\U(X), A(X)) — (el"Y(X)\U(X)7 A(X) + V’}/(X))

(1) = Ysre(x) = s(x + t) — Ye(x) € 27Z.
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Magnetic Translations

The key point: uy = (Vy, A)) is equivariant = the Hessian
£"(uy) commutes with magnetic translations,

Ts — T’%sauge -,-straunsl7
where, recall, Tslf(x) = f(x + s), and
TEE : ((x), a(x)) = (e7P(x), a(x) + VA(x));
and 7 : R?2 = R is a multi-valued differentiable function, satisfying

Ystt(X) = s(x + t) — v¢(x) € 27Z. (2)

(2) = Ts+t = Ts Tt~
(s — Ts is a unitary repres. of £ on L2(R2;C) x L?(R?;R?).)
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Direct Fibre Integral (Bloch Decomposition)

Since the Hessian operator £ (uy) commutes with T, it can be
decomposed into the fiber direct integral

1" @
e (U)\)U_IZ/ Lyd g

*

where w* is the fundamental cell of the reciprocal (dual) lattice,
U: L2(R? C x R?) — 5 = [ Hidux is a unitary operator,

(U)k(x) =D e ™ Tov(x)

SEA

(decomposition into the Bloch waves, vi(x) = e** ¢, (x)),
= {v € L?(w,C x R?) : Tyv(x) = e*Sv(x), s € basis},
Ly is the restriction of the operator 5//(u>\) to J4.
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In the leading order in € := /2 — b, the two lowest eigenvalues of
the fiber operators, Ly are given by

ko = (1 + O())k? 1 = w (1) + O(e3),

where

(94(T)2[90(7)I?) {[9o(m)I*)

) = 2 B BR) T ([de() )

Here ¥y (z,7), k € Q*, are the modified theta functions, i.e. entire
functions satisfying (y/2%i(at + b) = ki + iko)

ImT

Ii(z +1,7) = €™, (z,7),
19!((2 + 7, 7_) — e—27ribe—7ri7'z—27riz,l9k(Z7 7_).
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Conclusion of Sketch

The relations
» UE" (uy)U™? f Lydpy and

> inf Ly = min(yk(7)e? + O(€3), (1 + O(e€?))|k|?), where

o ()
() = 2. F e T

imply

ey

inf £ (uy) = min( inf (7)€ + O(€%),0).

y(7)

Hence the Abrikosov lattice is

» linearly stable if v(7) > 0
» linearly unstable if y(7) < 0.
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Conclusions

In the context of superconductivity and particle physics, we
described
> existence and stability of magnetic vortices and vortex lattices

» a new threshold k(7) in the Ginzburg-Landau parameter
appears in the problem of existence of vortex lattices

» while Abrikosov lattice energetics is governed by Abrikosov
function (7), a new automorphic function v(7) emerges
controlling stability of Abrikosov lattices.

We gave some indications how to prove the latter results. While
the proof of existence leads to standard theta functions, the proof
of stability leads to theta functions with characteristics.

Interesting extensions:

» unconventional /high T, supercond.,
» Weinberg - Salam model of electro-weak interactions,
» microscopic/quantum theory.
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Abrikosov Lattice. Experiment

Y

Gauss
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Thank-you for your attention
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