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Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the
U(1) Higgs model of particle physics are described by the
Ginzburg-Landau equations:

−∆AΨ = κ2(1− |Ψ|2)Ψ
curl2 A = Im(Ψ̄∇AΨ)

where (Ψ,A) : Rd → C× Rd , d = 2, 3, ∇A = ∇− iA, ∆A = ∇2
A,

the covariant derivative and covariant Laplacian, respectively, and
κ is the Ginzburg-Landau material constant.

I.M.Sigal, Pisa, May, 2014 Magnetic Vortices, Abrikosov Lattices, Automorphic Functions



Origin of Ginzburg-Landau Equations

Superconductivity. Ψ : Rd → C is called the order parameter; |Ψ|2
gives the density of (Cooper pairs of) superconducting electrons.
A : Rd → Rd is the magnetic potential. Im(Ψ̄∇AΨ) is the
superconducting current.

Particle physics. Ψ and A are the Higgs and U(1) gauge
(electro-magnetic) fields, respectively. (Part of Weinberg - Salam
model of electro-weak interactions/ a standard model.)

Geometrically, A is a connection on the principal U(1)- bundle
R2 × U(1), and Ψ, a section of the associated bundle.

Similar equations appear in superfluidity, Bose-Einstein
condensation and fractional quantum Hall effect.
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Ginzburg-Landau Energy

Ginzburg-Landau equations are the Euler-Lagrange equations for
the Ginzburg-Landau energy functional

EΩ(Ψ,A) :=
1

2

∫
Ω

{
|∇AΨ|2 + (curl A)2 +

κ2

2
(|Ψ|2 − 1)2

}
.

Superconductors: E(Ψ,A) is the difference in (Helmhotz) free
energy between the superconducting and normal states.

In the U(1) Higgs model case, EΩ(Ψ,A) is the energy of a static
configuration in the U(1) Yang-Mills-Higgs classical gauge theory.
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Symmetries

The Ginzburg-Landau equations admit several symmetries, that is,
transformations which map solutions to solutions.

Gauge symmetry: for any sufficiently regular function γ : R2 → R,

T gauge
γ : (Ψ(x),A(x)) 7→ (e iγ(x)Ψ(x),A(x) +∇γ(x));

Translation symmetry: for any h ∈ R2,

T trans
h : (Ψ(x),A(x)) 7→ (Ψ(x + h),A(x + h));

Rotation symmetry: for any ρ ∈ SO(2),

T rot
ρ : (Ψ(x),A(x)) 7→ (Ψ(ρ−1x), ρ−1A((ρ−1)T x)).

One of the analytically interesting aspects of the Ginzburg-Landau
theory is the fact that, because of the gauge transformations, the
symmetry group is infinite-dimensional.
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Type I and II Superconductors

Two types of superconductors:

κ < 1/
√

2: Type I superconductors, exhibit first-order phase
transitions from the non-superconducting state to the
superconducting state (essentially, all pure metals);

κ > 1/
√

2: Type II superconductors, exhibit second-order phase
transitions and the formation of vortex lattices (dirty metals and
alloys).

For κ = 1/
√

2, Bogomolnyi has shown that the Ginzburg-Landau
equations are equivalent to a pair of first-order equations.
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Quantization of Flux

From now on we let d = 2. Finite energy states (Ψ,A) are
classified by the topological degree

deg(Ψ) := deg

(
Ψ

|Ψ|

∣∣∣∣
|x |=R

)
,

where R � 1. For each such state we have the quantization of
magnetic flux: ∫

R2

B = 2π deg(Ψ) ∈ 2πZ,

where B := curl A is the magnetic field associated with the vector
potential A.
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Homogenous and Self-dual Solutions

Homogenous solutions:

(a) (Ψ ≡ 1, A ≡ 0), the perfect superconductor,

(b) (Ψ ≡ 0, A with curl A constant), the normal metal.)

Self-dual case κ = 1/
√

2:

For κ = 1/
√

2 in GLE, Bogomolnyi found the lower bound for
energy

E(Ψ,A)|κ=1/
√

2 ≥ π | deg(Ψ)|

and showed that this bound is saturated when certain first-order
equations are satisfied.
Using this Taubes described completely solutions of a given degree.
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Vortices

“Radially symmetric” (more precisely, equivariant) solutions:

Ψ(n)(x) = f (n)(r)e inθ and A(n)(x) = a(n)(r)∇(nθ),

where n = integer and (r , θ) = polar coordinates of x ∈ R2.
1

2π

∫
R2 curl A(n) = deg(Ψ(n)) = n ∈ Z. (Berger-Chen)

(Ψ(n),A(n)) = the magnetic n-vortex (superconductors) or
Nielsen-Olesen or Nambu string (the particle physics).
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Vortex Profile

The profiles are exponentially localized:

|1− f (n)(r)| ≤ ce−r/ξ, |1− a(n)(r)| ≤ ce−r/λ,

Here ξ = coherence length and λ = penetration depth.
√

2κ = λ/ξ.

The exponential decay is due to the Higgs mechanism of mass
generation: massless A ⇒ massive A, with mA = λ−1.
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Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is
described by the gradient-flow-type equations

γ(∂t + iΦ)Ψ = ∆AΨ + κ2(1− |Ψ|2)Ψ

σ(∂tA−∇Φ) = − curl2 A + Im(Ψ̄∇AΨ),

Reγ ≥ 0, the time-dependent Ginzburg-Landau equations or the
Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen
and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with −∂tE
neglected, (Ampère’s and Faraday’s laws) and the relations
J = Js + Jn, where Js = Im(Ψ∇AΨ), and Jn = σE .
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Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by
U(1)−Higgs (or Maxwell-Higgs) equations (Φ = 0)

(∂t + iΦ)2Ψ = ∆AΨ + κ2(1− |Ψ|2)Ψ

−∂t(∂tA +∇Φ)A = curl2 A− Im(Ψ̄∇AΨ),

coupled (covariant) wave equations describing the U(1)-gauge
Higgs model of elementary particle physics.

In what follows we use the temporal gauge Φ = 0.
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Stability: Definition

We say the n-vortex is asymptotic stable, if for any initial data
sufficiently close to the n-vortex, u(n) := (Ψ(n),A(n)), the solution
converges, in the sense of the H1−distance, as t →∞, to an
element of the the manifold,

M(n) = {T trans
h T gauge

γ u(n) : h ∈ R2, γ ∈ H2(R2,R)}.

This means that ∃ g(t) := (h(t), γ(t)) ∈ R2 × H2(R2,R), s.t.
the solution u(t) of the time-dependent equation satisfies

‖u(t)− T trans
h(t) T gauge

g(t) u(n)‖H1 → 0, as t →∞.

The weaker notion: orbital (cf. Lyapunov) stability.

I.M.Sigal, Pisa, May, 2014 Magnetic Vortices, Abrikosov Lattices, Automorphic Functions



Stability/Instability of Vortices

From now on, d = 2.

Theorem

1. For Type I superconductors all vortices are stable.

2. For Type II superconductors, the ±1-vortices are stable, while
the n-vortices with |n| ≥ 2, are not.

The statement of Theorem I was conjectured by Jaffe and Taubes
on the basis of numerical observations (Jacobs and Rebbi, . . . ).

Vortex stability ⇐⇒ Change in the surface tension.

In the self-dual case κ = 1/
√

2 in GLE, the surface tension is zero.
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Ginzburg-Landau Equations. II

Recall that we are interested in solutions of the Ginzburg-Landau
equations:

−∆AΨ = κ2(1− |Ψ|2)Ψ
curl2 A = Im(Ψ̄∇AΨ)

where (Ψ,A) : Rd → C× Rd , d = 2, 3, ∇A = ∇− iA, ∆A = ∇2
A,

the covariant derivative and covariant Laplacian, respectively, and
κ is the Ginzburg-Landau material constant.

These equations describe equilibrium states of superconductors and
of the U(1) Higgs model of particle physics.

We are also interested in dynamical versions of these equations.
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Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is
described by the gradient-flow-type equations

γ(∂t + iΦ)Ψ = ∆AΨ + κ2(1− |Ψ|2)Ψ

σ(∂tA−∇Φ) = − curl2 A + Im(Ψ̄∇AΨ),

Reγ ≥ 0, the time-dependent Ginzburg-Landau equations or the
Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen
and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with −∂tE
neglected, (Ampère’s and Faraday’s laws) and the relations
J = Js + Jn, where Js = Im(Ψ∇AΨ), and Jn = σE .
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Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by
U(1)−Higgs (or Maxwell-Higgs) equations (Φ = 0)

(∂t + iΦ)2Ψ = ∆AΨ + κ2(1− |Ψ|2)Ψ

−∂t(∂tA +∇Φ)A = curl2 A− Im(Ψ̄∇AΨ),

coupled (covariant) wave equations describing the U(1)-gauge
Higgs model of elementary particle physics.

In what follows we use the temporal gauge Φ = 0.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Both sets of time-dependent equations have the same static
solution. We are interested in existence of these solutions and their
stability w.r.to the both dynamics.
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Abrikosov Vortex Lattice States

A pair (Ψ,A) for which all the physical characteristics

|Ψ|2, B(x) := curl A(x), J(x) := Im(Ψ̄∇AΨ)

are doubly periodic with respect to a lattice λ is called the
Abrikosov (vortex) lattice state.

Quantization of magnetic flux:
∫
ω curl A = 2π deg(Ψ) ∈ 2πZ,

where ω be an elementary cell of the lattice λ.

Vortices and vortex lattices are equivariant solutions for different
subgroups of the group of rigid motions (subgroups of rotations
and lattice translations, respectively).
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Existence of Abrikosov Lattices

Let Hc1 and Hc2 = κ2 be the 1st and 2nd critical magnetic fields
and let ω be an elementary cell of the lattice λ.

Theorem (Existence for high magnetic fields)

For for every λ satisfying
∣∣ 2π
|ω| − κ

2
∣∣� 1 and (∗), ∃ an Abrikosov

lattice sol., with this λ and
b := 1

|ω|
∫
ω curl A = 2π

|ω| (magnetic flux quantization).

Theorem (Energy for high magnetic fields)

If κ > 1/
√

2 (Type II superconductors), then the minimum of the
average energy per cell is achieved for the hexagonal lattice.

Theorem (Existence for low magnetic fields)

For every λ, with |ω| sufficiently large, ∃ an Abrikosov lattice
solution, with this λ and b := 1

|ω|
∫
ω curl A = 2π

|ω| .
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References

- Aver. magn. field ≈ Hc2 = κ2.

Existence for (∗) b < κ2 and κ > 1√
2

: Odeh, Barany -

Golubitsky - Tursky, Dutour, Tzaneteas - IMS

Existence for
(∗) b < κ2 and κ > κc(λ) or b > κ2 and κ < κc(λ),

where κc(λ) :=

√
1
2

(
1− 1

β(λ)

)
(< 1√

2
) (a new threshold in κ):

Tzaneteas - IMS

Energy minim. by triangular lattices: Dutour, Tzaneteas - IMS,
using results of Aftalion - Blanc - Nier, Nonnenmacher - Voros.

- Aver. magn. field ≈ Hc1 (|ω| → ∞).
Existence: Aydi - Sandier and others (κ→∞) and Tzaneteas -
IMS (all κ’s).
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Stability of Abrikosov Lattices. I

Gauge -periodic perturbations: perturbations of the same
periodicity as the Abrikosov lattice.

Recall κc(λ) := 1√
2

√
1− 1

β(λ) . Note that κc(λ) < 1√
2
.

Theorem (Tzaneteas - IMS)

The Abrikosov vortex lattice solutions for high magnetic fields are

(i) asymptotically stable for κ > κc(λ);

(ii) unstable for κ < κc(λ).
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Stability of Abrikosov Lattices. II

Let (Ψλ,Aλ) = Abrikosov lattice solution specified by a lattice λ
and Eω(Ψ,A) = Ginzburg-Landau energy functional

Eω(Ψ,A) :=
1

2

∫
ω

{
|∇AΨ|2 + (curl A)2 +

κ2

2
(|Ψ|2 − 1)2

}
.

Finite-energy perturbations: perturbations satisfying,

lim
Q→R2

(
EQ(Ψ,A)− EQ(Ψλ,Aλ)

)
<∞, for some λ.

Theorem (Tzaneteas - IMS)

Let b := 1
|ω|
∫
ω curl A = 2π

|ω| ≈ Hc2 (high magnetic fields).

There is γ(λ) s.t. the Abrikosov vortex lattice solutions are

(i) asymptotically stable if κ > 1√
2

and γ(λ) > 0;

(ii) unstable otherwise.
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Gamma Function

Let λ = r(Z + τZ), r > 0, τ ∈ C, Im τ > 0, and γ(τ) = γ(λ).
Then the function γ(τ) is invariant under modular group SL(2,Z)
and therefore can be reduced to the Poincaré strip, Π+/SL(2,Z),45 STRUCTURE OF THE GROUND STATE OF THE ELECTROWEAK. . . 3843

vq =0 0.25
0.5

1.5

1.000 26
1.002 26
1.008 01
1.003 30
1.024 28
1.073 64
1.012 19
1.072 60
1.18962
1.026 59
1.13093
1.305 52
1.061 25
1.229 95
1.47005
1.18034
1.424 80
1.732 61

1.000 22
1.002 20
1.007 93
1.002 92
1.023 70
1.073 02
1.01089
1.071 05
1.188 27
1.02401
1.128 43
1.303 64
1.056 28
1.226 21
1.467 61
1.17195
1.41971
1.729 61

1.000 18
1.002 02
1.007 69
1.002 34
1.021 96
1.071 17
1.008 94
1.066 42
1.18423
1.020 15
1.120 89
1.297 94
1.048 90
1.214 89
1.460 24
1.15960
1.404 24
1.720 53

TABLE II. Sample of values for u (At/'(/eB, r) for lattices of
par allelograms.
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FIG. 1. The hatched area is the semifundamental domain of
~ space corresponding to the set of parameters of inequivalent
lattice solutions. The solid squares indicate points sampled in
Table II.

fd'p'Ip'I& (Atlp'I }f d'pllv (p}l'IIv (p'+p}l'
V(At } cell

f I IV+ (p) I'd'p
(84}

function only of the geometrical parameter w. In this lim-
it, v coincides with the parameter p„ in the Ginzburg-
Landau theory of type-II superconductivity near the
transition point H, z [7]. The values of u in Table II forM=~ and IvI=1, u =1.18034 for the square and
v =1.15960 for the hexagonal lattice, agree with the
values of p„calculated by Abrikosov [5] for the square
and by Kleiner, Roth, and Autler [16] for the hexagonal
lattice.
This treatment of the electroweak phase transition is

mathematically a generalization of the Ginzburg-Landau
theory in that the quartic interaction mediated by the Z
and 4 fields is nonlocal. The propagator, in coordinate
space, for the respective interactions is given by the func-
tion (I/2~)ICO(Mlp —p'I), where the inverse of the mass
parameter M ( =Mz, M~ }determines the range of the in-
teraction.
Our analysis supports the conclusion that the hexago-

nal lattice with k = 1 has the lowest average energy densi-
ty. This result is valid for more general quartic interac-
tions of the form

The integrals were carried out analytically [15]. Using
Eqs. (47) and (48) and the condition eBA =2m, one ob.-
tains

(85)

and

X exp — Ikr l I . (8—6)

The sum converges very rapidly.
We have scanned this function numerically for ~ in the

region 2). It has the following properties for all positive
values of At: (i) For fixed I~l it decreases monotonically
with rz, (ii} for fixed ~z it increases monotonically with

The point IvI =1, r„=0.5 that corresponds to the
hexagonal lattice gives the minimum of this function.
The point I ~l = 1, rz =0, corresponding to the square lat-
tice, is a saddle point.
The function V(At, v ) behaves as

fd'p' fd'p I Iv (p'}I'&( Ip' —pl ) I Iv (p) I' (87)

where %'(p)= f o g(At)KO(Atp}dAt, with g(At) ~0 for
all A, .

(2eB/At )v (At /YeB, r)

d 1V(At, r)=-
dAt „, „JK'/eB+(2~/~1 }1k~ Il—

where v is a slowly varying function of the arguments and
v (0,~}=—1. A sample of numerical values of
v(Atl+eB, r) is given in Table II. The limit At~ao
corresponds to a local I IVI interaction and v becomes a
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Symmetries: γ(−τ̄) = γ(τ) and γ(1− τ̄) = γ(τ)
⇒ critical points at τ = e iπ/2 and τ = e iπ/3

Work in progress: Estimating γ(τ) and checking the critical points.
So far we have γ(e iπ/3) > 0 (numerics).
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Stability Definition

The stability is defined w.r.to distance to the infinite-dimensional
manifold of λ−lattice solutions

M = {T sym
g uλ : g ∈ G},

where T sym
g = T gauge

γ T rot
ρ , g = (γ, ρ), is the action of the

symmetry group
G = H2(R2;R)× SO(2)

(semi-direct product) on Abrikosov vortex lattices uλ = (Ψλ,Aλ).
Here T gauge

γ and T rot
ρ are the gauge transformations and rotations,

i.e.

T gauge
γ : (Ψ(x), A(x)) 7→ (e iγ(x)Ψ(x), A(x) +∇γ(x)).

I.M.Sigal, Pisa, May, 2014 Magnetic Vortices, Abrikosov Lattices, Automorphic Functions



Signature of Stability

Consider the hessian, E ′′(uλ), of Ginzburg-Landau energy
functional E(Ψ,A) at a Abrikosov lattice solution uλ = (Ψλ,Aλ).

(Recall that the Ginzburg-Landau equations are the Euler-Lagrange
equations for E .)

E ′′(uω) has zero eigenvalues along the tangent space to
M := G symuλ and uλ

Signature of stability/instability is the sign of the lowest eigenvalue
of E ′′(uλ) in transversal direction to M

=⇒ estimate the lowest eigenvalue of [E ′′(uλ)]transv
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Abrikosov Lattices and Equivariance

Recall: the Abrikosov (vortex) lattice is a pair (Ψ,A) for which all
the physical characteristics

|Ψ|2, B(x) := curl A(x), J(x) := Im(Ψ̄∇AΨ)

are doubly periodic with respect to a lattice λ.

Theorem. (Ψ,A) is an Abrikosov lattice state if and only if it is an
equivariant pair for the group of lattice translations for a lattice λ:

T transl
s (Ψ,A) = T gauge

γs (Ψ,A), ∀s ∈ λ, (1)

where T transl
h and T gauge

γ are the translations and gauge
transformations,

T gauge
γ : (Ψ(x), A(x)) 7→ (e iγ(x)Ψ(x), A(x) +∇γ(x)).

(1)⇒ γs+t(x)− γs(x + t)− γt(x) ∈ 2πZ.
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Magnetic Translations

The key point: uλ = (Ψλ,Aλ) is equivariant =⇒ the Hessian
E ′′(uλ) commutes with magnetic translations,

Ts = T gauge
γs T transl

s ,

where, recall, T transl
s f (x) = f (x + s), and

T gauge
γ : (ψ(x), a(x)) 7→ (e iγ(x)ψ(x), a(x) +∇γ(x));

and γs : R2 → R is a multi-valued differentiable function, satisfying

γs+t(x)− γs(x + t)− γt(x) ∈ 2πZ. (2)

(2) ⇒ Ts+t = TsTt .

(s → Ts is a unitary repres. of L on L2(R2;C)× L2(R2;R2).)
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Direct Fibre Integral (Bloch Decomposition)

Since the Hessian operator E ′′(uλ) commutes with Ts , it can be
decomposed into the fiber direct integral

UE ′′(uλ)U−1 =

∫ ⊕
ω∗

Lkdµk

where ω∗ is the fundamental cell of the reciprocal (dual) lattice,
U : L2(R2;C× R2)→H =

∫ ⊕
ω∗ Hkdµk is a unitary operator,

(Uv)k(x) =
∑
s∈λ

e−ik·sTsv(x)

(decomposition into the Bloch waves, vk(x) = e ik·x φk(x)),
Hk := {v ∈ L2(ω,C× R2) : Tsv(x) = e ik·sv(x), s ∈ basis},

Lk is the restriction of the operator E ′′(uλ) to Hk .
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ϑ-function

In the leading order in ε :=
√
κ2 − b, the two lowest eigenvalues of

the fiber operators, Lk are given by

µk0 = (1 + O(ε2))|k|2, µk1 = γk(τ)ε2 + O(ε3),

where

γk(τ) := 2
〈|ϑk(τ)|2|ϑ0(τ)|2〉
〈|ϑk(τ)|2〉〈|ϑ0(τ)|2〉

+ · · · − 〈|ϑ0(τ)|4〉
〈|ϑ0(τ)|2〉2

.

Here ϑk(z , τ), k ∈ Ω∗, are the modified theta functions, i.e. entire

functions satisfying (
√

2π
Im τ i(aτ + b) = k1 + ik2){

ϑk(z + 1, τ) = e2πiaϑk(z , τ),

ϑk(z + τ, τ) = e−2πibe−πiτz−2πizϑk(z , τ).
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Conclusion of Sketch

The relations

I UE ′′(uλ)U−1 =
∫ ⊕
ω∗ Lkdµk and

I inf Lk = min(γk(τ)ε2 + O(ε3), (1 + O(ε2))|k |2), where

γk(τ) := 2 〈|ϑk (τ)|2|ϑ0(τ)|2〉
〈|ϑk (τ)|2〉〈|ϑ0(τ)|2〉 + . . . ,

imply
inf E ′′(uλ) = min( inf

k∈ω∗
γk(τ)︸ ︷︷ ︸

γ(τ)

ε2 + O(ε3), 0).

Hence the Abrikosov lattice is

I linearly stable if γ(τ) > 0

I linearly unstable if γ(τ) < 0.
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Conclusions

In the context of superconductivity and particle physics, we
described

I existence and stability of magnetic vortices and vortex lattices

I a new threshold κc(τ) in the Ginzburg-Landau parameter
appears in the problem of existence of vortex lattices

I while Abrikosov lattice energetics is governed by Abrikosov
function β(τ), a new automorphic function γ(τ) emerges
controlling stability of Abrikosov lattices.

We gave some indications how to prove the latter results. While
the proof of existence leads to standard theta functions, the proof
of stability leads to theta functions with characteristics.

Interesting extensions:

I unconventional/high Tc supercond.,
I Weinberg - Salam model of electro-weak interactions,
I microscopic/quantum theory.
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Thank-you for your attention
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