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Abstract

The mean curvature flow arises material science and condensed matter physics and has been recently
successfully applied by Huisken and Sinestrari to topological classification of surfaces and submanifolds.
It is closely related to the Ricci and inverse mean curvature flow.

The most interesting aspect of the mean curvature flow is formation of singularities, which is the
main theme of these lectures.

Background on geometry of surfaces and some technical statements are given in appendices.
(we often use different notation for the same objects, as we did not decide on the

notation.)
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1 General properties of the mean curvature flow

The mean curvature flow, starting with a hypersurface S0 in Rn+1, is the family of hypersurfaces S(t) given
by immersions x(·, t) which satisfy the evolution equation{

∂x
∂t = −H(x)ν(x)
x|t=0 = x0

(1.1)

where x0 is an immersion of S0, H(x) and ν(x) are mean curvature and the outward unit normal vector at
x ∈ S(t), respectively. The terms used above are explained in Appendix A.

In this lecture we describe some general properties of the mean curvature flow, (1.1). We begin with
writing out (1.1) for various explicit representations for surfaces St.

1.1 Mean curvature flow for level sets and graphs

We rewrite out (1.1) for the level set and graph representation of S. Below, all differential operations, e.g.
∇,∆, are defined in the corresponding Euclidian space (either Rn+1 or Rn).

1) Level set representation S = {ϕ(x, t) = 0}. Then, by (A.2) of Appendix A, we have

ν(x) =
∇ϕ
|∇ϕ|

, H(x) = div

(
∇ϕ
|∇ϕ|

)
. (1.2)
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We compute 0 = dϕ
dt = ∇xϕ · ∂x∂t + ∂ϕ

∂t and therefore ∂ϕ
∂t = ∇ϕ · ∇ϕ|∇ϕ| div

(
∇ϕ
|∇ϕ|

)
, which gives

∂ϕ

∂t
= |∇ϕ| div

(
∇ϕ
|∇ϕ|

)
. (1.3)

2) Graph representation: S = graph of f . In this case S is the zero level set of the function ϕ(x) =
xn+1 − f(u), where u = (x1, . . . , xn) and x = (u, xn+1), and using (1.3) with this function, we obtain

∂f

∂t
=
√
|∇f |2 + 1 div

(
∇f√
|∇f |2 + 1

)
. (1.4)

Denote by Hess f the standard euclidean hessian, Hess f :=
(

∂2f
∂ui∂uj

)
. Then we can rewrite (1.4) as

∂f

∂t
= ∆f − ∇f Hess f∇f

|∇f |2 + 1
. (1.5)

1.2 Different form of the mean curvature flow

Multiplying the equation (1.1) in Rn+1 by ν(x), we obtain the equation

ν(x) · ∂x
∂t

= −H(x). (1.6)

In opposite direction we have

Proposition 1. If x satisfies (1.6), then there is a (time-dependent) reparametrization ϕ of S, s.t. x ◦ ϕ
satisfies (1.1).

Proof. Denote (∂x∂t )T := ∂x
∂t − (ν · ∂x∂t )ν (the projection of ∂x

∂t onto TxS) and let ϕ satisfy the ODE ϕ̇ =

−(dx)−1(∂x∂t ◦ ϕ)T (parametrized by u ∈ U). Then ∂
∂t (x ◦ ϕ) = ( ∂∂tx) ◦ ϕ + dx ϕ̇. Substituting ϕ̇ =

−(dx)−1(∂x∂t ◦ ϕ)T into this, we obtain ∂
∂t (x ◦ ϕ) = (ν · ( ∂∂tx) ◦ ϕ)ν = −H.

Thus the MCF in the form (1.6) is invariant under reparametrization, while the form (1.1) is obtained
by fixing a specific parametrization (fixing the gauge).

1.3 Mean curvature flow and the volume functional

We show that the mean curvature arises from the first variation of the surface area functional. We do this
for surfaces which are graphs of some function, which is locally the case for any surface.

Recall that locally the surface volume functional can be written as

V (S ∩ U) =

∫
U

√
gdnu,
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where g := det(gij). We show that the MCF is a gradient flow of the surface area functional. We do this for
surfaces which are graphs of some function, which is locally the case for any surface. (We do an immersion
case later.)

Recall that, if E : M → R is a functional on an infinite dimensional manifold M , then the Gâteaux
derivative dE(u), u ∈M , of E(u), is a linear functional on X defined as

dE(u)ξ =
∂

∂λ
E(us)|s=0, (1.7)

where us is a path on M satisfying us|s=0 = u and ∂sus|s=0 = ξ, with ξ ∈ TuM , if the latter derivative
exists.

If M is a Riemannian manifold, with an inner product (Riemann metric) h(ξ, η), then there exists a
vector field, gradgE(u), such that

〈gradhE(u), ξ〉 = dE(u)ξ. (1.8)

This vector is called the gradient of E(u) at u w.r.t. the metric h.

We want to compute the Gâteaux derivative of the area functional V . Because of reparametrization (see
Proposition 1), it suffices to look only at normal variations, ψs, of the immersion ψ, i.e. generated by vector
fields η, directed along the normal ν: η = fν. We begin with

Proposition 2. For a surface S given locally by an immersion ψ and normal variations, η = fν, we have

dV (ψ)η =

∫
U

Hν · η √gdnu. (1.9)

Proof. We want to show for g ≡ g(ψ) := det(gij) that

d
√
gη = H

√
gν · η. (1.10)

To this end we use the representation det(gij) = eTr ln(gij), which gives dgη = gTr[(gij)
−1d(gij)η] and

therefore

dgη = ggjidgijη. (1.11)

Next, we compute dgijη = 2
〈
∂ψ
∂ui ,

∂η
∂uj

〉
= 2 ∂

∂uj

〈
∂ψ
∂ui , η

〉
−2

〈
∂
∂uj

∂ψ
∂ui , η

〉
. For normal variations, η = fν, the

last relation and Lemma 41 of Appendix A give

dgijη = 2bij(ν · η), (1.12)

where bij are the matrix elements of the second fundamental form. This relation, together with the relation
dg(ψ)η = g(ψ)gjidgijη, proven above, and, implies dgη = 2(ν · η)ggjibij , which, due to Lemma 41, gives

dgη = 2gH(ν · η).

This, together with d
√
gη = 1

2g
−1/2dgη, gives in turn (1.10).

The equation (1.9) and the definition (1.8) imply
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Theorem 3. The mean curvature flow is a gradient flow with the functional V and the metric
∫
S
ξη:

∂tψ = − gradV (ψ).

Corollary 4. If S evolves according to (1.1), then V (S) decreases. In fact, ∂tV (S) = −
∫
S
H2(x) < 0.

Proof. The assertion on ψ(U) follows from (1.9) as

∂tV (ψ) =

∫
U

Hν · ∂tψ = −
∫
ψ

H2(x),

which after using a partition of unity proves the statement.

As a result, the area of a closed surface shrink under the mean curvature flow. Note also that the
equation (1.12) implies ∂tgij = 2bij(ν · ∂tψ), which, together with (1.6), gives the following equation for the
evolution of the metric

∂tgij = −2bijH. (1.13)

Graph representation. If S is locally a graph, S = graph f, f : U → R, i.e. ψ(u) = (u, f(u)), then the
surface area functional is given by

V (f) =

∫
U

√
1 + |∇f |2dnu.

Then the mean curvature flow
∂tf = − gradV (f),

where grad is defined in the metric hf (ξ, η) :=
∫
U
ξη dnu√

1+|∇f |2
. Indeed, if S = graph f, f : U → R, i.e.

ψ(u) = (u, f(u)), then the proof of (1.9) is simplified. We compute, using that ξ|∂U = 0,

dV (f)ξ = ∂s|s=0V (f + sξ) =

∫
U

∇f√
1 + |∇f |2

· ∇ξdnu,

which, after integrating by parts and using the equation (A.3) of Appendix A, gives

dV (f)ξ =

∫
U

Hξdnu. (1.14)

Using (1.14) we find

dV (f)ξ = −
∫
U

Hξdnu = −
∫
U

√
1 + |∇f |2Hξ dnu√

1 + |∇f |2
.

So we have gradV (f) = −
√

1 + |∇f |2H(x) which together with (1.4) gives the result.
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1.4 Symmetries

Mean curvature is invariant under translations, rotations and scaling. The latter is defined as

S(t)→ λS(λ−2t) ⇔ x→ λx, t→ λ−2t.

The invariance under translations and rotations is obvious. To prove the invariance under scaling, we first
show that

H(λx) = λ−1H(x). (1.15)

Indeed, looking at the definitions B =
(
bij = ∂2ψ

∂ui∂uj
· ν
)

and G =
(
gij :=

〈
∂ψ
∂ui ,

∂ψ
∂uj

〉)
, we see that

B → λB and G→ λ2G if ψ → λψ.

Hence G−1B → λ−1G−1B, which due to the equation (??) of Appendix A, implies (1.15).

Now, let τ := λ−2t, and xλ(t) := λx(τ). Then

∂tx
λ = λλ−2(∂τx)(τ) = −λ−1H(x(τ))ν(x(τ)).

On the other hand, νλ ≡ ν(xλ(τ)) = ν ≡ ν(x(τ)) and Hλ ≡ H(xλ(τ)) = λ−1H(x(τ)) ≡ λ−1H (by (1.15)),
which gives

∂tx
λ = −Hλνλ. (1.16)

We can also use the scaling x(u, t) → λx(λ−1u, λ−2t), together with the fact that H → H, under
u→ λ−1u. Indeed, B → λ−2B and G→ λ−2G if ψ(u)→ ψ(λ−1u), and therefore G−1B → G−1B.

For S = graph f , f(u)→ λf(λ−1u)⇔ ψ(u)→ λψ
(
λ−1u

)
, where ψ(u) := (u, f(u)). Indeed,

ψ(u) := (u, f(u))→
(
u, λf(λ−1u)

)
= λ

(
λ−1u, f(λ−1u)

)
=: λψ

(
λ−1u

)
.

1.5 Special solutions

Static solutions: Static solutions satisfy the equation H(x) = 0 on S, which, by Proposition 2, is the
equation for critical points of the volume functional V (ψ) (the Euler - Lagrange equation for V (ψ)). Thus,
static solutions of the MCF (1.1) are minimal surfaces.

Spherically symmetric (equivariant) solutions:

a) Sphere x(t) = R(t)x̂, where x̂ = x/‖x‖, or {ϕ(x, t) = 0}, where ϕ(x, t) := |x|2 − R(t)2, or graph f ,
where f(u, t) =

√
R(t)2 − |u|2. (SR = RSn, where Sn is the unit n-sphere.) Then we have

H(x) = div

(
∇ϕ
|∇ϕ|

)
= div(x̂) =

n

R

and therefore we get Ṙ = − n
R which implies R =

√
R2

0 − 2nt. So this solution shrinks to a point.
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b) Cylinder x(t) = (R(t)x̂′, x′′), where x = (x′, x′′) ∈ Rk+1 × Rm. Then H(x) = n−1
R and Ṙ = −n−1

R

which implies R =
√
R2

0 − 2(n− 1)t. (In the implicit function representation the cyliner is given by

{ϕ = 0}, where ϕ := r −R, with r =
(∑n−1

i=1 x
2
i

) 1
2

.)

Motion of torus (H. M. Soner and P. E. Souganidis).

Solitons - Self-similar surfaces Consider solutions of the MCF of the form S(t) ≡ Sλ(t) := λ(t)S
(standing waves), or x(u, t) = λ(t)y(u), where λ(t) > 0. Plugging this into (1.1) and using H(λy) = λ−1H(y),
gives λ̇y = −λ−1H(y)ν(y), or λλ̇y = −H(y)ν(y). Multiplying this by ν(y), we obtain

H(y) = a〈ν, y〉, and λλ̇ = −a. (1.17)

Since H(y) is independent of t, then so should be λλ̇ = −a. Solving the last equation, we find λ =
√
λ2

0 − 2at.

i) a > 0⇒ λ→ 0 as t→ T :=
λ2
0

2a ⇒ Sλ is a shrinker.

ii) a < 0⇒ λ→∞ as t→∞⇒ Sλ is an expander.

The equation (1.17) has the solutions: a is time-independent and x is one of the following

a) Sphere x = Rx̂, where R =
√

n
a .

b) Cylinder x = (Rx̂′, x′′), where x = (x′, x′′) ∈ Rk+1 × Rm, where R =
√

k
a .

As stated in the following theorem, these solutions are robust.

Theorem 5 (Huisken). Let S satisfy H = ax · ν and H ≥ 0. We have

(i) If n ≥ 2, and S is compact, then S is a sphere of radius
√

n
a .

(ii) If n = 2 and S is a surface of revolution, then S is the cylinder of radius
√

n−1
a .

Now we consider self-similar surfaces in the graph representation. Let

f(u, t) = λχ(λ−1u), λ depends on t. (1.18)

Substituting this into (1.4) and setting y = λ−1u and a = −λ̇λ, we find√
1 + |∇yχ|2H(χ) = a(y∂y − 1)χ. (1.19)

Translation solitons. These are solutions of the MCF of the form S(t) ≡ S + h(t) (traveling waves),
or x(u, t) = y(u) + h(t), where h(t) ∈ Rn+1. Plugging this into (1.1) and using H(y + h) = H(y), gives
ḣ = −H(y)ν(y), or

H(y) = v · ν(y), and ḣ = v. (1.20)

Since H(y) is independent of t, then so should be ḣ = v. (more to come)
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Breathers. MCF periodic in t.

2 Self-similar surfaces and rescaled MCF

Recall, that static solutions of the MCF (1.1) satisfy the equation H(x) = 0 on S. Thus, static solutions
of the MCF are minimal surfaces. On the other hand, self-similar surfaces (or scaling solitons) satisfy the
equation (1.17), i.e.

H(y) = a〈ν, y〉, (2.1)

where a is a constant. In view of this equation, we see that the minimal surfaces are special cases of self-
similar ones corresponding to a = 0. In fact, a = 0 separates two types of evolution: contracting a > 0 ( λ
decreasing) and expanding a < 0 ( λ increasing). (Remember that a = −λ∂tλ is the negative of the speed
of scaling λ.) (We see that scaling solitons generalize the notion of the minimal surface.)

2.1 Rescaled MCF.

First we note that the self-similar surfaces are static solutions of the rescaled MCF,

∂τϕ = −(H(ϕ)− aϕ · ν(ϕ))ν(ϕ), (2.2)

where a = −λ̇λ, which is obtained by rescaling the surface ψ and time t as

ϕ(u, τ) := λ−1(t)ψ(u, t), τ =

∫ t

0

λ−2(s)ds, (2.3)

and then reparametrizing the obtained surface Sresc(τ) := λ(t)S(t) as in the proof of Proposition 1. Indeed,
since λH = Hλ (or λH(ψ) = H(λ−1ψ)), we find

∂τϕ = λ2∂tϕ = λ2(−λ̇λ−2ψ + λ−1∂tψ)

= −λ̇λϕ− λH(ψ)ν(ψ) = aϕ−H(ϕ)ν(ϕ).

Then the mean curvature flow equation (1.1) implies

∂τϕ = −H(ϕ)ν(ϕ) + aϕ, (2.4)

which after the reparametrization gives (2.2). This is another analogy with minimal surfaces.

For static solutions, a =const. Then solving the equation λ̇λ = −a, we obtain the parabolic scaling:

λ =
√

2a(T − t) and τ(t) = − 1

2a
ln(T − t), (2.5)

where T := λ2
0/2T , which was already discussed in connection with the scaling solitons.

Now, we know that minimal surfaces are critical points of the volume functional V (ψ) (by Proposition
2, the equation H(x) = 0 on S is the Euler - Lagrange equation for V (ψ)). Are self-similar surfaces
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critical points of some modification of the volume functional? (Recall that, because of reparametrization
(see Proposition 1), it suffices to look only at normal variations, ψs, of the immersion ψ, i.e. generated by
vector fields η, directed along the normal ν: η = fν.) The answer to this question is yes and is given in the
following

Proposition 6. Let ρ(x) = e−
a
2 |x|

2

and Va(ϕ) :=
∫
Sλ
ρ. For a surface S given locally by an immersion ψ

and normal variations, η = fν, we have

dVa(ϕ)η =

∫
U

(H − aϕ · ν)ν · η ρdnu, (2.6)

Proof. The definition of Va(ϕ) gives Va(ϕ) =
∫
Sλ
ρ(ϕ)

√
g(ϕ), where ρ(ϕ) = e−

a
2 |ϕ|

2

. We have dρ(ϕ)η =
−aρ(ϕ)η. Using this formula and the equation d

√
gη = H

√
gν ·η proven above (see (1.10)) and the fact that

we are dealing with normal variations, η = fν, we obtain (2.6).

By the definition (1.8) and the formula (2.6), we have gradh Va(ϕ) = (H − aϕ · ν)ν in the Riemann
metric h(ξ, η) :=

∫
Sλ
ξηρ. This and the equation (2.2) and Proposition 6 imply

Corollary 7. Assume a in (2.2) is constant (i.e. the rescaling (2.3) is parabolic, (2.5)). Then

a) The modified area functional Va(ϕ) is momotonically decaying under the rescaled flow (2.2), more
precisely,

∂τVa(ϕ) = −
∫
Sλ
ρ|H − aν · ϕ|2. (2.7)

b) The renormalized flow (2.2) is a gradient flow for the modified area functional Va(ϕ) and the Riemann
metric h(ξ, η) :=

∫
Sλ
ξηρ:

ϕ̇ = − gradh Va(ϕ).

The relation (2.7) is the Huisken monotonicity formula (earlier results of this type were obtained by
Giga and Kohn and by Struwe).

Most interesting minimal surfaces are not just critical points of the volume functional V (ψ) but are
minimizers for it. What about self-similar surfaces? We see that

(i) inf Va(ϕ) = 0 and, for compact minimal surfaces, Va(ϕ) is minimized by any sequence shrinking to a
point.

(ii) Va(ϕ) is unbounded from above. This is clear for a < 0. To see this for a < 0, we construct a sequence
of surfaces lying inside a fixed ball in Rn+1 and folding tighter and tighter.

Thus self-similar surfaces are neither minimizers nor maximizers of Va(ϕ). We conjecture that they are
saddle points satisfying min-max principle: supV infϕ:V (ϕ)=V Va(ϕ). One can try use this principle (say in
the form of the mountain pass lemma) to find solutions of (2.1).
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2.2 Normal hessians.

Recall that the hessian of a functional E(ϕ) is defined as HessE(ϕ) := d gradVa(ϕ). Note that unlike the
Gâteaux derivative, d, the gradient grad and therefore the hessian, Hess, depends on the Riemann metric on
the space on which E(ϕ) is defined.

Since the tangential variations lead to reparametrization of the surface, in what follows we are dealing
with normal variations, η = fν. (In physics terms, specifying normal variations is called fixing the gauge.)
We use the following notation for a linear operator, A, on normal vector fields on S: ANf = A(fν). For
instance, HessN E(ϕ)f = HessE(ϕ)(fν) and

dNF (ϕ)f = dF (ϕ)(fν). (2.8)

We consider the hessian of the modified volume functional Va(ϕ), at a self-similar ϕ (i.e. H(ϕ) = aϕ · ν)
and in the normal direction (i.e. for normal variations, η = fν) in the Riemann metric h(ξ, η) :=

∫
Sλ
ξηρ.

In what follows, we call this hessian the normal hessian and denote it by HessN Va(ϕ).

Before we proceed, we mention the following important property of Va(ϕ): the equationH(ϕ)−aϕ·ν(ϕ) =
0 breaks the scaling and translational symmetry. Indeed, using the relations

H(λϕ) = λ−1H(ϕ), ν(λϕ) = ν(ϕ), ∀λ ∈ R+, (2.9)

H(ϕ+ h) = H(ϕ), ν(ϕ+ h) = ν(ϕ), ∀h ∈ Rn+1, (2.10)

H(gϕ) = H(ϕ), ν(gϕ) = gν(ϕ), ∀g ∈ O(n+ 1), (2.11)

using that g ∈ O(n+ 1) are isometries in Rn+1and using the notation Ha(ϕ) := H(ϕ)− aϕ · ν(ϕ), we obtain

Hλ−2a(λϕ) = λ−1Ha(ϕ), ∀λ ∈ R+, (2.12)

Ha(ϕ+ h) + ah · ν(ϕ) = Ha(ϕ), ∀h ∈ Rn+1, (2.13)

Ha(gϕ) = Ha(ϕ), ∀g ∈ O(n+ 1). (2.14)

We want to address the spectrum of the normal hessian, Hess⊥ Va(ϕ). First, we note that the tangential
variations lead to zero modes of the full hessian, HessVa(ϕ). Indeed, we have

Proposition 8. The full hessian, HessVa(ϕ), of the modified volume functional Va(ϕ), has the eigenvalue
0 with the eigenfunctions which are tangential vector fields on S

Proof. We consider a family αs of diffeormorphisms of U , with α0 = 1 and ∂sϕ ◦ αs|s=0 = ξ, a tangential
vector field, reparametrizing the immersion ϕ, and define the family ϕ ◦ αs of variations of ϕ. Then ϕ ◦ αs
satisfies again the soliton equation, Ha(ϕ ◦αs) = 0. Differentiating the latter equation w.r.to s at s = 0 and
using that ∂sϕ ◦ αs|s=0 = ξ, is a tangential vector field, we obtain

dHa(ϕ)ξ = 0, (2.15)

which proves the proposition.

Theorem 9. The hessian, HessN Va(ϕ), of the modified volume functional Va(ϕ), at a self-similar ϕ (i.e.
H(ϕ) = aϕ · ν) and in the normal direction (i.e. for normal variations, η = fν), has
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• the eigenvalue −2a with the eigenfunction ϕ · ν(ϕ),

• the eigenvalue −a with the eigenfunctions νj(ϕ), j = 1, . . . , n+ 1, and,

• the eigenvalue 0 with the eigenfunctions σjϕ · ν(ϕ), j = 1, . . . , 1
2n(n − 1), where σj are generators of

the Lie algebra of SO(n+ 1), unless ϕ is a sphere.

Proof. If an immersion ϕ satisfies the soliton equation H(ϕ) = aϕ·ν(ϕ), then by (2.12), we have Hλ−2a(λϕ) =
0 for any λ > 0. Differentiating this equation w.r.to λ at λ = 1, we obtain dHa(ϕ)ϕ = −2aϕ · ν(ϕ).

Now, choosing ξ to be equal to the tangential projection, ϕT , of ϕ, and subtracting the equation
(2.15) from the last equation, we find dHa(ϕ)(ϕ · ν(ϕ))ν(ϕ) = −aϕ · ν(ϕ). Since by the definition (2.17),
dHa(ϕ)fν(ϕ) = dNHa(ϕ)f , this proves the first statement.

To prove the second statement, we observe that the soliton equation implies, by (2.13), that Ha(ϕ +
sh)+ash ·ν(ϕ) = 0 and any constant vector field h. Differentiating this equation w.r.to s at s = 0, we obtain
dHa(ϕ)h = −ah · ν(ϕ). Now, choosing ξ to be equal to the tangential projection, hT , of h, and subtracting
the equation (2.15) from the last equation, we find dHa(ϕ)(h · ν(ϕ))ν(ϕ) = −ah · ν(ϕ), which together with
(2.17) gives the second statement.

Finally, to prove the third statement, we differentiate the equation Ha(g(s)ϕ) = 0, where g(s) is a one-
parameter subgroup of O(n+ 1), w.r.to s at s = 0, to obtain dHa(ϕ)σϕ = 0, where σ denotes the generator
of g(s). Now, choosing ξ in (2.15) to be equal to the tangential projection, (σϕ)T , of σϕ, and subtracting
the equation (2.15) from the last equation, we find dHa(ϕ)(σϕ · ν(ϕ))ν(ϕ) = 0, which together with (2.17)
gives the third statement.

Remark 1. a) For a 6= 0, the soliton equation, ϕ · ν(ϕ) = a−1H(ϕ), and Proposition 3 imply that the mean
curvature H is an eigenfunction of HessN Va(ϕ) with the eigenvalue −2a.

b) Strictly speaking, if the self-similar surface is not compact, then ϕ · ν(ϕ) and νj(ϕ), j = 1, . . . , n+ 1,
generalized eigenfunctions of HessN Va(ϕ). In the second case, the Schnol-Simon theorem (see Appendix C.1
or [?]) implies that the points −2a and −a belong to the essential spectrum of HessN Va(ϕ).

c) We show below that the normal hessian, HessNsph Va(ϕ), on the sphere of the radius
√

a
n , given in

(2.23), has no other eigenvalues below 2a
n , besides −2a and −a. A similar statement, but with n replaced by

n− 1, we have for the cylinder.

We call the eigenfunction ϕ · ν(ϕ), νj(ϕ) and σjϕ · ν(ϕ), j = 1, . . . , n+ 1, the scaling, translational and
rotational modes. They originate from the normal projections, (λϕ)N and (sh)N , of scaling, translation and
rotation variations.

2.3 Self-similar surfaces.

Linearized Stability. Given a self-similar surface ϕ, we consider for example the manifold of surfaces
obtained from ϕ by symmetry transformations,

Mϕ := {λgϕ+ z : (λ, z, g) ∈ R+ × Rn+1 × SO(n+ 1)}.
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By the spectral theorem above, it has unstable and central manifolds corresponding to the eigenvalues
−2a, −a and 0. Hence, we can expect only the dynamical stability in the transverse direction.

Definition 1 (Linearized stability of self-similar surfaces). We say that a self-similar surface φ, with a > 0,
is linearly stable (for the lack of a better term) iff the normal hessian satisfies HessN Va(ϕ) > 0 on the

subspace
(

span{ϕ ·ν(ϕ), νi(ϕ), i = 1, . . . , n+ 1, σjϕ ·ν(ϕ), j = 1, . . . , 1
2d(d−1)}

)⊥
(i.e. on

(
span{scaling,

translational, rotational modes}
)⊥

).

(I.e. the only unstable motions allowed are scaling, translations and rotations.)

Another notion of stability was introduced by analogy with minimal surfaces in [3]:

Definition 2 (F−stability of self-similar surfaces, [3]). We say that a self-similar surface φ, with a > 0,
is F−stable iff the normal hessian satisfies HessN Va(ϕ) ≥ 0 on the subspace span{ϕ · ν(ϕ), νj(ϕ), j =
1, . . . , n+ 1}⊥.

Remark 2. 1) The F−stability, at least in the compact case, says that the HessN Va(ϕ) has the smallest
possible negative subspace, i.e ϕ has the smallest possible Morse index.

2) The reason the F−stability works in the non-compact case is that, due to the separation of variables
for the cylinder = (compact surface) ×Rk, the orthogonality to the negative eigenfunctions of the compact
factor removes the entire branches of the essential spectrum. This might not work for warped cylinders.

3) For minimal surfaces (strict) stability implies the the surface is a (strict) minimizer of the volume
functional V (ψ). As is already suggested by the discussion above, this is not so for self-similar surfaces, they
are saddle points possibly satisfying some min-max principle.

4) Remark 1(c) shows that the spheres and cylinders are F−stable. However, we show in Section 5 that
cylinders are dynamically unstable.

In what follows a > 0. Theorem 9 implies that if φ is not spherically symmetric, then 0 is an eigenvalue
of HessN Va(ϕ) of multiplicity at least n+ 1. This gives the first statement in the following corollary, while
the second one follows from Remark 1(c) and the definition of the F−stability (see also the first part of
Remark 2(5)).

Corollary 10. (a) If a self-similar surface with a > 0 satisfies HessN Va(ϕ) > 0 on the subspace span{ϕ ·
ν(ϕ), νj(ϕ), j = 1, . . . , n+ 1}⊥, then it a sphere or a cylinder.

(b) There are no smooth, embedded self-similar (a > 0), F−stable surfaces in Rn+1 close to Sk ×Rn−k,

where Sk is the round k−sphere of radius
√

k
a .

A slight but a key improvement of this result is a hard theorem:

Theorem 11 (Colding- Minicozzi). The only smooth, complete, embedded self-similar (a > 0), F−stable

surfaces in Rn+1 of polynomial growth are Sk × Rn−k, where Sk is the round k−sphere of radius
√

k
a .
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Remark 3. The difference between this theorem and (trivial) Corollary 10 is that the latter requires a
slightly stronger condition HessN Va(ϕ) > 0 on the subspace span{ϕ · ν(ϕ), νj(ϕ), j = 1, . . . , n+ 1}⊥, then
the F−stability.

To prove Theorem 11, we begin with the following result

Theorem 12. For a self-similar surface with a > 0, HessN Va(ϕ) ≥ −2a iff H(ϕ) > 0. Hence if it is
F−stable, then H(ϕ) > 0.

To prove this theorem we will use the Perron-Frobenius theory (see Appendix C.2) and its extension as
given in [26]. We begin with

Definition 3. We say that a linear operator on L2(S) has a positivity improving property iff either A, or
e−A, or (A+ µ)−1, for some µ ∈ R, takes non-negative functions into positive ones.

Proposition 13. The normal hessian, HessN Va(ϕ), has a positivity improving property.

Proof. By standard elliptic/parabolic theory, e∆ and (−∆+µ)−1, for any µ > 0, has strictly positive integra
kernel and therefore is positivity improving. To lift this result to HessN Va(ϕ) := −∆ − |W |2 − a1 + ϕ · ∇
we proceed exactly as in [26].

Since, the operator HessN Va(ϕ) is bounded from below and has a positivity improving property, it
satisfies the assumptions of the Perron-Frobenius theory (see Appendix C.2) and its extension in [26] to the
case when the positive solution in question is not an eigenfunction. The latter theory, Proposition 3 and
Remark 1 imply the statement of Theorem 12.

Corollary 14 (Dan Ginsberg). Let ϕ be a self-similar surface. We have

(a) For a < 0 (ϕ is an expander), H(ϕ) changes the sign.

(b) For a = 0, inf HessN Va(ϕ) < 0.

(c) For a > 0, if ϕ is an entire graph over Rn and is weakly stable, then ϕ is a hyperplane.

Indeed, (a) follows directly from Theorems 9 and 12, while (b) follows from the fact that for a = 0, 0
is an eigenvalue of the multiplicity n+ 2 and therefore, by the Perron-Frobenius theory, it is not the lowest
eigenvalue of HessN Va(ϕ). (c) is based on the fact that entire graphs over Rn cannot have strictly postive
mean curvature. (check, references)

Theorem 15 (Colding- Minicozzi, Huisken). The only smooth, complete, embedded self-similar surfaces in
Rn+1, with a > 0, polynomial growth and H(ϕ) > 0, are Sk × Rn−k, where Sk is the round k−sphere of

radius
√

k
a .

Proof. Denote L = HessN Va(ϕ). We extend the operator L to tensors by using the connection ∇ and the
Laplce- Beltrami operator ∆ = gij∇i∇j on tensors. The proof of this theorem is based on the following

Lemma 16. We have the following relations

(a) [Colding- Minicozzi, Huisken] |∇|W ||2 ≤ |∇W |2.
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(b) (1 + 2
n+1 )|∇|W ||2 ≤ |∇W |2 + 2n

n+1 |∇H|
2.

(c) [Colding- Minicozzi, Simons] LW = −2aW

(d) [Colding- Minicozzi, Simons] If |W | does not vanish, then L|W | ≥ |W |.

(e) more bounds.

Proof. A long string of elementary inequalities, see [3], Lemmas 10.2, 10.8, Proposition 10. 14.

This lemma implies the relations

(a) [Colding- Minicozzi, Huisken] |∇|W ||2 = |∇W |2.

(b) [Huisken] If H > 0, then |W | = βH, for some β > 0.

The last two relations and somewhat lengthy deliberations imply Theorem 15.

(Compare with surfaces of constant mean curvature)

Theorems 12 and 15 imply Theorem 11.

There is a considerable literature on stable minimal surfaces. Much of it related to the Bernstein
conjecture:

The only entire minimal graphs are linear functions.

It was shown it is true for n ≤ 7:

(a) Bernstein for n = 2;

(b) De Georgi for n = 3;

(c) Almgren for n = 4; .

(d) Simons for n = 5, 6, 7.

(b) and (d) used in part results of Fleming on minimal cones. These results were extended by Schoen, Simon
and Yau.

Bombieri, De Georgi and Giusti constructed a contra example for n > 7.

Now, we compute explicit expression for the normal hessian, HessN Va(ϕ).

Theorem 17. The normal hessian, HessN Va(ϕ) at a self-similar ϕ (i.e. H(ϕ) = aϕ · ν) is given by

HessN Va(ϕ) = −∆− |W |2 − a(1− ϕ · ∇). (2.16)
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Proof. Recall that by the definition (1.8) and the formula (2.6), we have gradh Va(ϕ) = (H − aϕ · ν)ν
in the Riemann metric h(ξ, η) :=

∫
Sλ
ξηρ. For normal variations, η = fν, this gives gradh V

norm
a (ϕ) =

(H(ϕ)− aϕ · ν). We have to compute d gradh V
norm
a (ϕ) = d(H − aϕ · ν)ν w.r.to normal variations. We claim

that

dNHf = (−∆− |W |2)f, (2.17)

dNϕ · νf = f − ϕ · ∇f. (2.18)

We begin with some simple calculations. Denote ϕj := ∂ujϕ. We have

Lemma 18 (Simons, Schoen-Simon-Yau, Hamilton, Huisken, Sesum). We have the following identities

(a) dν(ϕ)η = −gij〈ν, ∂iη〉ϕj = −〈ν,∇η〉.

(b) dbij(ϕ)η = −〈ν, (∂i∂j + Γkij∂k)η〉.

(c) dgijη = gimgjndgijη, dgijη = 〈ϕm, ∂iη〉+ 〈ϕm, ∂iη〉.

Proof. For (a), use that 〈ν(ϕs), ∂iϕsi〉 = 0 to obtain 〈∂sν(ϕs), ∂iϕsi〉 = −〈ν(ϕs), ∂i∂sϕsi〉, which implies the
desired statement.

To prove (b), we use Lemma 41, which says bij = −〈 ∂2ϕ
∂ui∂uj

, ν〉, the first relation, the equation dϕη = η

and the Gauss formula
∂2ψ

∂ui∂uj
= bijν + Γkijϕk (2.19)

(see e.g. [24]), to find dbij(ϕ)η = −〈 ∂2

∂ui∂uj
dϕη, ν〉−〈 ∂2ϕ

∂ui∂uj
, dνη〉 = −〈 ∂2

∂ui∂uj
η, ν〉−gmn〈(bijν+Γkijϕk, ϕn〉〈ν, ∂mη〉.

Next, using 〈ν, ϕn〉 = 0 and 〈(ϕk, ϕn〉 = gkn gives dbij(ϕ)η = −〈 ∂2

∂ui∂uj
η, ν〉 − gmngknΓkij〈ν, ∂mη〉, which im-

plies the statement (c).

The first statement in (c) follows by differentiating the relation gg−1 = 1, where g = (gij), which gives
d(g−1) = g−1dgg−1, and the second, from the definition gij = 〈ϕi, ϕj〉 and the relation dϕη = η.

Now, notice that the definition ∆f = div grad f = ∇i∇if and relations to

div V = ∇iV i =
∂V i

∂ui
+ ΓmmiV

i, (grad(f))i = gij
∂f

∂uj
, (2.20)

imply ∆f = ( ∂
∂ui +Γmmi)g

ij ∂f
∂uj which gives the relation gij(∂i∂j +Γkij∂k)η = ∆η. Using this relation, Lemma

18 and the definition H = gijbij , we find

dHη = gimgjnbijdgmnη − 〈ν,∆η〉. (2.21)

Next, using Lemma 18 and the equation dϕη = η, we find

d〈ϕ, ν〉η = 〈η, ν〉 − gij〈ν, ∂iη〉〈ϕ,ϕj〉. (2.22)

Now, taking η = fν, we arrive at (2.17).
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2.4 Hessians for spheres and cylinders

We finish this section with the discussion of the normal hessians on the n−sphere and (n, k)−cylinder.

Explicit expressions. The examples of Subsection A.2 show that

1) For the n−sphere SnR of radius R =
√

n
a in Rn+1, we have bij = R−1gij = Rgstand

ij , where gij and gstand
ij

are the metrics on SnR and the standard n−sphere Sn = Sn1 , respectively, which gives |W |2 = nR−2 = a.
Moreover, since ν(ϕ) = ϕ, we have that ϕ · ∇ = 0 and therefore

HessNsph Va(ϕ) = −a
n

∆Sn − 2a, (2.23)

on L2(Sn), where ∆Sk is the Laplace-Beltrami operator on the standard n−sphere Sk.

2) For the n−cylinder CnR = Sn−kR × Rk of radius R =
√

n−k
a in Rn+1, we have bij = R−1gij = Rgstand

ij ,

for i, j = 1, . . . , n− k, and bαβ = δαβ , α, β = n− k + 1, . . . , n. Here gij and gstand
ij are the metrics on Sn−1

R

and Sn−1 = Sn−1
1 , respectively. This gives

|W |2 = (n− k)R−2 = a. (2.24)

Moreover, letting the standard round cylinder Cn = Sn−k × Rk be naturally embedded as Cn = {(ω, x) :

|ω|2 = 1} ⊂ Rn+1, we see that the immersion ϕ is given by ϕ(ω, y) = (χ(ω, y), y) for some χ(ω, y), where
y = y(x) := λ−1(t)x. This gives ϕ ·∇ = ω ·∇Sn−k +y ·∇y = y ·∇y, which together with the previous relation,
implies

HessNcyl Va(ϕ) = −∆y − ay · ∇y −
a

n− k
∆Sn−k − 2a, (2.25)

acting on L2(Cn).

Spectra of Lsph
a := HessNsph Va(ϕ) and Lcyl

a := HessNcyl Va(ϕ). We describe the spectra of the normal

hessians on the n−sphere and (n, k)−cylinder, of the radii
√

a
n and

√
a

n−1 , respectively.

It is a standard fact that the operator −∆ = −∆Sn is a self-adjoint operator on L2(Sn). Its spectrum
is well known (see [29]): it consists of the eigenvalues l(l + n − 1), l = 0, 1, . . . , of the multiplicities m` =(
n+ l
n

)
−
(
n+ l − 2

n

)
. Moreover, the eigenfunctions corresponding to the eigenvalue l(l + n − 1) are

the restrictions to the sphere Sn of harmonic polynomials on Rn+1 of degree l and denoted by Ylm (the
spherical harmonics),

−∆Ylm = l(l + n− 1)Ylm, l = 0, 1, 2, 3, . . . , m = 1, 2, . . . ,ml. (2.26)

In particular, the first eigenvalue 0 has the only eigenfunction 1 and the second eigenvalue n has the eigen-
functions ω1, · · · , ωn+1.

Consequently, the operator Lsph
a := HessNsph Va(ϕ) = − a

n (∆Sn + 2n) is self-adjoint and its spectrum
consists of the eigenvalues a

n (l(l + n − 1) − 2n) = a(l − 2) + a
n l(l − 1), l = 0, 1, . . . , of the multiplicities
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m`. In particular, the first n + 2 eigenvectors of Lsph
a (those with l = 0, 1) correspond to the non-positive

eigenvalues,
Lsph
a ω0 = −2aω0, Lsph

a ωj = −aωj , j = 1, . . . , n+ 1, (2.27)

and are due to the scaling (l = 0) and translation (l = 1) symmetries.

We proceed to the cylindrical hessian Lcyl
a := HessNcyl Va(ϕ), given in (2.25). The variables in this

operator separate and we can analyze the operators −∆y − ay · ∇ and − a
n−k (∆Sn−k + 2(n− k)) separately.

The operator − a
n−k (∆Sn−k + 2n) was already analyzed above. The operator −∆y − ay · ∇ is the Ornstein -

Uhlenbeck generator, which can be unitarily mapped by the gauge transformation

v(y, w)→ v(y, w)e−
a
4 |y|

2

into the the harmonic oscillator Hamiltonian Hharm := −∆y + 1
4a

2|y|2 − ka. Hence the linear operator

−∆y − ay · ∇ is self-adjoint on the Hilbert space L2(R, e− a2 |y|2dy). Since, as was already mentioned, the
operator − a

n−k (∆Sn−k + 2(n − k)) is self-adjoint on the Hilbert space L2(Cn), we conclude that the linear

operator Lcyl
a is self-adjoint on the Hilbert space L2(Rk × Sn−k, e− a2 |y|2dydw). Moreover, the spectrum of

−∆y − ay · ∇ is
{
a
∑k

1 si : si = 0, 1, 2, 3, . . .
}
, with the normalized eigenvectors denoted by φs,a(y), s =

(s1, . . . , sk),

(−∆y − ay · ∇)φs,a = a

k∑
1

siφs,a, si = 0, 1, 2, 3, . . . . (2.28)

Using that we have shown that the spectrum of − a
n−k (∆Sn−k+2(n−k)) is a

n−k (l(l+n−k−1)−2(n−k)) =
a

n−k l(l+ n− k− 1)− 2a, l = 0, 1, . . . , and denoting r =
∑k

1 si, si = 0, 1, 2, 3, . . ., we conclude the spectrum

of the linear operator Lcyl
a , for k = 1, is

spec(Lcyl
a ) =

{
(r − 2)a+

a

n− 1
`(`+ n− 2) : r = 0, 1, 2, 3, . . . ; ` = 0, 1, 2, . . .

}
, (2.29)

with the normalized eigenvectors given by φr,l,m,a(y, w) := φr,a(y)Ylm(w). This equation shows that the
non-positive eigenvalues of the operator Lcyl

a , for k = 1, are

• the eigenvalue −2a of the multiplicity 1 with the eigenfunction φ0,0,0,a(y) = ( a
2π )

1
4 ((r, l) = (0, 0)), due

to scaling of the transverse sphere;

• the eigenvalue −a of the multiplicity n with the eigenfunctions φ0,1,m,a(y) = ( a
2π )

1
4wm, m = 1, . . . , n

((r, l) = (1, 1)), due to transverse translations;

• the eigenvalue 0 of the multiplicity n with the eigenfunctions φ1,1,m,a(y) = ( a
2π )

1
4
√
aywm, m = 1, . . . , n

((r, l) = (0, 1)), due to rotation of the cylinder;

• the eigenvalue −a of the multiplicity 1 with the eigenfunction φ1,0,0,a(y) = ( a
2π )

1
4
√
ay ((r, l) = (1, 0));

• the eigenvalue 0 of the multiplicity 1 with the eigenfunction φ2,0,0,a(y) = ( a
2π )

1
4 (1−ay2) ((k, l) = (2, 0)).
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The last two eigenvalues are not of the broken symmetry origin and are not covered by Theorem 9. They
indicate instability of the cylindrical collapse

By the description of the spectra of the normal hessians of Lsph
a := HessNsph Va(ϕ) and Lcyl

a := HessNcyl Va(ϕ),
we conclude that the spherical collapse is linearly stable while the cylindrical one is not.

We will show in Sections 4 and 5 that indeed the spherical collapse is (nonlinearly) stable while the
cylindrical one is not. We will also show that the last two eigenvalues of Lcyl

a in the list above are due to
translations of the point of the neckpinch on the axis of the cylinder and due to shape instability, respectively.

2.5 Minimal and self-similar submanifolds

For a self-similar hypersurface S in a manifold M , with immersion ϕ (satisfying H(ϕ) = aϕ · ν), the normal
hessian, HessN Va(ϕ) is given by

HessN Va(ϕ) = −∆− |W |2 − a(1− ϕ · ∇)−RicM (ν, ν), (2.30)

where RicM (ν, ν) is the Ricci curvature of M .

Appendix: Graph representation. As an exercise, we prove (2.6) for a local patch, Sλ ∩W given by a
graph of a function fλ : Uλ → R, Sλ ∩W = graph fλ which is the rescaling

fλ(v, τ) = λ−1f(u, t), v = λ−1u, τ =

∫ t

0

λ−2(s)ds, (2.31)

of S =graph f . In this case, using that
√

1 + |∇fλ|2λ−1Hλ =
√

1 + |∇f |2H and ∂tf = λ̇fλ− λ̇y ·∇vfλfλ+
λλ−2∂τf

λ, we find that fλ(v, τ) satisfies the equation

∂τf
λ =

√
1 + |∇fλ|2div

(
∇fλ√

1 + |∇fλ|2

)
− a(v∂v − 1)fλ. (2.32)

In the rest of the derivation we omit the superindex λ. Let x = (v, f(v)). Since |x|2 = |v|2 + |f(v)|2, we can
write in local coordinates

Va(f) :=

∫
ψ

ρ =

∫
U

e−
a
2 (v2+f2)2

√
1 + |∇f |2dnv.

We compute dVa(f)ξ =
∫
U
ρ

(
−afξ + ∇f ·∇ξ√

1+|∇f |2

)
. Integration by parts of the second term gives

dVa(f)ξ =

∫
Uλ

ρ

[
−af

√
1 + |∇f |2 + a(v + f∇f)

∇f√
1 + |∇f |2

− div

(
∇f√

1 + |∇f |2

)]
ξdnv.

The first two terms on the r.h.s. come from differentiating ρ. Reducing them to the common denominator

and using that H = div

(
∇f√

1+|∇f |2

)
, the mean curvature, we find

dVa(f)ξ = −
∫
U

ρ

(
H − a (v · ∇ − 1)f√

1 + |∇f |2

)
ξdnv. (2.33)
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Now ν = (−∇f,1)√
1+|∇f |2

and x = (v, f(v)). Hence we have ν · x = −v·∇f+f√
1+|∇f |2

, which gives (2.6).

As before, (2.33) implies that (2.32) is the gradient flow for the functional Va :=
∫
Uλ

e−
a
2 (v2+f2)2

√
1 + |∇f |2dnv

and the metric h(ξ, η) :=
∫
Uλ

ξη ρ√
1+|∇fλ|2

:

˙fλ = − gradh Ja(fλ).

Indeed, he equation (2.33) implies

gradh Va(fλ) = −

(
H − (y · ∇ − 1)fλ√

1 + |∇fλ|2

)√
1 + |∇fλ|2.

which gives the result.

3 Global Existence vs. Singularity Formation

The next two results indicate some possible scenarios for the long-time behavior of surface under mean
curvature flow. Definition: S is uniformly convex if all curvatures of S ≥ δ for some δ > 0.

Theorem 19. (Ecker-Huisken) If S0 is an entire graph over a hyperplane in Rn+1, satisfying certain growth
conditions, then the MCF St, starting at S0, exists ∀t and converges to a a hyperplane.

Theorem 20. (Huisken) Let S0 be a compact, uniformly convex hypersurface, then there is T ∈ (0,∞) s.t.
λ−1S → S∞, for λ =

√
2n(T − t).

In the both cases, the rescaled flow converges to a surface S∞, which satisfies H = −ν · x in the first
case and H = ν · x in the second. We sketch the proof of Theorem 20

Idea of proof of the Huisken theorem. We conduct the proof in four steps.

Step #1: Rescaling. To understand the asymptotic behavior of the surface, we rescale it so that the rescaled
surface converges to a limit (similarly as in traveling wave and blowup problems). Consider the new surface
Sλ given by (blowup variables) (2.3) Its immersion ϕ satisfies the equation

∂τϕ = −H(ϕ)ν(ϕ) + aϕ, (3.1)

where a = −λ̇λ.

Step #2: Lyapunov functional. On this step one proves Huisken monotonicity formula(2.7), which we recall
here

∂τ

∫
Sλ
ρ = −

∫
Sλ
ρ|H − aν · ϕ|2. (3.2)

Step #3: Compactness. We prove the global existence of the rescaled flow Sλ(τ). By the local existence
theorem there T > 0, s.t. the flow exists on the interval [0, T ). Assume that T is the maximal existence
time. Let T < ∞. Let W be the Weingarten map of the surface and let |W |2 := Tr(W 2) = gijgklbikbjl,



MCF Lectures, March 12, 2013 21

where recall bik are the matrix elements of W in the natural basis, i.e. (bik) is the second fundamental form.
(Thus |W |2 is the square root of the sum of squares of principal curvatures.) We want to use the following
key result:

Theorem 21 (Compactness theorem: Langer, n = 3). Given constants A > 0, E > 0, p > 2, the set Ω of
immersed surfaces ψ : S → Rn satisfying

• V (ψ) =
∫
S
dvol < A;

• Ep(ψ) :=
∫
S

Tr |W |pdA < E (p???);

•
∫
S
ψdvol = 0 (center of gravity at 0);

is compact in the sense that ∀ {ψn} ⊂ Ω, ∃ surface diffeomorphisms φn such that a subsequence of {ψn ◦φn}
converges in the C1 topology to an immersion ψ in Ω. Here S is compact and without boundary.

It is shown in [13, 15] that for compact, uniformly convex hypersurfaces, S0, there is T ∈ (0,∞) s.t. the
Weingarten map Wλ of the rescaled surface Sλ satisfies

sup
S
|Wλ| ≤ c. (3.3)

Next, we have the following estimate which follows from (2.7): for any x0,

V (Sλ ∩BR(x0)) ≤ eaR
2/2

∫
ρx0
≤ eaR

2/2

∫
ρx0
|t=0.

Then by Langer’s theorem, the family Sλ(τ) ∩ BR(x0), 0 ≤ τ < T, is compact (up to the closure) for each
R > 0 in the C1 topology. Hence Sλ(T ) := limτ ′→T S

λ(τ
′
) exists on each ball BR(x0), for a subsequence

{τ ′}, τ ′ → T, so we can take Sλ(T ) for the new initial condition and continue the flow beyond T . This leads
to the contradiction. Hence T =∞.

Since the family Sλ(τ), 0 ≤ τ < ∞, is still compact by Langer’s theorem, there exists a subsequence
{τ ′}, τ ′ →∞, s.t. S∞ := limτ ′→∞ Sλ(τ

′
) exists on each ball BR(x0).

Step #4: Identification of S∞. To show that if Sλ(τ)→ S∞, then S∞ satisfies

H(y) = aν · y, (3.4)

one uses the monotonicity formula. Indeed, integrating (3.2), we obtain∫ ∞
0

dτ

∫
Sλ
ρ|H − aν · x|2 =

∫
Sλ
ρ|τ=0 −

∫
Sλ
ρ|τ=∞ ≤

∫
Sλ
ρ|τ=0.

This gives
∫
Sλ
ρ|Hλ − aνλ · xλ|2 → 0 as τ →∞. So we get (3.4).

By the Huisken classification theorem, stating that if n ≥ 2, H ≥ 0, and if S compact and satisfies (3.4),
then S is the sphere of radius

√
n
a , we conclude that S is a sphere in the second case.

In the original (non-rescaled) variables the estimate (3.3) becomes supS |W | ≤ c
T−t . A collapsing solution

is called of type I if |W | is bounded as |W | ≤ C(t∗− t)− 1
2 . Otherwise, it is called of type II (see Huisken). It

was conjectured that the generic collapse is of type I. Indeed, all collapses investigated in the papers above
are of type I.
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MCF of submanifolds. For hypersurfaces immersed in manifolds, the theory of collapse and neckpinching
are expected to go through with minimal modification. The reason for this is that they are local theories.
The volume preserving flow is affected by the geometry of ambient space in a more substantial way, see
Section ??.

4 Stability of elementary solutions I. Spherical collapse

The next two results indicate some possible scenarios for the long-time behavior of surface under mean
curvature flow.

Theorem 22. • (Ecker-Huisken) The hyperplanes are asymptotically stable.

• (Kong-Sigal) The spheres are asymptotically stable.

• (Gang - Sigal) The cylinders are unstable.

We prove the second statement which we formulate precisely. Recall that we are considering the mean
curvature flow, starting with a hypersurface S0 in Rn+1, which is given by an immersion, x0 : Ŝ → Rn+1),
of some fixed n−dimensional hypersurface Ŝ ⊂ Rn+1 (i.e. x(·, t) : Ŝ → Rn+1). We look for solutions of the
mean curvature flow, {

∂x
∂t = −H(x)ν(x)
x|t=0 = x0,

(4.1)

as immersions, x(·, t) : Ŝ → S, of Ŝ giving the hypersurfaces S(t). (Recall that H(x) and ν(x) are mean
curvature and the outward unit normal vector, at x ∈ S(t), respectively.)

Theorem 23. Let a surface M0, defined by an immersion x0 ∈ Hs(Sn), for some s > n
2 + 1, be close to

Sn, in the sense that ‖x0 − 1‖Hs � 1. Then there exist t∗ < ∞ and z∗ ∈ Rn+1, s.t. (4.1) has the unique
solution, Mt, t < t∗, and this solution contracts to the point z∗, as t∗ →∞. Moreover, Mt is defined,f up to
a (time-dependent) reparametrization, by an immersion x(·, t) ∈ Hs(Sn), with the same s, of the form

x(ω, t) = z(t) + λ(t)ρ(ω, t)ω,

where ρ in turn can be written as

ρ(ω, t) =

√
n

a(t)
+ φ(ω, t), (4.2)

with λ(t), z(t), a(t) and φ(·, t) having the following asymptotic behaviour

λ(t) =
√

2a∗s+O(sκ1), (4.3)

a(t) = −λ(t)λ̇(t) = a∗ +O(sκ2), (4.4)

z(t) = z∗ +O(sκ3) (4.5)

‖φ(·, t)‖Hs . s
1
2n , (4.6)

where s := t∗ − t, κ1 := 1
2 + 1

2a∗
(1− 1

2n ), κ2 := 1
2a∗

(1− 1
2n ) and κ3 := 1

2a∗
(n+ 1

2 −
1

2n ). Moreover, |z∗| � 1.
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Note that our condition on the initial surface does not impose any restrictions of the mean curvature of
this surface.

The form of expression (4.2) above is a reflection of a large class of symmetries of the mean curvature
flow:

• (4.1) is invariant under rigid motions of the surface, i.e. x 7→ Rx + a, where R ∈ O(n + 1), a ∈ Rn+1

and x = x(u, t) is a parametrization of St, is a symmetry of (4.1).

• (4.1) is invariant under the scaling x 7→ λx and t 7→ λ−2t for any λ > 0.

We utilize these symmetries in an essential way by defining the centres, z(t), of the closed surfaces Mt and
using the rescaling of the equation (4.1) by a parameter λ(t). This leads to a transformed MCF depending
explicitly on these parameters and determining their behaviour. Then we define Lyapunov-type functionals
and derive a series of differential inequalities for them from which we obtain our main results. We omit some
technical details for which we refer to (appendices of) [23, 1].

Notation. The relation f . g for positive functions f and g signifies that there is a numerical constant
C, s.t. f ≤ Cg.

4.1 Collapse center

In this section we introduce a notion of the ’center’ of a surface, close to a unit sphere, Sn, in Rn+1,
and show that such a center exists. We will show in Section 4.8 that the centers z(t) of the solutions
Mt to (4.1) converge to the collapse point, z∗, of Theorem 23. Let ω = (ω1, . . . , ωn+1) ∈ Sn ⊂ Rn+1.
For a closed surface M , given by an immersion x : Sn → Rn+1, we define the center, z, by the relations∫
Sn((x− z) · ω)ωj = 0, j = 1, . . . , n+ 1. The reason for this definition will become clear in Section 4.6. We

have

Proposition 24. Assume a surface M is given by an immersion x : Sn → Rn+1, with y := λ−1(x − z̄) ∈
H1(Sn,Rn+1) close, in the H1(Sn,Rn+1)-norm, to the identity 1, for some λ ∈ R+ and z̄ ∈ Rn+1. Then
there exists z ∈ Rn+1 such that

∫
Sn((x− z) · ω)ωj = 0, j = 1, . . . , n+ 1.

Proof. By replacing x by xnew, if necessary, we may assume that z̄ = 0 and λ = 1. Let x ∈ H1(Sn,Rn+1).
The relations

∫
Sn((x − z) · ω)ωj = 0 ∀j are equivalent to the equation F (x, z) = 0, where F (x, z) =

(F1(x, z), . . . , Fn+1(x, z)), with

Fj(x, z) =

∫
Sn

((x− z) · ω)ωj , j = 1, . . . , n+ 1.

Clearly F is a C1 map from H1(Sn,Rn+1) × Rn+1 to Rn+1. We notice that F (1, 0) = 0. We solve the
equation F (x, z) = 0 near (1, 0), using the implicit function theorem. To this end we calculate the derivatives
∂ziFj = −

∫
Sn ω

iωj = − 1
n+1δij |S

n| for j = 1, · · · , n + 1. The above relations allow us to apply implicit
function theorem to show that for any x close to 1, there exists z, close to 0, such that F (x, z) = 0.

Assume we have a family, x(·, t) : Sn → Rn+1, t ∈ [0, T ], of immersions and functions z̄(t) ∈ Rn+1 and
λ(t) ∈ R+, s.t. λ−1(t)(x(ω, t)− z̄(t)), in the H1(Sn,Rn+1)-norm, to the identity 1 (i.e. a unit sphere). Then
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Proposition 24 implies that there exists z(t) ∈ Rn+1, s.t.∫
Sn

((x(ω, t)− z(t)) · ω)ωj = 0, j = 1, . . . , n+ 1. (4.7)

To apply the above result to the immersion x(·, t) : Sn → Rn+1, solving (4.1), we pick z̄(t) to be a
piecewise constant function constructed iteratively, starting with z̄(t) = 0 for 0 ≤ t ≤ δ for δ sufficiently
small (this works due to our assumption on the initial conditions), and z̄(t) = z(δ) for δ ≤ t ≤ δ + δ′ and so
forth (see Subsection 4.8). This gives z(t) ∈ Rn+1, s.t. (4.7) holds.

4.2 Rescaled equation

Instead of the surface Mt, it is convenient to consider the new, rescaled surface M̃τ = λ−1(t)(Mt − z(t)),
where λ(t) and z(t) are some differentiable functions to be determined later, and τ =

∫ t
0
λ−2(s)ds. The new

surface is described by y, which is, say, an immersion of some fixed n−dimensional hypersurface Ω ⊂ Rn+1,
i.e. y(·, τ) : Ω → Rn+1, (or a local parametrization of M̃τ , i.e. y(·, τ) : U → Mt). Thus the new collapse
variables are given by

y(ω, τ) = λ−1(t)(x(ω, t)− z(t)) and τ =

∫ t

0

λ−2(s)ds. (4.8)

Let λ̇ = ∂λ
∂t and ∂z

∂τ be the τ -derivative of z(t(τ)), where t(τ) is the inverse function of τ(t) =
∫ t

0
λ−2(s)ds.

Using that ∂x
∂t = ∂z

∂t + λ̇y + λ ∂y∂τ
∂τ
∂t = λ−2 ∂z

∂τ + λ̇y + λ−1 ∂y
∂τ and H(λy) = λ−1H(y), we obtain from (4.1) the

equation for y, λ and z:

∂y

∂τ
= −H(y)ν(y) + ay − λ−1 ∂z

∂τ
and a = −λλ̇. (4.9)

Thus Mt is given by the datum (y, λ, z), satisfying Eq. (4.9). Note that the equation (4.9) has static solutions
(a = a positive constant, z = 0, y(ω) =

√
n
aω, ω ∈ Sn).

One can reformulate (and extend if necessary) standard results on the local well-posedness for the mean
curvature flow (see e.g. [18]) to show that for an initial condition y0 ∈ Hs(Sn), with s > n

2 + 1, and given
functions a(τ), z(τ) ∈ C1 ∩ L∞(R), there is T > 0, s.t. (4.9) has a unique solution, y ∈ Hs(Sn), with
s > n

2 + 1, on the time interval [0, T ) and either T =∞ or T <∞ and ‖y‖Cα →∞ and τ → T .

Our goal is to prove the following result.

Theorem 25. Let ρ0 ∈ Hs(Sn) satisfy ‖ρ0 − 1‖Hs � 1 for some s > n
2 + 1, and let λ0 > 0 and |z0| � 1.

Then (4.9) with initial data (y0 = ρ0(ω)ω, λ0, z0) has a unique solution (y, λ, z) for ∀τ , where y(ω, τ) is, up
to a (time-dependent) reparametrization, of the form

y(ω, τ) = ρ(ω, τ)ω, (4.10)

with ρ(·, τ) ∈ Hs(Sn), ρ(ω, τ) =
√

n
a(τ) + φ(ω, τ), and λ(τ) and z(τ) satisfying λ(τ) = λ0e

−
∫ τ
0
a(s)ds and

|z(τ)− z∗| . e−(n+ 1
2−

1
2n )τ , for some a(τ) = a∗ +O(e−(1− 1

2n )τ ), with |a∗ − n| ≤ 1
2 and |z∗| � 1.

This theorem together with (4.8) implies Theorem 23 (see Section 4.8).
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4.3 Differential equation for the graph function ρ

In the next proposition ∆ is the Laplace-Beltrami operator in is the standard metric on Sn, ∇iρ = ∂ρ
∂ui (in a

local parametrization x = x(u)) and (Hess ρ)ij = ∂2ρ
∂uiuj −Γkij

∂ρ
∂uk

, where Γkij = 1
2g
kn(∂gin∂uj +

∂gjn
∂ui −

∂gij
∂un ). Here

and in what follows the summation over the repeated indices is assumed. (Hess is the hessian on Sn and, if ∇
the Riemann connection on Sn, which acts on vector fields as (∇iv)j =

∂vj
∂ui − Γkijvk, then (Hess)ij = ∇i∇j .)

For more details see Appendix A. In this section we prove the following

Proposition 26. Let M̃τ = λ−1(t)(Mt − z(t)) be defined by an immersion y(ω, τ) = ρ(ω, τ)ω of Sn for
some functions ρ(·, τ) : Sn → R+, differentiable in their arguments and let z(τ) ∈ C1(R+,Rn+1). Then M̃τ

satisfies (4.9) if and only if ρ and z satisfy the equation

∂ρ

∂τ
= G(ρ) + aρ− λ−1zτ · ω + λ−1z̃τ · ρ−1∇ρ, (4.11)

where z̃τk = ∂xi

∂uk
ziτ , zτ := ∂z

∂τ and (check the sign of the last term on the r.h.s.)

G(ρ) =
1

ρ2
∆ρ− n

ρ
− ∇ρ ·Hess(ρ)∇ρ− ρ|∇ρ|2

ρ2(ρ2 + |∇ρ|2)
. (4.12)

Proof. By a reparametrization (see Proposition 1), the equation (4.9) is equivalent to the equation

∂y

∂τ
· ν(y) = −H(y) + (ay − λ−1 ∂z

∂τ
) · ν(y). (4.13)

For the graph y(ω, τ) = ρ(ω, τ)ω, we have ∂y
∂τ = ∂ρ

∂τ ω. By results of Appendix A.8, we have ν · ω = p−1/2ρ

and ν ·y = p−1/2ρ2, where p := ρ2 + |∇ρ|2. These relations, together with the equation (4.13), the expression
(A.33) for the mean curvature H(y) and a similar computation ∂z

∂τ · ν(y) = zτ · ω − +z̃τ · ρ−1∇ρ, give the
equation (4.11).

4.4 Reparametrization of solutions

Our goal is to decompose a solution, ρ(ω, τ), of the equation (4.11) into a leading part which is a sphere of
some radius τ -dependent and small fluctuation around this part. This would give a convenient reparametriza-
tion of our solution. We begin with an easy task of decomposing the initial condition for (4.11). Given ρ0

we define a0 by n
a0

= 〈ρ0〉Sn , where by 〈f〉Sn we denote the average, 〈f〉Sn := 1
|Sn|

∫
Sn f , of f over Sn, so that

ρ0(ω) =

√
n

a0
+ φ0(ω), with φ0 ⊥ 1 in L2(Sn). (4.14)

(Here and in what follows, all the norms and inner products are in the sense of L2(Sn)).)

A similar decomposition of a solution, ρ(ω, τ) is more subtle. We decompose ρ(ω, τ) into the sphere,
which (a) is closest to it and (b) is a stationary solution to (4.11), and a remainder. By (a) the remainder

(fluctuation) is orthogonal to this sphere and by (b), the radius of the sphere is equal to
√

n
a(τ) , where a(τ)

is the parameter-function appearing in (4.11). In other words, we would like to find a(τ), s.t.

ρ(·, τ) =

√
n

a(τ)
+ φ(ω, τ), with φ ⊥ 1 in L2(Sn). (4.15)
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A subtle point here is that the solution, ρ(ω, τ), of the equation (4.11) depends on a(τ(t)). To overcome this
problem, we recall that the a(τ) entering (4.11) is related to the scaling parameter λ(t) entering the definition
ρ(ω, τ) := λ(t)−1R(ω, t), with R(ω, t) := (x(ω, t) − z(t)) · ω (see Eqs (4.8) and (4.10)) and τ = τ(t) given
by (4.8), as λ(t)∂tλ(t) = a(τ(t)) and λ(t0) = λ0. Solving the latter equation, we obtain λ(t) = λ(a, λ0)(t),
where λ(a, λ0)(t) is the positive function given by

λ(a, λ0)(t) := (λ2
0 − 2

∫ t

t0

a(τ(s))ds)1/2. (4.16)

Since 0 = 〈φ(·, τ), 1〉 = 〈ρ(·, τ)−
√

n
a(τ) 〉, (4.15) is equivalent to the equation

〈R(·, t)〉Sn = λ(a, λ0)(t)

√
n

a(τ(t))
. (4.17)

Hence we would like to define a(τ) implicitly by the latter equation. To do this, we need some definitions.
For any time t0 and constant δ > 0, we define It0,δ := [t0, t0 + δ] and

At0,δ := C1(It0,δ, [n−
1

2
, n+

1

2
]). (4.18)

Suppose R is such that, for some ā ∈ At0,δ,

sup
t∈It0,δ

|λ(ā)(t)−1〈R(·, t)〉Sn −
√

n

ā(t)
| ≤ ν. (4.19)

We define the set

Ut0,δ,λ0,ν := {R ∈ C1(It0,δ, L
2(Sn)) | (4.19) holds for some ā(t) ∈ At0,δ}. (4.20)

Proposition 27. Suppose δ ≤ min(
λ2
0

n− 1
2

,

√
n− 1

2

4(n+ 1
2 )3/2

) and ν ≤ 1
8λ0

n
1
4 (n − 1

2 )5/4. Then there exists a unique

C1 map g : Ut0,δ,λ0,ν → At0,δ, such that for any R ∈ Ut0,δ,λ0,ν and for a(τ(t)) = g(R)(t), we have (4.15),
for ρ(ω, τ) := λ(a, λ0)(t)−1R(ω, t) and for any t = t(τ) ∈ It0,δ and for |a(t)− ā(t)| < [8(n+ 1

2 )3/2M1]−1 for

some ā(t) ∈ At0,δ and for M1 := (n− 1
2 )−1/2((n− 1

2 )−1 + 2δ).

Proof. In this proof we write λ(a) instead of λ(a, λ0) and a(t) instead of a(τ(t)). Define the C1 function
a(t) implicitely by the equation (4.17), which as was mentioned above is equivalent to (4.15). We solve
this equation using the inverse function theorem. Define the C1 function f : At0,δ → At0,δ, by f(a) :=

λ(a)(t)
√

n
a(t) . Then (4.17) can be rewritten as f(a) = 〈R(·, t)〉Sn . We compute

daf(a)α = −
√
n

a
(λ(a)

1

2a
α+

1

λ(a)

∫ t

t0

α(s)ds). (4.21)

By the assumption a ∈ At0,δ and the definition of At0,δ, we have n − 1
2 ≤ a(t) ≤ n + 1

2 . Using this, we
estimate

‖daf(a)α‖∞ ≥ ‖
√
n

2a3/2
α‖∞ − ‖

√
n

a

∫ t

t0

α(s)ds‖∞ ≥ (

√
n

2(n+ 1
2 )3/2

−
√

n

n− 1
2

δ)‖α‖∞. (4.22)
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Hence daf(a) is invertible, provided that δ <

√
n− 1

2

2(n+ 1
2 )3/2

. Hence the inverse function theorem implies that

for any a# ∈ At0,δ there exists a neighborhood Ua# of
√

n
a#

in C1(It0,δ, L
2(Sn)) and a unique C1 map

g : Va# := {R ∈ C1(It0,δ, L
2(Sn)) |λ(a#)−1R ∈ Ua#} → At0,δ, such that g(R) solves (4.17) for all R ∈ Va# .

With little more work, we can obtain a quantitate description of the neighbourhood Ua# (see Appendix
4.9), which completes the proof of Proposition 27.

For the a(τ) found in the proposition, we have that ρ(ω, τ) = λ(a, λ0)(t)−1R(ω, t) satisfies

ρ(·, τ)−
√

n

a(τ)
⊥ 1 in L2(Sn). (4.23)

Furthermore, if y(ω, τ) := λ−1(t)(x(ω, t)− z(t)) = ρ(ω, τ)ω, where τ = τ(t) is given in (4.8) and the family
z(t) is the one obtained in the paragraph after (4.7) and therefore (4.7) holds, then applying (4.7) to y(ω, τ),
we conclude that ∫

Sn
ρ(ω, τ)ωj = 0, j = 1, . . . , n+ 1. (4.24)

The last two relations give

ρ(·, τ)−
√

n

a(τ)
⊥ ωj , j = 0, . . . , n+ 1, in L2(Sn), (4.25)

where we used the notation ω0 = 1. If x satisfies (4.1) and ρ(ω, τ) := λ(t)−1R(ω, t), with R(ω, t) :=
(x(ω, t)− z(t)) · ω (see Eqs (4.8) and (4.10)) and τ = τ(t) given by (4.8), then ρ satisfies (4.11), with a the
same as in (4.15).

4.5 Lyapunov-Schmidt decomposition

(changed φ to ξ) Let ρ solve (4.11) and assume it can be written as ρ(ω, τ) = ρa(τ) +ξ(ω, τ), with ρa =
√

n
a

and ξ ⊥ ωj , j = 0, . . . , n+ 1. Plugging this into equation (4.11), we obtain the equation

∂ξ

∂τ
= −Laξ +N(ξ) + λ−1z̃τ · ρ−1∇ξ + F, (4.26)

where La = −dGa(ρa), with Ga(ρ) := G(ρ) + aρ, ρ = ρa + ξ, N(ξ) = G(ρa + ξ) − G(ρa) − dG(ρa)ξ,

F = −∂τρa − λ−1zτ · ω and, recall, zτ = ∂z
∂τ and z̃τk = ∂xi

∂uk
ziτ . Let aτ = ∂a

∂τ . We compute

La = a
n (−∆− 2n), F =

√
n

2 a−3/2aτ − λ−1zτ · ω,
N(ξ) = − (ρa+ρ)ξ∆ξ

ρ2ρ2a
− nξ2

ρρ2a
− ∇ξ·Hess(ξ)∇ξ−ρ|∇ξ|2

ρ2(ρ2+|∇ξ|2) .
(4.27)

Now, we project (4.26) onto span{ωj , j = 0, . . . , n+ 1}. By ξ⊥ωj , j = 0, . . . , n+ 1, we have
√
n

2
a−3/2aτ |Sn| =

〈
N(ξ) + λ−1z̃τ · ρ−1∇ξ, 1

〉
, (4.28)

− cλ−1zjτ =
〈
N(ξ) + λ−1z̃τ · ρ−1∇ξ, ωj

〉
, (4.29)

where j = 1, . . . , n+ 1, and c :=
∫
Sn(ωj)2 = 1

n+1 |S
n|. Indeed, this equation follows from
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(i)
〈
∂τξ, ω

j
〉

= −
〈
ξ, ∂τω

j
〉

= 0,
〈
Laξ, ω

j
〉

=
〈
ξ, Laω

j
〉

= 0, j = 0, . . . , n+ 1;

(ii) 〈F, 1〉 =
〈√

n
2 a−3/2aτ , 1

〉
=
√
n

2 a−3/2aτ |Sn|;
〈
F, ωj

〉
= −λ−1

〈
zτ · ω, ωj

〉
= −cλ−1zjτ ,

j = 1, . . . , n+ 1.

Remark 4. The operator La = −dGa(ρa) is the hessian HessVa(ρa) = d gradVa(ρa) of the modified volume
functional Va(ρ) at the sphere ρa.

4.6 Linearized operator

In this section we discuss the operator La := −∂Ga(
√

n
a ) = a

n (−∆ − 2n) acting on L2(Sn), which is the

linearization of the map −Ga(ρ) = −G(ρ)− aρ at ρa =
√

n
a . We have already encountered this operator in

Section 2, as the normal hessian of modified volume functional around a sphere. Its spectrum was described
in that section. Here we mention only the following relevant for us fact: The only non-positive eigenvalues
of La are

Laω
0 = −2aω0, Laω

j = −aωj , j = 1, . . . , n+ 1 (4.30)

and the next eigenvalue is 2a
n and consequently, on their orthogonal complement we have

〈ξ, Laξ〉 ≥
2a

n
‖ξ‖2 if ξ ⊥ ωj , j = 0, . . . , n+ 1. (4.31)

This coercivity estimate will play an important role in our analysis. This is the reason why we need the
conditions (4.25).

The n + 2 non-positive eigenvectors of La correspond to the change in the size, a, of the sphere (the
j = 0 eigenvalue) and its translations (the j = 1, . . . , n+ 1 eigenvalues). Indeed, let α = (r, z), where r := n

a ,
and ρα be the real function on Sn, whose graph is the sphere Sα in Rn+1 of radius R, centered at z ∈ Rn+1,
i.e. graph(ρ) := {ρ(ω)ω : ω ∈ Sn} = Sα. The function ρα satisfies the equation |ρα(x)x̂ − z| = r, or
ρα(x)2 + |z|2 − 2ρα(x)z · x̂ = r2, and therefore it is given by

ρα(x̂) = z · x̂+
√
r2 − |z|2 + (z · x̂)2,

where, recall, x̂ = x
|x| . Differentiating this relation with respect to R and zj and expanding in z, we obtain

that
∂rρα(x) = 1 +O(|z|), ∂zjρα(x) = x̂j +O(|z|), (4.32)

which gives - in the leading order - the n+ 2 non-positive eigenvectors of La.

The fact that the n+ 2 non-positive eigenvectors of La are related to change of the radius and position
of the euclidean sphere comes from the scaling and translational symmetries of (4.1). Indeed, by these
symmetries, the equation Ga(ρα) = 0 holds for any α. Differentiating it w.r.to α, we find ∂Ga(ρα)∂αρα +
∂αGa(ρα) = 0. If we introduce the operator Lα := −∂Ga(ρα), then the latter equations become Lα∂rρα =
−2a∂rρα, Lα∂zρα = 0, i. e. ∂αρα are eigenfunctions of the operator Lα. Since Lα = La + O(|z|), these
equations imply (4.30).

The n + 2 non-positive eigenvectors of La span the unstable - central subspace of the tangent space of
the fixed point manifold, {Sr,z |r ∈ R+, z ∈ Rn+1} (manifold of spheres), for the rescaled MCF. We use
the parameters of size, a, of the sphere (1 parameter) and its translations z (n+ 1 parameters) to make the
fluctuation ξ(ω, τ) := ρ(ω, τ)−

√
n
a orthogonal to the unstable-central modes, so that to be able to control

it.
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4.7 Lyapunov functional

We introduce the operator L = −∆ − 2n, acting on L2(Sn), which is related to the linearized operator
La := −∂Ga(

√
n
a ) = a

n (−∆ − 2n), introduced above, as La := a
nL. Using the spectral information about

obtained above we see that on functions ξ obeying (4.26) and ξ⊥ωj , j = 0, . . . , n+ 1, tit is bounded below
as 〈L0ξ, ξ〉 ≥ ‖ξ‖2, we derive in this section some differential inequalities for certain Sobolev norms of such
a ξ. These inequalities allow us to prove a priori estimates for these Sobolev norms. For k ≥ 1, we define
the functional Λk(ξ) = 1

2

〈
ξ, Lkξ

〉
.

Using the coercivity estimate (4.31) and standard elliptic estimates, we obtain (see Proposition 8 of [1],
with R2 = n/a)

Proposition 28. There exist constants c > 0 and C > 0 such that

c‖ξ‖2Hk ≤ Λk(ξ) ≤ C‖ξ‖2Hk .

Proposition 29. Let k > n
2 + 1. If φ satisfies (4.26), then there exists a constant C > 0 such that

∂τΛk(ξ) ≤ −2a

n
Λk(ξ)− [

a

2n
− C(Λk(ξ)1/2 + Λk(ξ)k)]‖L

k+1
2 ξ‖2. (4.33)

Proof. We have, using (4.26),

∂τ
1

2

〈
ξ, Lkξ

〉
=
〈
∂τξ, L

kξ
〉

= −a
n

〈
Lξ, Lkξ

〉
+
〈
N(ξ), Lkξ

〉
+
〈
λ−1z̃τ · ρ−1∇ξ, Lkξ

〉
+
〈
F,Lkξ

〉
, (4.34)

where, recall, we use the notation ρ = ρa + ξ. We consider each term on the right hand side. We have by
the coercivity estimate (4.31) 〈

Lξ, Lkξ
〉

= 1
2‖L

k+1
2 ξ‖2 + 1

2

〈
L
k
2 ξ, L0L

k
2
0 ξ
〉

≥ 1
2‖L

k+1
2 ξ‖2 +

〈
L
k
2 ξ, L

k
2 ξ
〉

= 1
2‖L

k+1
2 ξ‖2 + 2Λk(ξ).

(4.35)

To estimate the next term we need the following inequality which is a special case of Lemma 12 of
Appendix D of [1]

‖L
k−1
2 N(ξ)‖ . (Λ

1/2
k (ξ) + Λkk(ξ))‖L

k+1
2

a ξ‖. (4.36)

(The operator La of this paper is identified with the first (main) part of the operator LR0 := − 1
R2 (∆ + n) +

n
R2 Av, where Av ξ := 1

|Γ|
∫

Γ
ξ, of [1] , once we set R2 = n/a.) This estimate implies that

|
〈
N(ξ), Lkξ

〉
| = |

〈
L
k−1
2

a N(ξ), L
k+1
2 ξ
〉
|

≤ ‖L k−1
2 N(ξ)‖‖L k+1

2 ξ‖
≤ C(Λ

1/2
k (ξ) + Λkk(ξ))‖L k+1

2 ξ‖2.

(4.37)
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To estimate the third term in (4.34), we use Eq. (4.29) to obtain

λ−1
∣∣zτ ∣∣ . ∣∣ 〈N(ξ) + λ−1z̃τ · ρ−1∇ξ, ω

〉 ∣∣
. ‖N(ξ)‖L1 + λ−1|zτ |‖∇ξ‖L1 . (4.38)

Next, we estimate N(ξ). Using (4.27), where, recall, ρ = ρa + ξ, and assuming that |ξ| ≤ 1
2ρa, we have

that
‖N(ξ)‖L1 . (‖∇ξ‖2L4 + ‖ξ‖H1)‖ξ‖H2 . (4.39)

This together with (4.38) gives, provided that ‖ξ‖H1 � 1,

|zτ | . λ(‖∇ξ‖2L4 + ‖ξ‖H1)‖ξ‖H2 . (4.40)

From (4.40) and Proposition 28 we obtain that〈
λ−1z̃τ · ρ−1∇ξ, Lkξ

〉
=
〈
L
k−1
2 (λ−1z̃τ · ρ−1∇ξ), L

k+1
2 ξ
〉
≤ C(Λ

1/2
k (ξ) + Λkk(ξ))‖L

k+1
2 ξ‖2. (4.41)

We have, by (4.30), (4.25) (i.e. Lωj = −2nδj0,
〈
ωj , ξ

〉
= 0) and the self-adjointness of La, that

〈
ωj , Lkaξ

〉
=

0, j = 0, . . . , n+ 1, and therefore 〈
F,Lkaξ

〉
= 0. (4.42)

Relations (4.34)-(4.42) yield (4.33).

4.8 Proof of Theorem 25

We begin with reparametrizing the initial condition. Applying Proposition 24, to the immersion x0(ω) and
the number λ0 = 1, we find z0 ∈ Rn+1, s.t.

∫
Sn ρ0(ω)ωj = 0, j = 1, . . . , n+1, where ρ0(ω) = (x0(ω)−z0) ·ω.

Then we use (4.14) for ρ0(ω) to obtain a0 and ξ0(ω), s.t. ρ0 = ρa0 + ξ0, with ξ0 ⊥ 1. Here, recall, ρa =
√

n
a .

The last two statements imply that ξ0 ⊥ ωj , j = 0, . . . , n+ 1, where, recall, ω0 = 1. If the initial condition,
x0(ω), is sufficiently close to the identity, then a0 and ξ0(ω) satisfy Λk(ξ0)

1
2 + Λk(ξ0)k ≤ 1

10C , Λk(ξ0) � 1
and |a0 − n| ≤ 1

10 (see (4.14)), where the constant C is the same as in Proposition 29.

Now we use the local existence result for the mean curvature flow. For δ > 0 sufficiently small, the
solution, x(ω, t), in the interval [0, δ], stays sufficiently close to the standard sphere Sn. Hence we can apply
Proposition 24, with z̄(t) = 0, to this solution in order to find z(t), s.t.∫

Sn
((x(ω, t)− z(t)) · ω)ωj = 0, j = 1, . . . , n+ 1, and z(0) = z0.

By Proposition 26, y(ω, τ) := λ(t)−1(x(ω, t) − z(t)) = ρ(ω, τ)ω, with ρ(ω, τ) = (x(ω, t) − z(t)) · ω and λ(t)
satisfying (4.11). Finally we apply Proposition 27 to R(ω, t) := (x(ω, t) − z(t)) · ω = λ(t)ρ(ω, τ) to obtain
a(τ) and ξ(ω, τ) s.t. ρ(ω, τ) = ρa(τ) + ξ(ω, τ), with ξ ⊥ ωj , j = 0, . . . , n + 1. We repeat this procedure on
the interval [δ, δ + δ′] with z̄(t) := z(δ) and so forth. This gives T1 > 0, z(t(τ)), ρ(ω, τ), a(τ) and ξ(ω, τ),
τ ≤ T1, s.t. x(ω, t) = z(t) + λ(t)ρ(ω, τ(t)) and ρ(ω, τ) = ρa(τ) + ξ(ω, τ), with ρ and λ satisfying (4.11) and
ξ ⊥ ωj , j = 0, · · · , n+ 1.
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Now, let

T = sup{τ > 0 : Λk(ξ(τ))
1
2 + Λk(ξ(τ))k ≤ a

4nC
}.

By continuity, T > 0. Assume T <∞. Then ∀τ ≤ T we have by Proposition 29 that ∂τΛk(ξ) ≤ − 2a
n Λk(ξ).

We integrate this equation to obtain Λk(ξ) ≤ Λk(ξ0)e−
1
2 τ ≤ Λk(ξ0). This implies

Λk(ξ(T ))
1
2 + Λk(ξ(T ))k ≤ Λk(ξ0)

1
2 + Λk(ξ0)k ≤ a

8nC
.

Therefore proceeding as above we see that there exists δ > 0 such that Λk(ξ(τ))
1
2 + Λk(ξ(τ))k ≤ a

4nC , for
τ ≤ T + δ, which contradicts the assumption that T < ∞ is the maximal existence time. So T = ∞ and
Λk(ξ) ≤ Λk(ξ0)e−

2
n

∫ τ
0
a(s)ds. By Proposition 28 we know that ‖ξ‖2Hk . Λk(ξ0)e−

2
n

∫ τ
0
a(s)ds.

Now, we use Eq. (4.28) to obtain∣∣a−3/2aτ
∣∣ . ∣∣ 〈N(ξ) + λ−1z̃τ · ρ−1∇ξ, 1

〉 ∣∣
. ‖N(ξ)‖L1 + λ−1|zτ |‖∇ξ‖L1 (4.43)

This together with (4.39) gives

|a−3/2aτ | . (‖∇ξ‖2L4 + ‖ξ‖H1)‖ξ‖H2 . (4.44)

This implies |a(τ)− n| ≤ 1
4 , and

|a(τ)−
1
2 − a(0)−

1
2 | ≤ 1

2

∫ τ

0

|a(s)−
3
2 aτ (s)|ds .

∫ τ

0

Λk(ξ)ds

≤ Λk(ξ0)

∫ τ

0

e−
1
2 s � 1. (4.45)

Next, by (4.40)

|z(τ)− z(0)| ≤
∫ τ

0

|zτ (s)|ds .
∫ τ

0

λ(s)Λk(ξ)ds

≤ Λk(ξ0)

∫ τ

0

e−(n+ 1
2 )s � 1. (4.46)

Observe that λ2
0 − λ(t)2 = 2

∫ t
0
a(τ(s))ds. Let t∗ be the zero of the function λ2

0 − 2
∫ t

0
a(τ(s))ds. Since

|a(τ)− n| ≤ 1
2 , we have t∗ <∞ and λ(t)→ 0 as t→ t∗. Similarly to (4.45), we know that

|a(τ2)−1/2 − a(τ1)−1/2| .
∫ τ2

τ1

e−
1
2 sds→ 0,

as τ1, τ2 → ∞. Hence there exists a∗ > 0, such that |a(τ) − a∗| . e−(1− 1
2n )τ . Similar arguments show

that there exists z∗ ∈ Rn+1 such that |z(τ) − z∗| . e−(n+ 1
2−

1
2n )τ . Then λ2 = λ2

0 − 2
∫ t

0
a(τ(s))ds =

2
∫ t∗
t
a(τ(s))ds = 2a∗(t∗ − t) + o(t∗ − t). The latter relation implies that τ =

∫ t
0

ds
λ(s)2 = 1

2a∗

∫ t
0

ds
(t∗−s)(1+o(1))

and therefore e−(1− 1
2n )τ = O((t∗−t)

1
2a∗ (1− 1

2n )). So λ(t) =
√

2a∗(t∗ − t)+O((t∗−t)
1
2 + 1

2a∗ (1− 1
2n )), ρ(ω, τ(t)) =√

n
a(τ(t)) + ξ(ω, τ(t)), and ‖ξ(ω, τ(t))‖Hk . (t∗ − t)

1
2n . The latter inequality with k = s, together with

estimates on a, z and λ obtained above and the relation R(ω, t) = λ(t)ρ(ω, t), proves Theorem 25.
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4.9 Appendix. Decomposition technicalities

In this appendix we complete the proof of Proposition 27 by giving a precise estimate of the neighbourhood
in the inverse function theorem used there. Recall, that in this proof we write λ(a) instead of λ(a, λ0) and
a(t) instead of a(τ(t)). We follow the proof of the inverse function theorem. Since R ∈ Ut0,δ,λ0,ν , there is
ā(t) s.t. (4.19) hold. We expand the function f(a) in a around this ā ∈ At0,δ:

f(a) = f(ā) + daf(ā)α+ r(α), (4.47)

where α := a− ā and r(α) is defined by this equation. Now we rewrite the equation f(a) = 〈R(·, t)〉Sn as a
fixed point problem α = Φ(α), where α := a− ā and Φ(α) = daf(ā)−1[b(t)− f(ā)− r(a)], with the notation
b(t) := 〈R(·, t)〉Sn .

Now, we estimate Φ(α). First, we estimate the remainder r(α). To this end, we use the definitions (4.18)

and (4.16) to estimate |a− n| ≤ 1
2 and λ1 :=

√
λ2

0 − 2δ(n+ 1
2 ) ≤ λ(a) ≤ λ0. Using the latter estimates, the

relation

d2
af(a)(α, α) =

√
n

a

(
λ(a)

3

4a2
α2 +

α

aλ(a)

∫ t

t0

α(s)ds− λ(a)−3(

∫ t

t0

α(s)ds)2

)
,

and the definition ‖α‖∞ := sups∈It0,δ
|α(s)|, we obtain

‖d2
af(a)(α, α)‖∞ ≤M‖α‖2∞,

where M :=
√

n
n− 1

2

(
λ0

3
4(n− 1

2 )2
+ 1

(n− 1
2 )λ1

δ− δ2λ−3
1

)
, which together with the standard remainder formula,

shows that r(α) satisfies

‖r(α)‖∞ ≤ sup
a
‖d2
af(a)(α, α)‖∞ ≤M‖α‖2∞. (4.48)

Next, by the equation (4.47), we have

r(α′)− r(α) = f(a′)− f(a)− daf(ā)(a′ − a) =

∫ 1

0

∂sf(sa′ + (1− s)a)ds− daf(a])(a
′ − a)

=

∫ 1

0

ds[daf(sa′ + (1− s)a)− daf(ā)](a′ − a).

Next, by the expression (4.21) and the definition (4.18), which implies the inequality n− 1
2 ≤ ā(t) ≤ n+ 1

2 ,
we have

‖daf(a)‖∞ ≤ ‖
√
n

2a3/2
α‖∞ − ‖

√
n

a

∫ t

t0

α(s)ds‖∞ ≤
√
n

2(n− 1
2 )3/2

+

√
n

n− 1
2

δ, (4.49)

which, together with the previous expression, gives, for ‖α‖∞, ‖α′‖∞ ≤ r,

‖r(α′)− r(α)‖∞ ≤ sup
a
‖daf(a)‖2r‖a′ − a‖∞ ≤

√
nM1r‖α′ − α‖∞, (4.50)

where, recall, M1 := (n− 1
2 )−1/2((n− 1

2 )−1 + 2δ).
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Now, to estimate Φ(α) = daf(ā)−1[b(t) − f(ā) − r(a)], we first use the expression (4.22), to obtain

‖(daf(a))−1‖∞ ≤ (
√
n

2(n+ 1
2 )3/2

−
√

n
n− 1

2

δ)−1. Since by our assumptions, δ ≤
√
n−1

4(n+ 1
2 )3/2

, we have

‖daf(ā)−1‖ ≤
4(n+ 1

2 )3/2

√
n

. (4.51)

By the definition (4.20) of Ut0,δ,λ0,ν , we have |b(t) − f(ā)(t)| = |λ(ā)(t)(λ(ā)(t)−1b(t) −
√

n
ā(t) | ≤ λ0ν.

Collecting the estimates above, we obtain, for ‖α‖∞, ‖α′‖∞ ≤ r,

‖Φ(α)‖∞ ≤
4(n+ 1

2 )3/2

√
n

(λ0ν +Mr2),

‖Φ(α′)− Φ(α)‖∞ ≤ 8(n+
1

2
)3/2M1r‖α′ − α‖∞.

Now, choosing r and δ satisfying
4(n+ 1

2 )3/2√
n

(λ0ν+Mr2) ≤ r and 8(n+ 1
2 )3/2M1r < 1, we see that that the map

Φ(α) is a contraction on the ball ‖α‖∞ ≤ r and therefore has a unique fixed point there. The inequalities on

r and ν are satisfied for ν ≤ 1
16

n
λ0M

(n+ 1
2 )−3/2 and r < [8(n+ 1

2 )3/2M1]−1. Since δ ≤ min(
λ2
0

n− 1
2

,

√
n− 1

2

4(n+ 1
2 )3/2

),

we have M ≥ 3λ0

√
n

(n− 1
2 )5/2

and therefore ν ≤ 1
8λ0

n
1
4 (n− 1

2 )5/4. �

5 Stability of elementary solutions II. Neckpinching

We consider boundariless hypersurfaces, {Mt| t ≥ 0}, in Rn+2, given by immersions X(·, t) : Sn×R→ Rn+1,
evolving by the mean curvature flow Then X satisfy the evolution equation:

∂X

∂t
= −H(X)ν(X), (5.1)

where ν(X) and H(X) are the outward unit normal vector and mean curvature at X ∈Mt, respectively.

We are interested in evolution of surfaces starting with those, close to cylinders. Our goal is to show
that

(a) for initial surfaces arbitrary close to the cylinder, the MCF becomes singular in a finite time by
collapsing the radius at one point along the axis - the neckpinch;

(b) while the point and time of the neckpinch depend on the initial conditions, the profile of the neckpinch
is universal;

(c) describe the asymptotics of the parameters involved.

The initial surface could be arbitrary close to a cylinder, which shows that the cylindrical collapse to
the axis is unstable.

There are two new elements in the analysis of the neckpinch as compared to the collapse to a point,
which make the problem much more difficult:
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(i) cylinders have a larger group of transformations compared to spheres: besides of shifts there are
rotations of the axis (tilting),

(ii) the linearized map on the cylinder acts on functions on the cylinder - a non-compact domain - which
make it much more difficult to analyse.

In the rest of this section we present the latest result on the neckpinch for a fixed cylinder axis, explain
its proof and discuss possible extension to the case when the axis is allowed to move (tilt).

5.1 Existing Results

Write points in Rn+2 as (x,w) = (x, ω1, . . . , ωn+1). (We label components of points of Rn+2 as (x0, x1, . . . , xn+1).)

The round cylinder R × Sn is naturally embedded as Cn+1 = {(x,w) : |w|2 = 1} ⊂ Rn+2. We say a surface
given by immersion X is a (normal) graph over the cylinder Cn+1, if there a function u : Cn+1 → R+ (called
the graph function) s.t. X = Xu, where

Xu : (x,w) 7→ (x, u(x,w)w). (5.2)

Assume the solution, S(t), of the MCF with an initial condition M0, given by a graph X0 = Xu0 over
the cylinder Cn+1 with a graph function u0(x, ω), is given by a graph X0 = Xu0

over the cylinder Cn+1 with a
graph function u(x, ω, t). We say S(t) undergoes a neckpinching at time t∗ and at a point x∗ if inf u(·, t) > 0
for t < t∗ and inf u(·, t)→ 0 as t→ t∗ and inf u(·, t)→ 0 at the single point x∗.

All existing results on the neckpinch, except for [8, 9], consider axi-symmetric, compact or periodic
surfaces, i.e. initial graph functions u0(x, ω), independent of ω and defined on a finite interval, say [a, b], for
some −∞ < a < b <∞, with u0(x) > 0 for a < x < b and either u0(a) = u0(b) = 0 or ∂xu0(a) = ∂xu0(b) = 0
(the Dirichlet or Neumann boundary conditions). [8] considers a much more difficult case of axi-symmetric
surfaces, with are initial conditions, u0(x), defined on the entire axis R and satisfying u0(x) > 0 ∀x ∈ R and
lim inf |x|→∞ u0(x, ω) > 0, while [9] treats non-axi-symmetric surfaces along the entire axis R, but with some
symmetries fixing the cylinder axis.

For simplicity, we present the result of [9] and then discuss a general (unpublished) approach to general,
non-axi-symmetric surfaces, without fixing the cylinder axis. In what follows, we use the notation 〈x〉 :=

(1 + x2)
1
2 .

Initial conditions. We consider initial surfaces, S0, given by immersions Xu0
, which are graphs over the

cylinder Cn+1, with the graph functions u0, which are positive, have, modulo small perturbations, global
minima at the origin, are slowly varying near the origin and are even w.r. to the origin.

More precisely, we assume that (a) u0(x, ω) satisfies for (k,m) = (3, 0), ( 11
10 , 0), (1, 2) and (2, 1) the

estimates

‖u0 − ( 2n+ε0x
2

2ς0
)

1
2 ‖k,m ≤ Cε

k+m+1
2

0 ,

u0(x, ω) ≥
√
n,

(5.3)

weighted bounds on derivatives to the order 5.
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symmetries: u0(x, ω) = u0(−x, ω), either u0(x, ω) = u0(x), or n = 2 and u0(x, θ) = u0(x, θ + π).

The last condition fixes the the point of the neckpinch and the axis of the cylinder. Here we used the norms

‖φ‖k,m :=
∥∥〈x〉−k∂mx φ∥∥L∞ .

Neckpinching profile.

Theorem 30 ([8, 9]). Under initial conditions described above and for ε0 sufficiently small, we have

(i) there exists a finite time t∗ such that inf u(·, t) > 0 for t < t∗ and limt→t∗ u(·, t) > 0, for x 6= 0 and
= 0, for x = 0;

(ii) there exist C1 functions ζ(y, ω, t), λ(t), c(t) and b(t) such that

u(x, ω, t) = λ(t)[

√
2n+ b(t)y2

c(t)
+ ζ(y, ω, t)] (5.4)

with y := λ−1(t)x and the remainder ζ(y, ω, t) satisfying, for some constant c,∑
m+n=3,n≤2

‖〈y〉−m∂ny ζ(y, ω, t)‖∞ ≤ cb2(t). (5.5)

Dynamics of scaling parameter

Theorem 31 ([8, 9]). (iii) the parameters λ(t), b(t) and c(t) satisfy the estimates

λ(t) = s
1
2 (1 + o(1));

b(t) = − n
ln |s| (1 +O( 1

| ln |s| |
3/4));

c(t) = 1 + 1
ln |s| (1 +O( 1

ln |s| )).

(5.6)

Here s := t∗ − t and λ0 = 1√
2ς0+

ε0
n

, with ς0, ε0 > 0 depending on the initial datum and o(1) is in

s := t∗ − t.

(iv) if u0∂
2
xu0 ≥ −1 then there exists a function u∗(x) > 0 such that u(x, t) ≥ u∗(x) for R\{0} and t ≤ t∗.

5.2 Rescaled surface

Let Mt denote a smooth family of smooth surfaces, given by immersions X(·, t) : R × Sn → Rn+1 and
evolving by the mean curvature flow, (5.1). It is convenient to rescale it as follows

Y (y, w, τ) = λ−1(t)X(x,w, t), (5.7)
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where y = y(x, t) and τ = τ(t), with

y(x, t) := λ−1(t)[x− x0(t)] and τ(t) :=

∫ t

0

λ−2(s) ds, (5.8)

respectively, where x0(t) marks the center of the neck. If the point of the neckpinch is fixed by a symmetry
of the initial condition, then we set x0(t) = 0. We derive the equation for Y . For most of the derivation, we
suppress time dependence.

Let λ̇ = ∂λ
∂t . Using X = λY and the relations H(X) = λ−1H(Y ) and ν(X) = ν(Y ) (see (2.9) - (2.11)),

∂X
∂t = λ̇Y + λ∂Y∂t , ∂Y

∂t = λ−2 ∂Y
∂τ + ∂y

∂t
∂Y
∂y and ∂y

∂t = −λ̇λ−1y, and the definition a := −λ̇λ−1, we obtain from

(5.1) the equation for Y , λ, z and g:

∂Y

∂τ
= −H(Y )ν(Y ) + aY − ay∂yY. (5.9)

The equation (5.9) has the static solutions: a = a positive constant, Y (x,w) = (x,
√

n
aw).

5.3 Linearized map

Consider the equation (5.9). This equation has the static solutions Y (y, w) = Xρ(y, w) = (y, ρw), with
ρ =

√
n
a . They describe the cylinders of the radii ρ, shifted by z and rotated by g. We would lie to

investigate the linearized stability of these solutions. To this end, we linearize the r.h.s. of (5.9) around
these static solutions, considering only variations in the normal direction, to obtain (see (2.25))

La := −∂2
y − ay∂y +

a

n
(∆Sn + 2n)

where ∆Sn is the Laplace-Beltrami operator on Sn. We have already encountered this operator in Section 2, as
the normal hessian of modified volume functional around a cylinder. (Recall that the operator − a

n (∆Sn+2n),
as the normal hessian of modified volume functional around a sphere. It played an important role in our
study of spherical collapse.)

For a fixed a, properties of the operator La were described in Section 2: it is self-adjoint on the Hilbert
space L2(R × Sn, e− a2 y2dydw) and its spectrum consists of the eigenvalues [k − 2 + 1

n l(l + n − 1)2]a, k =
0, 1, 2, 3, . . . ; ` = 0, 1, 2, . . . , of the multiplicities ml, with the normalized eigenvectors given by

φk,l,m,a(y, w) := φk,a(y)Ylm(w), (5.10)

where, recall, φk,a(y) are the normalized eigenvectors of the linear operator −∂2
y − ay∂y corresponding

to the eigenvalues ka : k = 0, 1, 2, 3, . . . , and Ylm are the eigenfunctions of −∆Sn corresponding to the
eigenvalue l(l + n− 1) (the spherical harmonics). This implies that the only non-positive eigenvalues of La
are −2a, −a, 0, corresponding to the eigenvectors, labeled by (k, l) = (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), with
multiplicities 1, n + 2;n + 2 (so that the total multiplicity of the non-positive eigenvalues is 2n + 5). The
first three eigenfunctions of the operator −∂2

y − ay∂y, corresponding to the eigenvalues, −2a, −a, 0, are

φ0,a(y) = (
a

2π
)

1
4 , φ1,a(y) = (

a

2π
)

1
4
√
ay, φ2,a(y) = (

a

2π
)

1
4 (1− ay2), (5.11)

and first n+ 2 eigenfunctions of the operator −∆Sn , corresponding to the first eigenvalue 0, and the second
eigenvalue n are 1 and w1, · · · , wn+1, respectively. Hence, La has
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• the eigenvalue −2a of the multiplicity 1 with the eigenfunction φ0,0,0,a(y) = ( a
2π )

1
4 ((k, l) = (0, 0)), due

to scaling of the transverse sphere;

• the eigenvalue −a of the multiplicity n + 1 with the eigenfunctions φ0,1,m,a(y) = ( a
2π )

1
4wm, m =

1, . . . , n+ 1 ((k, l) = (1, 1)), due to transverse translations;

• the eigenvalue 0 of the multiplicity n + 1 with the eigenfunctions φ1,1,m,a(y) = ( a
2π )

1
4
√
aywm, m =

1, . . . , n+ 1 ((k, l) = (0, 1)), due to rotation of the cylinder;

• the eigenvalue −a of the multiplicity 1 with the eigenfunction φ1,0,0,a(y) = ( a
2π )

1
4
√
ay ((k, l) = (1, 0)),

due to translations of the point of the neckpinch on the axis of the cylinder;

• the eigenvalue 0 of the multiplicity 1 with the eigenfunction φ2,0,0,a(y) = ( a
2π )

1
4 (1−ay2) ((k, l) = (2, 0)),

due to shape instability.

The modes φ1,a and φ2,a are due to the location of the neckpinch (the shift in the x direction) and
its shape (see [8] and below). To see how they originate, we replace the cylindrical, static (i.e. y and
τ -independent) solution Y (y, w) = XVa(y, w) = (y, ρaw), with Va =

√
n
a , to (5.9) with a constant, by a

modulated cylinder solution

Yab(y, w) = XVab(y, w) = (y, Vab(y)w), with Vab(y) =

√
2n+ by2

2a
, (5.12)

which is derived later and which incorporates some essential features of the neckpinch. They are approximate
static solutions to (5.9) with a constant, −H(Yab) + aYab · ν(Yab) ≈ 0. Differentiating it w.r.to a, x0 (see
(5.8)) and b and using that b is sufficiently small and therefore by2 can be neglected in a bounded domain,
we arrive at vectors proportional to φ0,a, φ1,a and φ2,a.

Recall from Section 5.8 that the modes φk,l,m,a, (k, l,m) = (0, 1, 1), . . . , (0, 1, n+1), are coming from the
transverse shifts, and φk,l,m,a, (k, l,m) = (1, 1, 1), . . . , (1, 1, n+1), (i.e. φ1,a(y)wm ' ywm, m = 1, . . . , , n+1),
from the rotations of the cylinder. Hence fixing the cylinder axis, eliminates these modes.

5.4 Equations for the graph function

Assume that for each t in the the existence interval, the transformed immersion Y (y, w, τ), given in (5.7), is
a graph over the cylinder Y (y, w, τ) = (y, v(y, w, τ)w). where y and τ are blowup variables defined by (5.8),
with x0 = 0. Then, similarly to the derivation of the equation (4.11) and using ∂f

∂t = ∂f
∂τ ∂tτ, for any

function f of the variables τ , ∂tτ = λ−2 and ∂ty = −λ−2λ̇xx = λ−2ayx, where, recall, a = −λλ̇, we see that
(5.9) implies

∂τv = G(v)− ay∂yv + av, (5.13)

where the map G(v) given by

G(v) := v−2∆v + ∂2
yv − nv−1 − v−4〈∇v,Hess v ∇v〉 − v−2|∇v|2

1 + (∂yv)2 + v−2|∇v|2

−
2v−2∂yv〈∇v,∇∂yv〉+ (∂yv)2∂2

yv

1 + (∂yv)2 + v−2|∇v|2
, (5.14)
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with ∇ and Hess denoting the Levi-Civita covariant differentiation and hessian on a round Sn of radius one,
with the components ∇i and ∇i∇j in some local coordinates, respectively.

Initial conditions for v. If λ0 = 1, then the initial conditions for u given in Theorem 30 implies that
there exists a constant δ such that the initial condition v0(y) is even and satisfy for (k,m) = (3, 0), ( 11

10 , 0),
(1, 2) and (2, 1) the estimates

‖v0(y, ω)− ( 2n+ε0y
2

1− 1
n ε0

)
1
2 ‖k,m ≤ Cε

k+m+1
2

0 ,

v0(y, ω) ≥
√
n,

(5.15)

weighted bounds on derivatives to the order 5,

symmetries: v0(y, ω) = v0(−y, ω), v0(y, θ) = v0(y, θ + π).

5.5 Reparametrization of the solution space

Adiabatic solutions. The equation (5.13) has the following cylindrical, static (i.e. y and τ -independent)
solution

Va :=

√
n

a
and a is constant ⇐⇒ ucyl(t). (5.16)

In the original variables t and x, this family of solutions corresponds to the cylinder (homogeneous) solution
X(t) = (x,R(t)ω), with R(t) =

√
R2

0 − 2nt.

A larger family of approximate solutions is obtained by assuming that v is slowly varying and ignoring
∂τv and ∂2

yv in the equation for v to obtain the equation

ayvy − av +
n

v
= 0

(adiabatic or slowly varying approximation). This equation has the general solution

Vab(y) :=

√
2n+ by2

2a
, (5.17)

with b ∈ R. Note also that for by2 small, Vab(y) ≈
√

n
a (1 + by2

4n ) =
√

n
a + b

4a
√
an

( 2π
a )

1
4 [φ0,a(y) + φ2,a(y)], i.e.

the static solution
√

n
a is modified by vectors along its unstable and central subspaces.

In what follows we take b ≥ 0 so that Vab is smooth. Note that Va0 = Va.

The rescaled equation (5.13) has two unknowns v and a. Hence we need an extra restriction specifying
a or λ.
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Reparametrization of solutions. We want to parametrize a solution to (5.13) by a point on the manifold
Mas, formed by the family of almost solutions (5.17) of equation (5.13),

Mas := {Vab | a, b ∈ R+, b ≤ ε},

equippped with the Riemannian metric

〈η, η
′
〉 :=

∫
ηη
′
e−

ay2

2 dydw, (5.18)

and the fluctuation almost orthogonal to this manifold (large slow moving and small fast moving parts of
the solution):

v(w, y, τ) = Va(τ)b(τ)(y) + φ(w, y, τ), (5.19)

with

φ(·, τ) ⊥ φka(τ) in L2(R× Sn, e−
a(τ)
2 y2dydw), k = 0, 1, 2. (5.20)

(Provided b is sufficiently small, the vectors φ0a = 1 and φ2a = (1− ay2) are almost tangent vectors to the
manifold, Mas. Note that φ is already orthogonal to φ1a =

√
ay, since by our initial conditions the solutions

are even in y. For technical reasons, it is more convenient to require the fluctuation to be almost orthogonal
to the manifold Mas.)

As in the spherical collapse case, one can show (see [8] and Appendix 5.11) that the scaling λ(t) can be
chosen in such a way that the representation (5.19) – (5.20) is satisfied.

5.6 Lyapunov-Schmidt splitting (effective equations)

In what follows we consider only surfaces of revolution. The decomposition (5.19) becomes

v(y, τ) = Va(τ),b(τ)(y) + φ(y, τ), (5.21)

Substitute (5.21) into (MCF) to obtain

∂τφ = −Labφ+ Fab +Nab(φ) (5.22)

where Lab is the linear operator given by

Lab := −∂2
y + ay∂y − 2a+

aby2

2 + by2

n

and the functions F (a, b) and N(a, b, φ) are defined as

Fab :=
1

2
(
2n+ by2

2a
)

1
2 [Γ1 + Γ2

y2

2n+ by2
+− 1

n

b3y4

(2n+ by2)2
], (5.23)

with
Γ1 := ∂τa

2a + 2a− 1 + b
n ,

Γ2 := −∂τ b− b(2a− 1 + b
n )− b2

n ,

Nab(ξ) := −nv
2a

2n+by2 ξ
2 − (∂yv)2∂2

yv

1+(∂yv)2 .

(5.24)
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Here we ordered the terms in Fab according to the leading power in y2.

Remember that
φ(·, τ) ⊥ 1, a(τ)y2 − 1 in L2(R, e−

a(τ)
2 y2dy). (5.25)

Project the above equation on 1, a(τ)y2 − 1 =⇒ the equations for the parameters a, b.

Estimating φ Let U(τ, σ) be the propagator generated by −Lab. By Duhamel principle we rewrite the
differential equation for φ(y, τ) as

φ(τ) = U(τ, 0)φ(0) +

∫ τ

0

U(τ, σ)(F +N)(σ)dσ. (5.26)

The key problem in estimating φ(y, τ) is to estimate the propagator U(τ, σ). We have to use (5.25).

Proposition 32. There exist constants c, δ > 0 such that if b(0) ≤ δ, then for any g ⊥ 1, a(τ)y2 −
1 in L2(R, e−

a(τ)
2 y2dy) and τ ≥ σ ≥ 0, we have

‖〈z〉−3U(τ, σ)g‖∞ . e−c(τ−σ)‖〈z〉−3g‖∞.

Estimating the linear propagator. I. Recall U(τ, σ) is the propagator generated by −Lab. We write
Lab = L0 + V, where

L0 := −∂2
y + ay∂y − 2a, V (y, τ) ≥ 0 and |∂yV (y, τ)| . b 1

2 (τ). (5.27)

(L0 is the Ornstein-Uhlenbeck generator related to the harmonic oscillator Hamiltonian.)

Denote the integral kernel of U(τ, σ) by K(x, y). We have the representation (see Appendix D)

K(x, y) = K0(x, y)〈eV 〉(x, y), (5.28)

where K0(x, y) is the integral kernel of the operator e−(τ−σ)L0 and

〈eV 〉(x, y) =

∫
e
∫ τ
σ
V (ω(s)+ω0(s),s)dsdµ(ω). (5.29)

Here dµ(ω) is a harmonic oscillator (Ornstein-Uhlenbeck) probability measure on the continuous paths
ω : [σ, τ ]→ R with the boundary condition ω(σ) = ω(τ) = 0 and

(−∂2
s + a2)ω0 = 0 with ω(σ) = y and ω(τ) = x. (5.30)

Estimating the linear propagator. II. By a standard formula we have

K0(x, y) = 4π(1− e−2ar)−
1
2
√
ae2are

−a (x−e−ary)2

2(1−e−2ar) ,

where r := τ − σ. To estimate U(x, y) we use that, by the explicit formula for K0(x, y) given above,

|∂kyK0(x, y)| . e−akr

(1− e−2ar)k
(|x|+ |y|+ 1)kK0(x, y),
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and by an elementary estimate
|∂y〈eV 〉(x, y)| ≤ b 1

2 r. (5.31)

Estimate for ear ≤ β−1/32(τ) (r := τ − σ) and then iterate using the semi-group property.

Now, (5.28) implies Equation ( 5.31) by the following lemma.

Lemma 33. Assume in addition that the function V (y, τ) satisfies the estimates

V ≤ 0 and |∂yV (y, τ)| . β− 1
2 (τ) (5.32)

where β(τ) is a positive function. Then

|∂y
∫
e
∫ τ
σ
V (ω0(s)+ω(s),s)dsdµ(ω)| . |τ − σ| sup

σ≤s≤τ
β

1
2 (τ)

Proof. By Fubini’s theorem

∂y

∫
e
∫ τ
σ
V (ω0(s)+ω(s),s)dsdµ(ω) =

∫
∂y[

∫ τ

0

V (ω0(s) + ω(s), s)ds]e
∫ τ
σ
V (ω0(s)+ω(s),s)dsdµ(ω)

Equation ( 5.32) implies

|∂y
∫ τ

σ

V (ω0(s) + ω(s), s)ds| ≤ |τ − σ| sup
σ≤s≤τ

β
1
2 (τ)|, and e

∫ τ
σ
V (ω0(s)+ω(s),s)ds ≤ 1.

Thus

|∂y
∫
e
∫ τ
σ
V (ω0(s)+ω(s),s)dsdµ(ω)| . |τ − σ| sup

σ≤s≤τ
β

1
2 (τ)|

∫
dµ(ω) = |τ − σ| sup

σ≤s≤τ
β

1
2 (τ)|

to complete the proof.

Derivation of Proposition 32 from (5.28) and (5.31).

Bootstrap Let (a, b, φ) be the neck parametrization of the rescaled solution v(y, τ). To control the function
φ(y, τ), we use the estimating functions

Mk,m(T ) := max
τ≤T

b−
k+m+1

2 (τ)‖〈y〉−k∂my φ(·, τ)‖∞, (5.33)

with (k,m) = (3, 0), ( 11
10 , 0), (2, 1), (1, 2). Let |M | :=

∑
i,jMi,j and

M := (Mi,j), (i, j) = (3, 0), (
11

10
, 0), (1, 2), (2, 1). (5.34)

Using Proposition 32 and a priori estimates obtained with help of a maximum principle (see Appendix
??), we find
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Proposition 34. Assume that for τ ∈ [0, T ] and

|M(τ)| ≤ b− 1
4 (τ), v(y, τ) ≥ 1

4

√
2n, and ∂my v(·, τ) ∈ L∞, m = 0, 1, 2.

Then there exists a nondecreasing polynomial P (M) s.t. on the same time interval,

Mk,m(τ) ≤Mk,m(0) + b
1
2 (0)P (M(τ)), (5.35)

Corollary 35. Assume |M(0)| � 1. On any interval [0, T ],

|M(τ)| ≤ b− 1
4 (τ) =⇒ |M(τ)| . 1.

The analysis presented above goes through also in the non-radially symmetric case, with the cylinder
axis fixed, but with one caveat. The feeder bounds have to be extended to the non-radially symmetric case
and new bounds on θ- and mixed derivatives, ∂ny ∂

m
θ v(y, θ, τ), have to be obtained. This requires additional

tools (differential inequalities for Lyapunov-type functionals.

5.7 General case. Transformed immersions

Let Mt denote a smooth family of smooth hypersurfaces, given by immersions X(·, t) and evolving by the
mean curvature flow, (5.1). Instead of the surface Mt, it is convenient to consider the new, rescaled surface
M̃τ = λ−1(t)g(t)−1(Mt− z(t)), where λ(t) and z(t) are some differentiable functions and g(t) ∈ SO(n+ 2),

to be determined later, and τ = τ(t) :=
∫ t

0
λ−2(s)ds. If we look for X as a graph over a cylinder, then we

have to rescale also the variable x along the cylinder axis, y = λ−1(t)(x−x0(t)) (see (5.8)). The new surface
is described by Y , which is an immersion of the fixed cylinder Cn+1, i.e. Y (·, τ) : Cn+1 → Rn+2, given by

Y (y, w, τ) = λ−1(t)g−1(t)(X(x,w, t)− z(t)). (5.36)

where y = y(x, t) and τ = τ(t) are given by y = λ−1(t)(x− x0(t)) and τ =
∫ t

0
λ−2(s)ds.

We derive the equation for Y . For most of the derivation, we suppress the time dependence. Let λ̇ = ∂λ
∂t .

Using that X = z+λgY and the relations (2.9) - (2.11) , which imply H(X) = λ−1H(Y ) and ν(X) = gν(Y ),
and using

∂X

∂t
= ż + λ̇gY + λġY + λgẎ ,

we obtain from (5.1) the equation for Y , λ, z and g:

∂Y

∂τ
= −H(Y )ν(Y ) + (a− y∂y)Y − g−1ġY − λ−1g−1ż. (5.37)

The equation (5.37) has the static solutions (a = a positive constant, z =constant, g =constant, x0 =constant,
Y (x,w) = (x,

√
n
aw)).

Note that we do not fix λ(t) and x0(t), z(t) and g(t) but instead consider them as free parameters to be
determined from the evolution of v in equation (5.37).

Remark 5. Another way to write (5.36) is Y = (TλTzTgX) ◦ Sλ, where Tλ, Tz and Tg are the scaling,
translation and rotation maps defined by TλX := λ−1X, TzX := X − z, z ∈ Rn+2, and TgX := g−1X,

g ∈ SO(n+ 2), and acting pointwise and S−1
λ : (x, ω, t)→ (y = λ−1(t)x,w, τ =

∫ t
0
λ−2(s)ds).
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5.8 Translational and rotational zero modes

(do not probably need) Recall that the maps X = Xρzg, with z, g and ρ constant, describe the cylinders
of the radii ρ, shifted by z and rotated by g. They are static solutions of (5.37) with a constants, i.e. solve

−H(Xzgρ) + aXzgρ · ν(Xρzg) = 0, (5.38)

provided ρ =
√

n
a . Differentiating this equation w.r. to a, zi and gib, b = n + 2, we arrive at the scaling,

translational and rotational modes. We expect that these are exactly the modes mentioned in Section 2 and
Subsection 5.3.

5.9 Collapse center and axis

In this section, extending [23], we introduce a notion of the ’centre’ and ’axis’ of a surface, close to the round
cylinder Cn+1, and show that such centre and axis exist. We define the cylinder axis, A, by a unit vector
α ∈ Sn+1 so that A := Rα. Moreover, we identify the axis vector α with an element g ∈ SO(n+2)/SO(n+1)
s.t. gen+2 = α.

Our eventual goal will be to show that the centers z(t) and axis vectors α(t) of the solutions Mt to the
MCF converge to the collapse point, z∗, and axis vector, α∗. For a boundaryless surface S, given by an
immersion X : Cn+1 → Rn+2, we define the center, z, and the axis vector, α (or g s.t. gen+2 = α), by the
relations ∫

Cn+1

(P⊥g−1(X(x,w)− z) · w)xkwi = 0, i = 1, . . . , n+ 1, k = 0, 1, (5.39)

where P⊥ is the orthogonal projection to the subspace {(0, w)} ⊂ Rn+2. Here and in what follows, the
integrals over the set Cn+1 (or R × Sn), which do not specify the measure, are taken w.r.to the measure

e−
a
2 x

2

dwdx or e−
a
2 y

2

dwdy. These are 2n + 2 equations for the 2n + 2 unknowns z ∈ RanP⊥g and g ∈
SO(n+2)/SO(n+1), where SO(n+1) is the group of rotations of the subspace {(w, 0)} ⊂ Rn+2. Note that the
rotated, shifted and dilated (transformed) cylinders, Cλzg, defined by the immersions Xλzg : Cn+1 → Rn+2,
given by

Xλzg(x,w) := z + g(x, λw), (5.40)

satisfy (5.39), which justifies our interpretation of its solutions as the centre and axis vector of a surface.

Denote by H1(Cn+1,Rn+2) the Sobolev space with the measure e−
a
2 x

2

dwdx. We introduce the following

Definition 4. A surface M, given by an immersion X : Cn+1 → Rn+2, is said to be H1−close to a
transformed cylinder Cλzg, iff Y := λ−1g−1(X − z) ∈ H1(Cn+1,Rn+2) close, in the H1(Cn+1,Rn+2)-norm,
to the identity 1 : Cn+1 → Cn+1.

Proposition 36. Assume a surface M, given by an immersion X : Cn+1 → Rn+2, is H1−close to a
transformed cylinder Cλ̄z̄ḡ, for some λ̄ ∈ R+, z̄ ∈ Rn+1 and ḡ ∈ SO(n + 2). Then there exists g ∈ SO(n +

2)/SO(n+ 1) and z ∈ RanP⊥g such that (5.39) holds.
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Proof. By replacing X by Xnew, if necessary, we may assume that z̄ = 0, ḡ = 1 and λ = 1. The relations
(5.39) are equivalent to the equation F (X, z, g) = 0, where

F (X, z, g) = (Fik(X, z, g), i = 1, . . . , n+ 1, k = 0, 1),

with Fik(X, z, g) equal to the l.h.s. of (5.39). Clearly F is a C1 map from H1(Cn+1,Rn+2)×Rn+1×SO(n+
2)/SO(n+ 1) to R2n+2. We notice that F (1, 0,1) = 0. We solve the equation F (X, z, g) = 0 near (1, 0,1),
using the implicit function theorem. To this end we have to calculate the derivatives of F w.r.to z and g at
X = 1, z = 0, g = 1. The derivatives with respect to zi are easy ∂ziFjk|z=0,g=1 = −

∫
Cn+1 w

iwjxk, which
gives

∂ziFjk|z=0,g=1 = − 1

n+ 1
|Sn|δijδk,0, (5.41)

for i, j = 1, . . . , n+ 1, k = 0, 1. To calculate the derivatives of F w.r.to g, we write g ∈ SO(n+ 2)/SO(n+ 1)
as a product of rotations gab in two-dimensional planes, i.e. involving only variables xa and xb, with a = 0
and b = 1, . . . , n+ 1, and denote by ∂gab the derivative w.r.to the angle of the corresponding rotation.Using
that ∂gabg

−1|z=0,g=1 = −`ab, the generator of the rotation in the ab−plane and using that 1(x,w) = (x,w),
we calculate

∂gabFjk|X=1,z=0,g=1 = −
∫
Cn+1

(`ab(w, x) · (0, w))ωjxk. (5.42)

We see that, if a, b ∈ {1, . . . , n + 1}, then `ab(x,w) · (0, w) = −wbwa + wawb +
∑
i6=a,b(w

i)2 and therefore∫
Sn(`ab(x,w) · (0, w))ωj = 0. Furthermore, if a = 0 and b = 1, . . . , n + 1, then `ab(x,w) · (0, w) = xwb +∑
i 6=a,b(w

i)2 and therefore
∫
Sn(`ab(x,w) · (0, w))ωj = δb,jx. This gives, for a = 0,

∂gaiFjk|X=1,z=0,g=1 = cn

∫
R
x2e−

a
2 x

2

dxδijδk,1, (5.43)

for i, j = 1, . . . , n+ 1, k = 0, 1. Hence dF is invertible and we can apply implicit function theorem to show
that for any X close to 1, there exists z and g, close to 0 and 1, respectively, such that F (X, z, g) = 0.

Assume that the transformed surfaces, M̃τ , i.e. the immersions (5.36), are graphs over the round
cylinder Cn+1 determined by the functions v : Cn+1 × [0, T ) → R+, z(t) ∈ Rn+2, g(t) ∈ SO(n + 2), as
Y (y, ω, τ) = (y, v(y, w, τ)w), or

X(x,w, t) = z(t) + λ(t)g(t)(y, v(y, w, τ)w). (5.44)

Assume also there are functions z̄(t) ∈ Rn+2, ḡ(t) ∈ SO(n + 2)/SO(n + 1) and λ̄(t) ∈ R+, s.t. X(·, t) is
H1−close to a transformed cylinder Cλ̄z̄ḡ in the sense of the definition (4). Then Proposition 36 implies that
there exists z(t) ∈ Rn+2 and g(t) ∈ SO(n + 2)/SO(n + 1), s.t. (5.39) holds. If X is a (λ, z, g)−graph over
Cn+1, i.e. it is of the form (5.44), then v satisfy∫

Cn+1

v(y, w, τ)ykwj = 0, j = 1, . . . , n+ 2, k = 0, 1. (5.45)

To apply Proposition 36 to the immersion X(·, t) : Cn+1 → Rn+2, solving (5.1), we pick z̄(t) to be a
piecewise constant function constructed iteratively, starting with z̄(t) = 0 and ᾱ(t) = e1 for 0 ≤ t ≤ δ
for δ sufficiently small (this works due to our assumption on the initial conditions), and z̄(t) = z(δ) and
ᾱ(t) = ᾱ(δ) for δ ≤ t ≤ δ + δ′ and so forth. This gives z(t) ∈ Rn+1 and g(t) ∈ O(n+ 2), s.t. (5.45) holds.
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5.10 Equations for the graph function

Assume that for each t in the the existence interval, the transformed immersion Y (y, w, τ), given in (5.36),
is a graph over the cylinder

Y (y, w, τ) := λ−1(t)g(t)−1(X(x,w, t)− z(t)) = (y, v(y, w, τ)w), (5.46)

where y and τ are blowup variables defined by (5.8). Then, similarly to the derivation of the equation
(4.11) - (4.12) or (5.13), and using ∂f

∂t = ∂f
∂τ ∂tτ, for any function f of the variables τ , ∂tτ = λ−2 and

∂ty = −λ−2λ̇(x− x0)− λ−1ẋ0 = λ−2(ay − λ−1 ∂x0

∂τ
),

where, recall, a = −λλ̇, we see that (5.37) implies (cf. (5.13))

∂τv = G(v)− a(y∂y − 1)v − λ−1 ∂x0

∂τ
∂yv − g−1 ∂g

∂τ
v − λ−1g−1 ∂z

∂τ
(5.47)

where ∂z
∂τ be the τ -derivative of z(t(τ)), etc, with t(τ) the inverse function of τ(t) =

∫ t
0
λ−2(s)ds, and the

map G(v) given by (4.12). For v have the orthogonal decomposition (5.19) - (5.20). This together with

(5.45) implies that φ(·, τ) satisfy (again in L2(R× Sn, e−
a(τ)
2 y2dydw))

φ(·, τ) ⊥ 1, y, y2, ykwj , j = 1, . . . , n+ 1, k = 0, 1. (5.48)

Remark 6. Other approaches: 1) Write a point, p, on the hypersurface Mt as say p = q + xω + u(x, ν)ν,
where q gives the shift of the cylinder axis, ω is the unit vector in the direction of the cylinder axis, ω · q = 0,
ν is the outward unit normal to the cylinder surface. To find the equation for u, we compute ṗ · νMt

=∑4
i=1 γiϕi + γ0u̇, for some γi and for ϕ1 = cos θ, ϕ1 = cos θ, ϕ2 = sin θ, ϕ3 = x cos θ, ϕ4 = x sin θ, while

v(y, θ, τ) is now decomposed as v(y, θ, τ) = Va(τ),b(τ) + φ(y, θ, τ), with φ ⊥ {1, y, y2}. One can also consider
a moving frame (e1, e2, e3), with e3 = ω, so that ν = e1 cos θ + e2 sin θ.

2) Write v(y, θ, τ) = Ṽa(τ),b(τ)+φ(y, θ, τ), where Ṽa(τ),b(τ) = Va(τ),b(τ)+β0(τ)y+β1(τ) cos θ+β2(τ) sin θ+
β3(τ)y cos θ + β4(τ)y sin θ and φ ⊥ {1, y, y2, cos θ, sin θ, y cos θ, y sin θ}. In other words, one ”dresses” up the
main, finite dimensional term absorbing into it all the neutral-unstable modes (singular, secular behaviour).

5.11 Appendix. Decomposition technicalities

To formulate the exact statement we need some definitions. First, we note that the representation (5.19) –
(5.20) is equivalent to the conditions∫

(v(w, y, τ)− Vab(y))φka(y)e−
a(τ)
2 y2dydw = 0, k = 0, 1, 2, (5.49)

with φka(y) appear in (5.10) and Vab(y), the approximate (adiabatic) solution (n = 1) of (5.13) defined in
(5.17).

Next, for any time t0, we denote It0,δ := [t0, t0 + δ]. We say that λ(t) is admissible on It0,δ if λ ∈
C2(It0,δ,R+) and − λ∂tλ ∈ [1/4, 1].
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Definition 5. Let t∗ > 0, ε0 > 0 and δ > 0 and fix t0 ∈ [0, t∗) and λ0 > 0. We say that a function
u ∈ C1([0, t∗), 〈x〉3L∞) admits an orthogonal decomposition iff there are

• λ(t), admissible on It0,δ, a(τ(t)) ∈ C1(It0,δ, [
1
4 , 1]) and b(τ(t)) ∈ C1(It0,δ, (0, ε0]),

s.t. for t ∈ It0,δ, the functions

• v(w, y, τ) := λ−1(t)u(w, λ(t)y, t), with τ and t related by (5.8), and a(τ)

satisfy the conditions (5.49) and

−λ(t)∂tλ(t) = a(τ(t)), λ(t0) = λ0. (5.50)

Proposition 5.3 and Lemma 5.4 of [8] imply

Proposition 37. Let t∗ > 0 and fix t0 ∈ [0, t∗) and λ0 > 0. There are ε0 > 0 and δ = δ(λ0, u) > 0 and
λ(t), admissible on It0,δ, s.t. if

(i) u ∈ C1([0, t∗), 〈x〉3L∞),

(ii) infx∈R u(w, x, t) > 0,

(iii) ‖v(·, τ0)− Va0b0(·)‖3,0 � b0 for some a0 ∈ [1/4, 1], b0 ∈ (0, ε0],

where v(w, y, τ) := λ−1(t)u(w, λ(t)y, t), with τ and t related by (5.8), then the function u admits an orthog-
onal decomposition

6 Sections to do

• Ricci flow

• Volume-preserving mean curvature flow (after Antonopoulou, Karali, Sigal)

• Submanifolds

• Dissipation: evolution of graphs over a plane (after Ecker and Huisken)

• Local existence (after Huisken and Polden)

A Elements of Theory of Surfaces

In this appendix we sketch some results from the theory of surfaces in Rn+1. For detailed expositions see
[24, 2].
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A.1 Mean curvature

By a hypersurface S in Rn+1, we often mean an n dimensional surface element given by a map ψ : U → S,
where U ⊂ Rn is open, s.t. dψ(u) is one-to-one (maximal rank) for every u ∈ U . Such maps are called
(local) immersions. Here dψ(u) is the linear map from Rn to Rn+1, defined as dψ(u)ξ = ∂s|s=0ψ(σs), where
σs is a curve in U so that σs=0 = u and ∂σs

∂s = ξ.

The tangent space, TxS, to S at x is defined as the vector space of velocities at x of all curves in S
passing through x. We have TxS = dψ(u)(Rn) for x = ψ(u). The inner product on TxS is defined in the
usual way: g(v, w) = 〈v, w〉 , ∀v, w ∈ TxS. Here 〈·, ·〉 is the inner product in Rn+1.

Let ν(x) be the unit outward normal vector to S at x. The map ν : S → Sn given by ν : x → ν(x) is
called the Gauss map and the map Wx := dν(x) : TxS → Tν(x)S

n is called the Weingarten map or the shape

operator. Here dν(x)η = ∂s|s=0ν(γs), where γs is a curve on S so that γs=0 = x and ∂γs
∂s = η. We have the

following theorem.

Theorem 38. Ran(Wx) ⊂ TxS and Wx is self-adjoint, i.e. g(Wxξ, η) = g(ξ,Wxη).

Proof. Let γs be as above. Then

〈Wxξ, ν(x)〉 = 〈∂s|s=0ν(γs), ν(x)〉 =
1

2
∂s|s=0 〈ν(γs), ν(γs)〉 = 0.

This implies that Wxξ ∈ TxS.

Let ϕ = ϕst be a parametrization of a two-dimensional surface in S such that ϕst|s=t=0 = x, ∂s|s=t=0ϕst =
ξ and ∂t|s=t=0ϕst = η. Then

〈ξ,Wxη〉 = 〈∂s|s=t=0ϕ, ∂t|s=t=0ν(ϕ)〉 = ∂t|s=t=0 〈∂sϕ, ν(ϕ)〉 − 〈∂t∂s|s=t=0ϕ, ν(x)〉 .

Since 〈∂sϕ, ν(ϕ)〉 = 0, this implies 〈ξ,Wxη〉 = −
〈
∂2ϕ
∂s∂t (0, 0), ν(x)

〉
. Similarly we have

〈Wxξ, η〉 = −
〈
∂2ϕ

∂s∂t
(0, 0), ν(x)

〉
,

which implies that 〈ξ,Wxη〉 = 〈Wxξ, η〉 .

The principal curvatures are all the eigenvalues of the Weingarten map Wx. The mean curvature H(x)
is the trace of Wx, which is the sum of all principal curvatures,

H(x) = TrWx. (A.1)

The Gaussian curvature is the determinant of Wx, which is the product of the principal curvatures.

If S is a level set of some function ϕ : Rn+1 → R, i.e. S = ϕ−1(0) = {x ∈ Rn+1 : ϕ(x) = 0}, then

ν(x) = ∇ϕ(x)
|∇ϕ(x)| . Note that ν(x) is defined on the entire Rn+1 and therefore we can introduce ATx = (∂xiν

j(x)).

The associated linear map has the following properties: a) ATx ν = 0 and b) Wx = Ax|TxS . Indeed, since
0 = ∂xiν

jνj = 2νj∂xiν
j , we have ATx ν = 0. Furthermore, let γs be a curve such through a point x, i.e.

γs(0) = x, and with ∂sγs|s=0 = ξ. We have dν(x)ξ = ∂s|s=0ν(γs) = ∂xiν(x)
∂γis
∂s |s=0 = ∂xiνξ

i = Axξ. This
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implies that Wx = Ax|TxS . The properties a) and b) yield that Tr(Wx) = Tr(Ax) = ∂xiν
i(x) = div ν(x),

which gives

H(x) = div ν(x) = div(
∇ϕ(x)

|∇ϕ(x)|
). (A.2)

If S is a graph of some function f : U → R, then it is a zero level set of the function ϕ(x) = xn+1 −
f(u), x = (u, xn+1), and therefore by the formula above ν(x)|x=ψ(u) = (−∇f(u),1)√

1+|∇f |2
and

H(x) = −div(
∇f√

1 + |∇f |2
). (A.3)

A.2 First and second fundamental forms

We denote by TS the collection of all tangent planes, the tangent bundle. A vector field V is a map
V : S → TS assigning to every x ∈ S a tangent vector Vx ∈ TxS. Given an immersion ψ : U → S, { ∂ψ∂ui (u)}
is a basis in TxS, where x = ψ(u). Varying u ∈ U , we obtain the basis, { ∂ψ∂ui }, for vectors fields on S (if

the immersion ψ is fixed, one writes this basis as { ∂
∂ui }). This allows to write vector fields in the coordinate

form as v = vi ∂ψ∂ui . Plug the coordinate form of v and w into g(v, w) to obtain g(v, w) = gijv
iwj , where

gij :=

〈
∂ψ

∂ui
,
∂ψ

∂uj

〉
.

The matrix (tensor) {gij} is called the metric on S or the first fundamental form of S. If S is a graph of

some function f : U → R, i.e. S can be parameterized as ψ(u) = (u, f(u)). Then gij(u) = δij + ∂f
∂ui

∂f
∂uj .

Notation. {gij} denotes the inverse matrix. The summation is understood over repeated indices. The
indices are raised and lowered by applying gik or gik as in bij = gikbkj . Unless we are dealing with the
Euclidian metric, one of the indices are upper and the other lower. (For the Euclidian metric, δij , the
position of the indices is immaterial.) The quadratic form 〈Wxv, w〉 , where v, w ∈ TxS, is called the second
fundamental form of S. We have

Lemma 39. Recall, ψ is a parametrization of S. Define the matrix elements of Wx in the basis ∂ψ
∂ui ,

bij := 〈 ∂ψ
∂ui

,Wx,
∂ψ

∂uj
〉. (A.4)

Then

bij = −〈 ∂2ψ

∂ui∂uj
, ν〉 and H = gijbji. (A.5)

Proof. In the proof of Theorem 40, we have shown that 〈ξ,Wxη〉 = −
〈
∂2ϕ
∂s∂t s=t=0

, ν(x)
〉

, where ϕ = ϕst is a

parametrization of a two-dimensional surface in S such that ϕst|s=t=0 = x, ∂s|s=t=0ϕst = ξ and ∂t|s=t=0ϕst =
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η. Now take ϕst = ψ(u+sei+tej), where ei are the co-ordinate unite vectors in U . Then ∂2ϕ
∂s∂t s=t=0

= ∂2ψ
∂ui∂uj

,

which proves the first equality. To show the second equality, we write H = Tr(Wx) =
∑
〈ei,Wxei〉, where

{ei} is an orthonormal basis of TxS. Let ei = µijψj , where ψj = ∂ψ
∂uj . Let U = (µij). Then

〈ei,Wxei〉 = µikµil 〈ψk,Wxψl〉 = µikµilbkl = Tr(UBUT ) = Tr(UTUB),

where B = (bji) . Since δij = 〈ei, ej〉 = µikµjlgkl = (UGUT )ij , where G = (gij). Hence UGUT = I and
therefore G−1 = UTU . So H = Tr(G−1B) and therefore the second equation in (A.5) follows.

By (A.4) and the general formula v = gij〈 ∂ψ∂ui , v〉
∂ψ
∂uj , we have the following useful expression

Wx
∂ψ

∂ui
= gijbjk

∂ψ

∂uk
. (A.6)

Examples. 1) The n−sphere SnR of radius R in Rn+1. We can define SnR by the immersion ψ(u) = Rψ̂(u),

where ψ̂(u) is the immersion for the standard n−sphere Sn = Sn1 . Then ν(ψ(u)) = ψ̂(u) and Lemma 41

gives bij = −R〈 ∂2ψ̂
∂ui∂uj

, ψ̂〉 = R〈 ∂ψ̂∂ui ,
∂ψ̂
∂uj
〉 = R−1gij = Rgstand

ij , where gij and gstand
ij are the metrics on SnR

and Sn = Sn1 , respectively. This in particular implies H = gijbji = nR−1.

2) The n−cylinder CnR = Sn−1
R × R of radius R in Rn+1. We can define CnR by the immersion φ(u, x) =

(Rψ̂(u), x), where ψ̂(u) is the immersion for the standard (n− 1)−sphere Sn−1 = Sn−1
1 . Then ν(φ(u, x)) =

(ψ̂(u), 0) and Lemma 41 gives bij = −R〈 ∂2ψ̂
∂ui∂uj

, ψ̂〉 = R〈 ∂ψ̂∂ui ,
∂ψ̂
∂uj
〉 = R−1gij = Rgstand

ij , where gij and gstand
ij

are the metrics on Sn−1
R and Sn−1 = Sn−1

1 , respectively, for i, j = 1, . . . , n−1, and bnn = 0. This in particular
implies H = gijbji = (n− 1)R−1.

A.3 Integration.

The first fundamental form allows us to define the integration on S. Using a partition of unity one can reduce
the integral

∫
S
h of a function h over a surface S to the integral

∫
ψ
h over an immersion patch, ψ : U → S,

defined as
∫
ψ
h :=

∫
U
h ◦ ψ√gdnu, where g := det(gij). (

√
gdnu is the infinitesimal volume spanned by the

basis vectors ∂ψ
∂uj .)

If S is locally a graph, S = graph f , of some function f : U → R, so that one can take the immersion
ψ(u) = (u, f(u)), then

√
gdnu =

√
1 + |∇f |2dnu.

A.4 Connections

The connection, ∇, is probably a single, most important notion of Differential Geometry. It generalizes the
map

V → ∇Rn+1

V

from Rn+1 to manifolds (in our case surfaces). Here V is a vector field on Rn+1, i.e. V : Rn+1 → Rn+1,

and ∇Rn+1

V is the directional derivative which is defined as ∇Rn+1

V : T (x) 7→ ∂s|s=0T (γs), where γs=0 = x,



MCF Lectures, March 12, 2013 50

∂γs
∂s |s=0 = V and T is either a function or a vector field. (We will not use tensors.) Note that ∇Rn+1

V T =∑
i V

i ∂T
∂ui . However, if W is a vector field on S, in general ∇Rn+1

V W (x) /∈ TxS, i.e. “ does not belong to S
”. This suggests the following definition.

If f is a function on S, we define ∇V f(x) = ∇Rn+1

V f(x). If W is a vector field on S, we define ∇VW (x)

as the projection of ∇Rn+1

V W (x) into TxS,

∇VW (x) := (∇Rn+1

V W )T (x). (A.7)

∇V is called the covariant derivative on S ⊂ Rn+1. So in the latter case the connection ∇ : V 7→ ∇V is a
linear map from space V(S), of vector fields on S, to the space of first order differential operators on V(S).

The covariant derivative, ∇V , has the following properties:

• ∇V is linear, i.e. ∇V (αW + βZ) = α∇VW + β∇V Z;

• ∇fV+gW = f∇V + g∇W ;

• ∇V (fW ) = f∇VW +W∇V f (Leibnitz rule).

Homework: show these properties hold.

∇ is called a Levi-Civita or Riemann connection if

∇V g(W,Z) = g(∇VW,Z) + g(W,∇V Z) (A.8)

and is called symmetric if
∇VW −∇WV = [V,W ].

Homework: Show that our connection is a Levi-Civita symmetric connection.

Claim: for a Levi-Civita symmetric connection, one has

〈Z,∇YX〉 =
1

2
{X 〈Y,Z〉+ Y 〈Z,X〉 − Z 〈X,Y 〉 − 〈[X,Z], Y 〉 − 〈[Y,Z], X〉 − 〈[X,Y ], Z〉}. (A.9)

Thus ∇ depends only on the first fundamental form gij . To prove this relation we add the permutations of
X 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 .

Consider a vector field V on S, i.e. a map V : S → TS. So if γs is a path in S s.t. γs|s=0 = x and
∂sγs|s=0 = V (x), then

V f(x) = ∇V f(x) =
∂

∂s
|s=0f(γs).

Let σ : U → S ⊂ Rn+1 be a local parametrization of S. Then { ∂σ∂ui } is a basis in Tσ(u)S (generally not
orthonormal). We can write V (x) = ∂sγs|s=0 = ∂sσ ◦ σ−1 ◦ γs|s=0. By the chain rule we have V (x) =∑
i
∂σ
∂ui

∂
∂s (σ−1 ◦ γs)i|s=0. Hence we can write V = V i ∂σ∂ui , where V i = ∂((σ−1◦γs)i)

∂s |s=0.

A vector field V is defined as a map V : S → TS, but is also identified with an operator V f = ∇V f .
Let f : S → R be a function on S. Then

V f(x) = ∂
∂s |s=0f ◦ σ ◦ σ−1 ◦ γs

= ∂(f◦σ)
∂ui

∂((σ−1◦γs)i)
∂s |s=0,
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which by the above relations can be rewritten as

V f(x) = V i
∂f

∂ui
.

We write V = V i ∂
∂ui . We think of {∂ui} as a basis in TS ({(∂ui)x}, as a basis in TxS). We think of ∂ui are

either operators acting on functions on S or as vectors ∂uiσ. (Note that the vector ∂σ
∂ui has components δij

in the basis { ∂σ∂uj } and therefore the operator associated with it is δij
∂
∂uj = ∂

∂ui .)

Since {∂ui} is a basis, then ∇∂ui∂uj can be expanded in it: ∇∂ui∂uj = Γkij∂uk , for some coefficients Γkij ,
called the Christofel symbols. If we let X = ∂ui , Y = ∂uj and Z = ∂uk in (A.9), then we find

Γkij =
1

2
gkl(

∂glj
∂ui

+
∂gli
∂uj
− ∂gij
∂ul

).

This can be also shown directly.

Since ∇V = ∇V i∂ui = V i∇∂ui and ∇∂uiW
j = ∂

∂uiW
j , we have

∇VW = ∇V i∂ui (W
j∂uj )

= V i∇∂ui (W
j∂uj )

= V i[(∇∂uiW
j)∂uj +W j∇∂ui∂uj ]

= V i(∂uiW
j∂uj +W jΓkij∂uk),

which gives ∇VW = V i∇iW k∂uk , or (∇VW )k = V i∇iW k, where

∇iW k ≡ ∇∂uiW
k :=

∂W k

∂ui
+ ΓkijW

j .

A.5 Various differential operators

We give definitions of various differential operators used in geometry.
(1) Divergence div V = Tr∇V , where ∇V is the map W 7→ ∇WV .
(2) Gradient. The vector field grad(f) is defined by g(grad(f),W ) = ∇W f ∀ vector field W , where ∇f :
V 7→ ∇V f is considered as a functional on vector fields.
(3) Laplace-Beltrami ∆ := div grad.
(4) Hessian Hess(f) := ∇2f . Explicitly, ∇2f(V,W ) = (VW −∇VW )f .
Here ∇f is viewed as (0, 1) tensor and ∇V is defined on (0, 1) tensors T : TS → R as (∇V T )(W ) =
∇V (T (W ))− T (∇VW ).

Recall the notation g = det(gij). In local coordinates, these differential operators have the following
expressions:
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div V = ∇iV i =
1
√
g
∂ui(
√
gV j), (A.10)

(grad(f))i = ∇if = gij
∂f

∂uj
, (A.11)

(Hess(f))ij = ∇i∇jf =
∂2f

∂ui∂uj
− Γkij

∂f

∂uk
, (A.12)

∆f = ∇i∇if =
1
√
g
∂ui(
√
ggij

∂f

∂uj
). (A.13)

Exercise: (1) Show (A.10)- (A.13); (2) Show that grad = −(div)∗ and ∆∗ = ∆.

Proof of (A.10)- (A.13). We have, for an orthonormal basis {ei},

div V = 〈∇eiV, ei〉 = gij
〈
∇∂uiV, ∂uj

〉
= gij∇iV k 〈∂uk , ∂uj 〉 = gijgkj∇iV k,

which gives

div V = ∇iV i (A.14)

To show div V = 1√
g∂ui(

√
gV j), we use the representation det(gij) = eTr ln(gij) to obtain the formula (cf.

(1.11))

∂g

∂uk
= ggij

∂gij
∂uk

. (A.15)

From (A.15), we have 1√
g∂uk

√
g = 1

2g∂ukg = 1
2g
ij ∂gij
∂uk

. On the other hand, Γmmk = 1
2g
ml(∂umgkl + ∂ukgml −

∂ulgmk). It follows that Γmmk = 1
2g
ml∂ukgml and therefore 1√

g∂uk
√
g = Γmmk. So we have

div V =
∂V i

∂ui
+ ΓmmiV

i =
∂V i

∂ui
+

1
√
g
∂ui
√
gV i =

1
√
g

∂

∂ui
(
√
gV i).

which gives (A.10).

If grad(f) = (grad(f))i∂ui , then ∂f
∂uj = ∇∂uj f =

〈
(grad(f))i∂ui , ∂uj

〉
= (grad(f))i 〈∂ui , ∂uj 〉 = gij(grad(f))i,

which gives (A.11).

Since ∇iW j ≡ ∇∂uiW
j := ∂W j

∂ui + ΓjikW
k, we have (Hess(f))ji = ∂

∂ui g
jk ∂f
∂uk

+ Γjikg
k` ∂f
∂u`

.

Furthermore, (Hess(f))ij := ∇2f(∂ui , ∂uj ) = ∂2f
∂ui∂uj − (∇∂ui∂uj )f , which gives (A.12).

Finally combining the previous results, we obtain ∆f = div grad(f) = div(gij ∂f∂uj ∂ui) = 1√
g∂ui(

√
ggij ∂f∂uj ).
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Proposition 40. Let σ : U → S ⊂ Rn+1 be a local parametrization of S. Then

∆Sσ = −Hν. (A.16)

Proof. We will prove it at a point x0 ∈ S. Since (A.16) is invariant under translations and rotations (show
this), we can translate and rotate S so that x0 becomes a critical point in the sense that S

⋂
W = graph f

and grad(f)(x0) = 0. Now σ(u) = (u, f(u)) and gij =
〈
∂σ
∂ui ,

∂σ
∂uj

〉
= δij + ∂f

∂ui
∂f
∂uj . Then ν = (−∇f,1)√

1+|∇f |2
and

ν|x=x0
= (0, 1). Note that

∆Sf = ∇i(grad(f))i = ∇igij ∂f∂uj
= ∂

∂ui (g
ij ∂f
∂uj ) + Γmmig

ij ∂f
∂uj

= gij ∂2f
∂uiuj + ∂gij

∂ui
∂f
∂uj + Γmmig

ij ∂f
∂uj .

Since gij |x=x0
= δij and therefore gij |x=x0

= δij , we have ∆Sf |x=x0
= gij ∂2f

∂uiuj |x=x0
=
∑
i
∂2f
∂ui2
|x=x0

.
Hence

∆Sσ|x=x0
= (0,

∑
i

∂2f

∂ui
2 )|x=x0

= (0, 1)∆Rn+1

f |x=x0
= ν|x=x0

∆Rn+1

f |x=x0
.

But H(x0) = −divRn+1

( ∇Rn+1
f√

1+∇Rn+1f2
)|x=x0 = −divRn+1

∇Rn+1

f |x=x0 = −∆Rn+1

f |x=x0 , this completes the

proof of the proposition.

A.6 Submanifolds

Recall that the Weingarten map is defined as WxV = dν(x)V , which can be written in terms of the Euclidean

connection ∇Rn+1

as

WxV = ∇Rn+1

V ν(x). (A.17)

For the second fundamental form, we have consequently that for ξ, η ∈ TRn+1,

Wx(ξ, η) = 〈∇Rn+1

ξ ν(x), η〉 = −〈ν(x),∇Rn+1

ξ η〉.

If S is a hypersurface in an (n+ 1)− dimensional Riemannian manifold (M, s), rather than in the Euclidean
space Rn+1, we define the Weingarten map by

Wxξ = ∇Mξ ν(x), (A.18)

where ν is the outward normal vector field on S in the metric s and ∇M is a (Levi-Civita symmetric)
connection on M , the second fundamental form by

Wx(ξ, η) = 〈∇Mξ ν(x), η〉s = −〈ν(x),∇Mξ η〉s, (A.19)

where we used the relation (A.8) for Levi-Civita connections, and the mean curvature, still by (A.1).

As an example, we consider the Euclidean space Rn+1, with the conformally flat metric σ2dx2, where
σ > 0. Let σ = e−ϕ and denote ∇M by ∇σ. Then we have

∇σξ η = ∇Rn+1

ξ η − (ξϕ)η − (ηϕ)ξ + 〈ξ, η〉σ gradϕ,
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where ξf = ∇ξf is the the Euclidean directional derivative (application of the vector field to a function).
Moreover, let ν and νσ be the outward normal vector fields on S in the euclidean metric and in the metric s.
Using that 〈ξ, ν〉σ = σ2〈ξ, ν〉 = 0 for ∀ξ ∈ TS, we have νσ = σ−1ν and Wσ

x ξ = ∇σξ νσ(x) = ∇Rn+1

ξ (σ−1ν) −
(ξϕ)σ−1ν − σ−1(νϕ)ξ. Since ∇Rn+1

ξ (σ−1ν) = (ξσ−1)ν + σ−1∇Rn+1

ξ ν, ∇Rn+1

ξ ν = Wxξ and ξσ−1 = σ−1ξϕ,

this gives Wσ
x ξ = σ−1Wxξ − σ−1(νϕ)ξ, which implies

Wσ
x ξ = σ−1Wxξ − (νσ−1)ξ = σ−1(Wx − (νϕ))ξ.

(Here as before, νf = ∇νf .) This gives the expression for the second fundamental form bσij = 〈∂xi ,Wx∂xj 〉σ =
σ〈∂xi , (Wx − (νϕ)∂xj 〉 and therefore

bσij = e−ϕ(bij − (νϕ)gij). (A.20)

For the mean curvature Hσ = σ−2gijb
σ
ij , we obtain

Hσ =
1

σ
(H +

n

σ2
∇νσ) = eϕ(H − n∇νϕ). (A.21)

We derive (A.21) differently using that the mean curvature arises in normal variations, η = fν, of the
surface volume functional V (ψ) (see (1.9)). In the conformal case, the analogue of (1.9) is dVσ(ψ)η =∫
U
Hσν · η

√
gσd

nu, where η = fνσ. We use that
√
gσ = σn

√
g, (d

√
g)η = (d

√
g)(σ−1fν) = Hν · σ−1fν

and νσ = σ−1ν to compute dVσ(ψ)η =
∫
U

(Hν + nσ−1∇σ) · η √gσdnu =
∫
U

(H + nσ−1∇σ · ν)σ−1f
√
gσd

nu,
which implies Hσ = σ−1(H + nσ−1∇νσ).

Our next goal is to compute the normal hessian, HessN A, of the area functional A, for a hypersurface
S immersed in a manifold M = (Rn+1σdx2), the Euclidean space Rn+1, with the conformally flat metric
σdx2, σ = e−2ϕ. Recall that the normal hessian, HessN A, of the area functional A, for a hypersurface
S immersed in a manifold M is given by the expression (2.30). Thus to to compute HessN A, we have to
compute the trace norm |WM

x |2s, the Ricci curvature RicM (ν, ν) of M evaluated on the outward normal
vector field, ν,on S and the Laplace-Beltrami operator ∆S on S in the metric induced by the metric on M .

We begin with the trace norm |Wσ
x |2σ = |WM

x |2s. Since by the definition |Wσ
x |2σ = σ−2gikgjmbσijb

σ
km, we

have |Wσ
x |2σ = σ−1gikgjm(bij −∇νϕgij)(bkm −∇νϕgkm), which gives

|Wσ
x |2σ = e2ϕ(|Wx|2 − 2∇νϕH + n(∇νϕ)2). (A.22)

Furthermore, to compute Ricσ = RicM , we use standard formulae, which give (see e.g. [18, 24])

Ricσij = (n− 1)(∇i∇jϕ−∇iϕ∇jϕ) + (∆ϕ+ (n− 1)|∇ϕ|2)δij . (A.23)

(Recall that ∇i, ∇, ∆ are the operators in the euclidean metric.)

Finally, we compute the change in the Laplace-Beltrami operator. By the equation (A.13) below, we
have

∆σ
Sf =

1√
gσ
∂ui(
√
gσgijσ

∂f

∂uj
) =

1

σn/2
√
g
∂ui(σ

n
2−1√ggij ∂f

∂uj
) (A.24)

= σ−1∆S +
n− 2

2
σ−2(∂uiσ)gij

∂f

∂uj
= σ−1∆Sf +

n− 2

2
σ−2(∇jσ)∇jf (A.25)

= e2ϕ(∆S − (n− 2)(∇jϕ)∇j)f. (A.26)
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In the example of the n−sphere SnR of radius R in Rn+1 considered in Subsection A.2, we computed
bij = R−1gij = Rgstand

ij , where gij and gstand
ij are the metrics on SnR and Sn = Sn1 , respectively, which implies,

in particular, that H = gijbji = nR−1. In this case, since ν = ω, (A.22) gives

|Wσ
x |2σ = e2ϕ(nR−2 − 2nR−1∇ωϕ+ n(∇ωϕ)2) = neϕ(R−1 −∇ωϕ)2. (A.27)

To computeRicσ(νσ, νσ), we use (A.23) and νσ = σ−1/2ν = σ−1/2ω to obtainRicσ(νσ, νσ) = σ−1Ricσ(ω, ω) =
e2ϕ[(n− 1)(∇i∇jϕ−∇iϕ∇jϕ)ωiωj + (∆ϕ+ (n− 1)|∇ϕ|2)].

Hence, due to (2.30), HessN A is given by

HessN Aσ(SnR) = −e2ϕ(R−2∆Sn − (n− 2)(∇jσ)∇j)− ne2ϕ(R−1 −∇ωϕ)2 (A.28)

− e2ϕ[(n− 1)
(
∇i∇jϕωiωj − (∇ϕ · ω)2 + |∇ϕ|2

)
+ ∆ϕ], (A.29)

which gives

HessN Aσ(SnR) = −e2ϕ
[
R−2(∆Sn + n)− (n− 2)(∇jσ)∇j − 2nR−1∇ωϕ− (∇ωϕ)2 (A.30)

+ (n− 1)
(
∇ω∇ωϕ+ |∇ϕ|2

)
+ ∆ϕ

]
. (A.31)

A.7 Riemann curvature tensor for hypersurfaces

A.8 Mean curvature of normal graphs over the round sphere Sn and cylinder
Cn+1

Let Ŝ be a fixed convex n−dimensional hypersurface in Rn+1. We consider hypersurfaces S given as normal
graphs θ(x̂, t) = u(x̂)ν̂(x̂), over a given hypersurface Ŝ. Here ν̂(x̂) is the outward unit normal vector to Ŝ at
x̂ ∈ Ŝ. We would like to derive an expression for the mean curvature of S in terms of the graph function ρ.

To be more specific, we are interested in Ŝ being the round sphere Sn. Then a normal graph graph is
given by

θ : ω 7→ ρ(ω)ω. (A.32)

The result is given in the next proposition.

Proposition 41. If a surface S, defined by an immersion θ : Sn → Rn+1, is a graph (A.32) over the round
sphere Sn, with the graph function ρ : Sn → R+, then the mean curvature, H, of S is given in terms of the
graph function u by the equation

H = p−1/2(n− ρ−1∆ρ) + p−3/2

[
|∇ρ|2 + ρ−1gikgj`∇i∇jρ∇kρ∇`ρ

]
, (A.33)

where ∇ denotes covariant differentiation on Sn, with the components ∇i in some local coordinates and

p := ρ2 + |∇ρ|2. (A.34)

Proof. We do computations locally and therefore it is convenient to fix a point ω ∈ Sn and choose normal
coordinates at this point. Let (e1, . . . , en) denote an orthonormal basis of TωSn ⊂ TωRn+1 in this coordinates,
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i.e. the metric on Sn at ω ∈ Sn is gsphere
ij = gsphere(ei, ej) = δij and the Christphel symbols vanish, Γkij = 0

at ω ∈ Sn. By ∇i we denote covariant differentiation on Sn w.r.to this basis (frame). First, we compute the
metric gij on St. To this end, we note that, for the map (A.32), one has

∇iθ = (∇iρ)ω + uei, i = 1, . . . , n, (A.35)

where we used the relation W ∂ψ
∂ui = gijbjk

∂ψ
∂uk

(see (A.6) of Appendix ??), where W is the Weigarten map,

which in our situation (i.e. bsphere
jk = gsphere

ij = δij and ν(ω) = ω) gives ∇iω = ei. It follows that the
Riemannian metric g induced on S has components

gij = 〈∇iθ,∇jθ〉 = ρ2δij +∇iρ∇jρ.

Recall that the symbol 〈·, ·〉 denotes the pointwise Euclidean inner product of Rn+1. As can be easily checked
directly, the inverse matrix is

gij = ρ−2(δij − p−1∇iρ∇jρ). (A.36)

It is easy to see that the following normalized vector field on S is orthogonal to all vectors (A.35) and
therefore is the outward unit normal to M is

ν = p−1/2(ρω − ei∇iρ) = p−1/2(ρω −∇ρ). (A.37)

Straightforward calculations show that

p1/2∇jν = 2(∇jρ)ω + ρej −∇j∇ρ+ {· · · }ν,

where the terms in braces are easy to compute but irrelevant for what follows. One thus finds that the
matrix elements bij = 〈∇iθ,∇jν〉 of the second fundamental form are

bij = p−1/2(ρ2δij + 2∇iρ∇jρ− ρ∇i∇jρ). (A.38)

Since H = trg(h) = gjibij , we use (A.36) and (A.38) and δjiδij = n to compute:

H = p−1/2[δjiδij + 2ρ−2δij∇iρ∇jρ− ρ−2δijρ∇i∇jρ− p−1∇iρ∇jρδij − 2(ρ2p)−1∇iρ∇jρ∇iρ∇jρ
+ (ρp)−1∇iρ∇jρ∇i∇jρ]

= p−1/2[n+ 2ρ−2∇iρ∇iρ− ρ−1∇i∇iρ− p−1∇iρ∇iρ− 2(ρ2p)−1|∇ρ|4 + (ρp)−1∇iρ∇jρ∇i∇jρ]

= p−1/2[n+ 2ρ−2|∇ρ|2 − ρ−1∆ρ− p−1|∇ρ|2 − 2(ρ2p)−1|∇ρ|4 + (ρp)−1∇iρ∇ju∇i∇jρ]

= p−1/2[n− ρ−1∆ρ+ (ρp)−1∇iρ∇jρ∇i∇jρ+ p−1ρ−2(2p|∇ρ|2 − ρ2|∇ρ|2 − 2|∇ρ|4)]

= p−1/2[n− ρ−1∆ρ+ ρ−1p−1∇i∇jρ∇iρ∇jρ+ p−1|∇ρ|2].

which implies (A.33).

A different derivation is given below. (to be done)
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B Some general results using maximum principle

Theorem 42. If S0 ⊂ Bρ0 (compact and without boundary?) for some ρ0 > 0, where Bρ is the ball with

radius ρ, center at 0, then St ⊂ B√ρ20−2nt
. In particular, (MCF) exists for time t∗ <

ρ20
2n .

Proof of Theorem 44. Let f(x, t) = |x|2 + 2nt. Compute df
dt = ∂f

∂t + grad f · ∂x∂t = 2n + 2x ·
−→
H , where

−→
H = −Hν. We also have

∆S |x|2 = 1√
g∂ui(

√
ggij2xk ∂x

k

∂uj )

= 2xk∆Sx
k + 2√

g

√
ggij ∂x

k

∂ui
∂xk

∂uj

= 2x ·
−→
H + 2gijgij

= 2x ·
−→
H + 2n.

So we obtain df
dt = ∆Sf .

Let f̃ = f − εt for ε > 0, then ( ddt −∆S)f̃ = −ε < 0. We claim that maxSt f̃ ≤ maxS0 f . Otherwise let t∗
be the first time when maxSt f̃ reaches a value larger than maxS0

f and f̃(x∗) = maxSt f̃ . Then at (x∗, t∗),

dtf̃ ≤ 0, ∂ui f̃ = 0 and (∂ui∂uj f̃) ≤ 0. Hence ∆S f̃ = (∂uj + Γiij)g
jk ∂f̃
∂uk

= gjk ∂2f̃
∂uj ∂uk

≤ 0. So df
dt −∆Sf ≥ 0,

contradiction! This proves our claim maxSt f̃ ≤ maxS0 f ∀ ε > 0. Let ε → 0, we have maxSt f ≤ maxS0 f ,
i.e. |x|2 ≤ ρ2

0 − 2nt at time t. �

How the collapse take place? Some indications come from the following estimates.

Theorem 43. Let n ≥ 2 and minH > 0 on a closed surface S0. Then under the MCF, the mean curvature
H(t) increases monotonically.

Proof. Let A be the second fundamental form of the surface. (change of notation!) The relations H =
gijAij , ∂tg

ij = 2HAij and ∂tAij = ∇i∇jH−AikAkj (see [Eckert,Regularity Theory of MCF, App B]) imply
the following differential inequality for the mean curvature

∂tH ≥ 4H +
1

n
H3.

Now we prove that
H →∞ as t→ T0,

with T0 := ( 2
nH

2
min)−1. Indeed, let ϕ satisfy ∂tϕ = 1

nϕ
3 and ϕ|t=0 < minH|t=0. Then, since ϕ is independent

of x,

∂t(H − ϕ) ≥ 4(H − ϕ) +
1

n
(H3 − ϕ3) and (H − ϕ)|t=0 > 0, (B.1)

which implies
H − ϕ ≥ 0 for ∀t ∈ [0, T ). (B.2)

Indeed, let H = ϕ at x = x̄, t = t̄ and H > ϕ for either x 6= x̄, t = t̄ or t < t̄. Then H|t=t̄ has a minimum at
x = x̄. So we obtain

HessH(x̄, t̄) > 0 ⇒ 4H(x̄, t̄) = Tr HessH(x̄, t̄) > 0

⇒∂t(H − ϕ) >
1

n
(H3 − ϕ3) = 0 at (x̄, t̄) ⇒ (H − ϕ)(x̄, t) grows in t at t̄.
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This implies (B.2). But ϕ(t) = Hmin(1 − 2
nH

2
mint)

− 1
2 which implies H ≥ ϕ → ∞ as t → T0 with T0 :=

( 2
nH

2
min)−1. Hence we have the claimed relations.

Now, by a local existence result we know that St exists on some time interval. Let [0, T ) be the maximal
time interval for the existence of the MCF. The above result implies that under the assumptions of the
theorem

Proposition 44. T ≤ T0 := ( 2
nH

2
min)−1 <∞.

C Elements of spectral theory

C.1 A characterization of the essential spectrum of a Schrödinger operator

In this appendix we present a result characterizing the essential spectrum of a Schrödinger operator in a
manner similar to the characterization of the discrete spectrum as a set of eigenvalues. We follow [?].

Theorem 45 (Schnol-Simon). Let H be a Schrödinger operator with a bounded potential. Then

σ(H) = closure {λ | (H − λ)ψ = 0 for ψ polynomially bounded }.

So we see that the essential spectrum also arises from solutions of the eigenvalue equation, but that
these solutions do not live in the space L2(R3).

Proof. We prove only that the right hand side ⊂ σ(H), and refer the reader to [?] for a complete proof. Let
ψ be a polynomially bounded solution of (H − λ)ψ = 0. Let Cr be the box of side-length 2r centred at the
origin. Let jr be a smooth function with support contained in Cr+1, with jr ≡ 1 on Cr, 0 ≤ jr ≤ 1, and
with supr,x,|α|≤2 |∂αx jr(x)| <∞. Our candidate for a Weyl sequence is

wr :=
jrψ

‖jrψ‖
.

Note that ‖wr‖ = 1. If ψ 6∈ L2, we must have ‖jrψ‖ → ∞ as r →∞. So for any R,∫
|x|<R

|wr|2 ≤
1

‖jrψ‖2

∫
|x|<R

|ψ|2 → 0

as r →∞. We show that
(H − λ)wr → 0.

Let F (r) =
∫
Cr
|ψ|2, which is monotonically increasing in r. We claim there is a subsequence {rn} such that

F (rn + 2)

F (rn − 1)
→ 1.

If not, then there is a > 1 and r0 > 0 such that

F (r + 3) ≥ aF (r)
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for all r ≥ r0. Thus F (r0 + 3k) ≥ akF (r0) and so F (r) ≥ (const)br with b = a1/3 > 1. But the assumption
that ψ is polynomially bounded implies that F (r) ≤ (const)rN for some N , a contradiction. Now,

(H − λ)jrψ = jr(H − λ)ψ + [−∆, jr]ψ.

Since (H − λ)ψ = 0 and [∆, jr] = (∆jr) + 2∇jr · ∇, we have

(H − λ)jrψ = (−∆jr)ψ − 2∇jr · ∇ψ.

Since |∂αjr| is uniformly bounded,

‖(H − λ)jrψ‖ ≤ (const)

∫
Cr+1\Cr

(|ψ|2 + |∇ψ|2) ≤ (const)

∫
Cr+1 Cr

|ψ|2.

So

‖(H − λ)wr‖ ≤ C
F (r + 2)− F (r − 1)

F (r)
≤ C(

F (r + 2)

F (r − 1)
− 1)

and so ‖(H − λ)wrn‖ → 0. Thus {wrn} is a Weyl sequence for H and λ. �

C.2 Perron-Frobenius Theory

Consider a bounded operator T on the Hilbert space X = L2(Ω).

Definition 6. An operator T is called positivity preserving/improving if and only if u ≥ 0, u 6= 0 =⇒
Tu ≥ 0/Tu > 0.

Note if T is positivity preserving, then T maps real functions into real functions.

Theorem 46. Let T be a bounded positive and positivity improving operator and let λ be an eigenvalue of
T with an eigenvector ϕ. Then

a) λ = ‖T‖ ⇒ λ is simple and ϕ > 0 (modulo a constant factor).

b) ϕ > 0 and ‖T‖ is an eigenvalue of T ⇒ λ is simple and λ = ||T ||.

Proof. a) Let λ = ||T ||, Tψ = λψ and ψ be real. Then |ψ| ± ψ ≥ 0 and therefore T (|ψ| ± ψ) > 0. The latter
inequality implies that |Tψ| ≤ T |ψ| and therefore

〈|ψ|, T |ψ|〉 ≥ 〈|ψ|, |Tψ|〉 ≥ 〈ψ, Tψ〉 = λ||ψ||2.

Since λ = ||T || = sup||ψ||=1〈ψ, Tψ〉, we conclude using variational calculus (see e.g. [?] or [28]) that

T |ψ| = λ|ψ| (C.1)

i.e., |ψ| is an eigenfunction of T with the eigenvalue λ. Indeed, since λ = ||T || = sup||ψ||=1〈ψ, Tψ〉, |ψ| is the
maximizer for this problem. Hence |ψ| satisfies the Euler-Lagrange equation T |ψ| = µ|ψ| for some µ. This
implies that µ||ψ||2 = 〈|ψ|, T |ψ|〉 = λ||ψ||2 and hence µ = λ. Equation (C.1) and the positivity improving
property of T imply that |ψ| > 0.
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Now either ψ = ±|ψ| or |ψ|+ψ and |ψ| −ψ are nonzero. In the latter case they are eigenfunctions of T
corresponding to the eigenvalue λ : T (|ψ| ± ψ) = λ(|ψ| ± ψ). By the positivity improving property of T this
implies that |ψ| ± ψ > 0 which is impossible. Thus ψ = ±|ψ|.

If ψ1 and ψ2 are two real eigenfunctions of T with the eigenvalue λ then so is aψ1 + bψ2 for any a, b ∈ R.
By the above, either aψ1 + bψ2 > 0 or aψ1 + bψ2 < 0 ∀a, b ∈ R \ {0}, which is impossible. Thus T has a
single real eigenfunction associated with λ.

Let now ψ be a complex eigenfunction of T with the eigenvalue λ and let ψ = ψ1 + ıψ1 where ψ1 and
ψ2 are real. Then the equation Tψ = λψ becomes

Tψ1 + iTψ2 = λψ1 + iλψ2.

Since Tψ2 and Tψ2 and λ are real (see above) we conclude that Tψi = λψ2, i = 1, 2, and therefore by the
above ψ2 = cψ1 for some constant c. Hence ψ = (1+ıc)ψ1 is positive and unique modulo a constant complex
factor.

b) By a) and eigenfunction, ψ, corresponding to ν := ||T || can be chosen to be positive, ψ > 0. But then

λ〈ψ,ϕ〉 = 〈ψ, Tϕ〉 = 〈Tψ, ϕ〉 = ν〈ψ,ϕ〉

and therefore λ = ν and ψ = cϕ.

*Question: Can the condition that ||T || is an eigenvalue of T (see b) be removed?*

Now we consider the Schrödinger operator H = −∆ + V (x) with a real, bounded potential V (x). The
above result allows us to obtain the following important

Theorem 47. Let H = −∆ + V (x) have an eigenvalue E0 with an eigenfunction ϕ0(x) and let inf σ(H) be
an eigenvalue. Then

ϕ0 > 0 ⇒ E0 = inf{λ|λ ∈ σ(H)} and E0 is non-degenerate

and, conversely,

E0 = inf{λ|λ ∈ σ(H)} ⇒ E0 is non-degenerate and ϕ0 > 0

(modulo multiplication by a constant factor).

Proof. To simplify the exposition we assume V (x) ≤ 0 and let W (x) = −V (x) ≥ 0. For µ > supW we have

(−∆−W + µ)−1 = (−∆ + µ)−1
∞∑
n=0

[W (−∆ + µ)−1]n (C.2)

where the series converges in norm as
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‖W (−∆ + µ)−1‖ ≤ ‖W‖‖(−∆ + µ)−1‖ ≤ ‖W‖L∞µ−1 < 1

by our assumption that µ > supW = ‖W‖L∞ . To be explicit we assume that d = 3. Then the operator
(−∆ + µ)−1 has the integral kernel

e−
√
µ|x−y|

4π|x− y|
> 0

while the operator W (−∆ + µ)−1 has the integral kernel

W (x)
e−
√
µ|x−y|

4π|x− y|
≥ 0.

Consequently, the operator

(−∆ + µ)−1f(x) =
1

4π

∫
e−
√
µ|x−y|

|x− y|
f(y) dy

is positivity improving (f ≥ 0, f 6= 0⇒ (−∆ + µ)−1f > 0) while the operator

W (−∆ + µ)−1f(x) =
1

4π

∫
W (x)

e−
√
µ|x−y|

|x− y|
f(y) dy

is positivity preserving (f ≥ 0⇒W (−∆ +µ)−1f ≥ 0). The latter fact implies that the operators [W (−∆ +
µ)−1]n, n ≥ 1, are positivity preserving (prove this!) and consequently the operator

(−∆ + µ)−1 +

∞∑
n=1

[W (−∆ + µ)−1]n

is positivity improving (prove this!).

Thus we have shown that the operator (H + µ)−1 is positivity improving. Series (C.2) shows also that
(H + µ)−1 is bounded. Since

〈u, (H + µ)u〉 ≥ (− supW + µ)‖u‖2 > 0,

we conclude that the operator (H + µ)−1 is positive (as an inverse of a positive operator). Finally, ‖(H +
µ)−1‖ = supσ((H + µ)−1) = (inf σ(H) + µ)−1 is an eigenvalue by the condition of the theorem. Hence the
previous theorem applies to it. Since Hϕ0 = E0ϕ0 ⇔ (H + µ)−1ϕ0 = (E0 + µ)−1ϕ0, the theorem under
verification follows. *This paragraph needs details!*.

D Proof of the Feynmann-Kac Formula

In this appendix we present, for the reader’s convenience, a proof of the Feynman-Kac formula ( 5.28)-( 5.29)
and the estimate (5.31).
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Let L0 := −∂2
y + α2

4 y
2 − α

2 and L := L0 + V where V is a multiplication operator by a function V (y, τ),
which is bounded and Lipschitz continuous in τ . Let U(τ, σ) and U0(τ, σ) be the propagators generated
by the operators −L and −L0, respectively. The integral kernels of these operators will be denoted by
U(τ, σ)(x, y) and U0(τ, σ)(x, y).

Theorem 48. The integral kernel of U(τ, σ) can be represented as

U(τ, σ)(x, y) = U0(τ, σ)(x, y)

∫
e
∫ τ
σ
V (ω0(s)+ω(s),s)dsdµ(ω) (D.1)

where dµ(ω) is a probability measure (more precisely, a conditional harmonic oscillator, or Ornstein-Uhlenbeck,
probability measure) on the continuous paths ω : [σ, τ ] → R with ω(σ) = ω(τ) = 0, and the pathe ω0(·) is
given by

ω0(s) = eα(τ−s) e
2ασ − e2αs

e2ασ − e2ατ
x+ eα(σ−s) e

2ατ − e2αs

e2ατ − e2ασ
y. (D.2)

Remark 7. dµ(ω) is the Gaussian measure with mean zero and covariance (−∂2
s + α2)−1, normalized to 1.

The path ω0(s) solves the boundary value problem

(−∂2
s + α2)ω0 = 0 with ω(σ) = y and ω(τ) = x. (D.3)

Proof of Theorem 50. We begin with the following extension of the Ornstein-Uhlenbeck process-based Feynman-
Kac formula to time-dependent potentials:

U(τ, σ)(x, y) = U0(τ, σ)(x, y)

∫
e
∫ τ
σ
V (ω(s),s) dsdµxy(ω). (D.4)

where dµxy(w) is the conditional Ornstein-Uhlenbeck probability measure, which is the normalized Gaussian
measure dµxy(ω) with mean ω0(s) and covariance (−∂2

s + α2)−1, on continuous paths ω : [σ, τ ] → R with
ω(σ) = y and ω(τ) = x (see e.g. [?, ?, ?]). This formula can be proven in the same way as the one for time
independent potentials (see [?], Equation (3.2.8)), i.e. by using the Kato-Trotter formula and evaluation of
Gaussian measures on cylindrical sets. Since its proof contains a slight technical wrinkle, for the reader’s
convenience we present it below.

Now changing the variable of integration in (D.4) as ω = ω0 + ω̃, where ω̃(s) is a continuous path with
boundary conditions ω̃(σ) = ω̃(τ) = 0, using the translational change of variables formula

∫
f(ω) dµxy(ω) =∫

f(ω0 + ω̃) dµ(ω̃), which can be proven by taking f(ω) = ei〈ω,ζ〉 and using (D.3) (see [?], Equation (9.1.27))
and omitting the tilde over ω we arrive at (D.1).

There are at least three standard ways to prove (D.4): by using the Kato-Trotter formula, by expanding
both sides of the equation in V and comparing the resulting series term by term and by using Ito’s calculus
(see [?, ?, 27, ?]). The first two proofs are elementary but involve tedious estimates while the third proof is
based on a fair amount of stochastic calculus. For the reader’s convenience, we present the first elementary
proof of (D.4).

Lemma 49. Equation (D.4) holds.
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Proof. In order to simplify our notation, in the proof that follows we assume, without losing generality,
that σ = 0. We divide the proof into two parts. First we prove that for any fixed ξ ∈ C∞0 the following
Kato-Trotter type formula holds

U(τ, 0)ξ = lim
n→∞

∏
0≤k≤n−1

U0(
k + 1

n
τ,
k

n
τ)e

∫ (k+1)τ
n

kτ
n

V (y,s)ds
ξ (D.5)

in the L2 space. We start with the formula

U(τ, 0)−
∏

0≤k≤n−1

U0(
k + 1

n
τ,
k

n
τ)e

∫ (k+1)τ
n

kτ
n

V (y,s)ds

=
∏

0≤k≤n−1

U(
k + 1

n
τ,
k

n
τ)−

∏
0≤k≤n−1

U0(
k + 1

n
τ,
k

n
τ)e

∫ (k+1)τ
n

kτ
n

V (y,s)ds

=
∑

0≤j≤n

∏
j≤k≤n−1

U0(
k + 1

n
τ,
k

n
τ)e

∫ (k+1)τ
n

kτ
n

V (y,s)ds
AjU(

j

n
τ, 0)

with the operator

Aj := U0(
j + 1

n
τ,
j

n
τ)e

∫ (j+1)τ
n

jτ
n

V (y,s)ds
− U(

j + 1

n
τ,
j

n
τ).

We observe that ‖U0(τ, σ)‖L2→L2 ≤ 1, and moreover by the boundness of V, the operator U(τ, σ) is
uniformly bounded in τ and σ in any compact set. Consequently

‖[U(τ, 0)−
∏

0≤k≤n−1

U0(
k + 1

n
τ,
k

n
τ)e

∫ (k+1)τ
n

kτ
n

V (y,s)ds
]ξ‖2

≤ max
j
n‖

∏
j≤k≤n−1

U0(
k + 1

n
τ,
k

n
τ)e

∫ (k+1)τ
n

kτ
n

V (y,s)ds
AjU(

j

n
τ, 0)ξ‖2

. max
j
n‖AjU(

j

n
τ, 0)ξ‖2.

(D.6)

We show below that

max
j
n‖AjU(

j

n
τ, 0)ξ‖2 → 0, (D.7)

as n→∞. Equations (D.7), ( D.6), ( D.13) and imply ( D.5). This completes the first step.

In the second step we compute the integral kernel, Gn(x, y), of the operator

Gn :=
∏

0≤k≤n−1

U0(
k + 1

n
τ,
k

n
τ)e

∫ (k+1)τ
n

kτ
n

V (·,s)ds

in ( D.5). By the definition, Gn(x, y) can be written as

Gn(x, y) =

∫
· · ·
∫ ∏

0≤k≤n−1

U τ
n

(xk+1, xk)e

∫ (k+1)τ
n

kτ
n

V (xk,s)ds
dx1 · · · dxn−1 (D.8)
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with xn := x, x0 := y and Uτ (x, y) ≡ U0(0, τ)(x, y) is the integral kernel of the operator U0(τ, 0) = e−L0τ .
We rewrite (D.8) as

Gn(x, y) = Uτ (x, y)

∫
e

∑n−1
k=0

∫ (k+1)τ
n

kτ
n

V (xk,s) ds
dµn(x1, . . . , xn), (D.9)

where

dµn(x1, . . . , xn) :=

∏
0≤k≤n−1 U τ

n
(xk+1, xk)

Uτ (x, y)
dx1 . . . dxk−1.

Since Gn(x, y)|V=0 = Uτ (x, y) we have that
∫
dµn(x1, . . . , xn) = 1. Let ∆ := ∆1 × . . .×∆n, where ∆j is an

interval in R. Define a cylindrical set

Pn∆ := {ω : [0, τ ]→ R | ω(0) = y, ω(τ) = x, ω(kτ/n) ∈ ∆k, 1 ≤ k ≤ n− 1}.

By the definition of the measure dµxy(ω), we have µxy(Pn∆) =
∫

∆
dµn(x1, . . . , xn). Thus, we can rewrite

(D.9) as

Gn(x, y) = Uτ (x, y)

∫
e

∑n−1
k=0

∫ (k+1)τ
n

kτ
n

V (ω( kτn ),s) ds
dµxy(ω), (D.10)

By the dominated convergence theorem the integral on the right hand side of (D.10) converges in the sense
of distributions as n→∞ to the integral on the right hand side of (D.4). Since the left hand side of (D.10)
converges to the left hand side of (D.4), also in the sense of distributions (which follows from the fact that
Gn converges in the operator norm on L2 to U(τ, σ)), (D.4) follows.

Now we prove (D.7). We have

max
j
n‖AjU(

j

n
τ, 0)ξ‖2 . nmax

j
‖Aj +K(

k

n
τ,

1

n
τ)‖L2→L2 + max

j
n‖K(

j

n
τ,

1

n
τ)U(

j

n
τ, 0)ξ‖2, (D.11)

where the operator K(σ, δ) is defined as

K(σ, δ) :=

∫ δ

0

U0(σ + δ, σ + s)V (σ + s, ·)U0(σ + s, σ)ds− U0(σ + δ, σ)

∫ δ

0

V (σ + s, ·)ds (D.12)

Now we claim that

‖Aj +K(
k

n
τ,

1

n
τ)‖L2→L2 .

1

n2
, (D.13)

and

sup
0≤σ≤τ

‖1

δ
K(σ, δ)U(σ, 0)ξ‖2 → 0. (D.14)

We begin with proving the first estimate. By Duhamel’s principle we have

U(
j + 1

n
τ,
j

n
τ) = U0(

j + 1

n
τ,
j

n
τ) +

∫ j+1
n τ

j
n τ

U0(
j + 1

n
τ, s)V (y, s)U(s,

j

n
τ)ds.



MCF Lectures, March 12, 2013 65

Iterating this equation on U(s, knτ) and using the fact that U(s, t) is uniformly bounded if s, t is on a compact
set, we obtain

‖U(
j + 1

n
τ,
j

n
τ)− U0(

j + 1

n
τ,
j

n
τ)−

∫ 1
n τ

0

U0(
j + 1

n
τ, s)V (y, s)U0(s,

j

n
τ)ds‖L2→L2 .

1

n2
.

On the other hand we expand e

∫ (j+1)τ
n

jτ
n

V (y,s)ds
and use the fact that V is bounded to get

‖U0(
j + 1

n
τ,
j

n
τ)e

∫ (j+1)τ
n

jτ
n

V (y,s)ds
− U0(

j + 1

n
τ,
j

n
τ)− U0(

j + 1

n
τ,
j

n
τ)

∫ (j+1)τ
n

jτ
n

V (y, s)ds‖L2→L2 .
1

n2
.

By the definition of K and Aj we complete the proof of ( D.13). A proof of (D.14) is given in the lemma
that follows.

Lemma 50. For any σ ∈ [0, τ ] and ξ ∈ C∞0 we have, as δ → 0+,

sup
0≤σ≤τ

‖1

δ
K(σ, δ)U(σ, 0)ξ‖2 → 0. (D.15)

Proof. If the potential term, V , is independent of τ , then the proof is standard (see, e.g. [27]). We use the
property that the function V is Lipschitz continuous in time τ to prove ( D.15). The operator K can be
further decomposed as

K(σ, δ) = K1(σ, δ) +K2(σ, δ)

with

K1(σ, δ) :=

∫ δ

0

U0(σ + δ, σ + s)V (σ, ·)U0(σ + s, σ)ds− δU0(σ + δ, σ)V (σ, ·)

and

K2(σ, δ) :=

∫ δ

0

U0(σ+ δ, σ+ s)[V (σ+ s, ·)− V (σ, ·)]U0(σ+ s, σ)ds−U0(σ+ δ, σ)

∫ δ

0

[V (σ+ s, ·)− V (σ, ·)]ds.

Since U0(τ, σ) are uniformly L2-bounded and V is bounded, we have U(τ, σ) is uniformly L2-bounded.
This together with the fact that the function V (τ, y) is Lipschitz continuous in τ implies that

‖K2(σ, δ)‖L2→L2 . 2

∫ δ

0

sds = δ2.

We rewrite K1(σ, δ) as

K1(σ, δ) =

∫ δ

0

U0(σ + δ, σ + s){V (σ, ·)[U0(σ + s, σ)− 1]− [U0(σ + s, σ)− 1]V (σ, ·)}ds.

Let ξ(σ) = U(σ, 0)ξ. We claim that for a fixed σ ∈ [0, τ ],

‖K1(σ, δ)ξ(σ)‖2 = o(δ). (D.16)
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Indeed, the fact ξ0 ∈ C∞0 implies that L0ξ(σ), L0V (σ)ξ(σ) ∈ L2. Consequently (see [?])

lim
s→0+

(U0(σ + s, σ)− 1)g

s
→ L0g,

for g = ξ(σ) or V (σ, y)ξ(σ) which implies our claim. Since the set of functions {ξ(σ)|σ ∈ [0, τ ]} ⊂ L0L
2 is

compact and ‖ 1
δK1(σ, δ)‖L2→L2 is uniformly bounded, we have (D.16) as δ → 0 uniformly in σ ∈ [0, τ ].

Collecting the estimates on the operators Ki, i = 1, 2, we arrive at ( D.15).

Note that on the level of finite dimensional approximations the change of variables formula can be derived
as follows. It is tedious, but not hard, to prove that∏

0≤k≤n−1

Un(xk+1, xk) = e
−α (x−e−ατy)2

2(1−e−2ατ )

∏
0≤k≤n−1

Un(yk+1, yk)

with yk := xk − ω0( knτ). By the definition of ω0(s) and the relations x0 = y and xn = x we have

Gn(x, y) = Uτ (x, y)G(1)
n (x, y) (D.17)

where

G(1)
n (x, y) :=

1

4π
√
α(1− e−2ατ )

∫
· · ·
∫ ∏

0≤k≤n−1

Un(yk+1, yk)e

∫ (k+1)τ
n

kτ
n

V (yk+ω0( kτn ),s)ds
dy1 · · · dyk−1. (D.18)

Since lim
n→∞

Gnξ exists by ( D.15), we have lim
n→∞

G(1)
n ξ (in the weak limit) exists also. As shown in [?],

lim
n→∞

G(1)
n =

∫
e
∫ τ
0
V (ω0(s)+ω(s),s)dsdµ(ω) with dµ being the (conditional) Ornstein-Uhlenbeck measure on

the set of path from 0 to 0. This completes the derivation of the change of variables formula.

Remark 8. In fact, Equations (D.5), (D.17) and (D.18) suffice to prove the estimate in Corollary 33.
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