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1 Examples from Quantum Mechanics

Problem 1.1. Find the eigenvalues of a particle trapped in a potential well of infinite height:

Eψ = − ~2

2m
∆ψ + V ψ, x ∈ R, V (x) =

{
0, 0 ≤ x ≤ L
+∞ otherwise.

That is, find the eigenvalues (the spectrum) of the Sturm-Liouville problem Eψ = − ~2

2m
∆ψ,

0 ≤ x ≤ L; ψ|
x=0 = ψ|

x=L
= 0.

Problem 1.2. A particle described by the Schrödinger equation

i~ψ̇(x, t) = − ~2

2m
∆ψ(x, t) (1.1)

is contained in the interior Ω of a closed circular tube of radious R and length L (assume

L ≫ R), so that x ∈ Ω, ψ|
∂Ω

= 0. Assume that the particle is initially in the ground state.

Estimate the energy needed to squeeze the tube.

∗Hint. The energy required for squeezing the tube is equal to the difference of the ground state

energies in the squeezed tube (the energy of the particle in the end of the process) and in the

unsqueezed tube (the initial energy of the particle). Those, in turn, are the smallest eigenvalues

of the Schrödinger operator,

H = − ~2

2m
∆.

The corresponding eigenfunctions are to vanish on the boundary of the tube. Since we need

approximate values, we’d deform the shape of the squeezed and unsqueezed tubes so that the

computations become easy.

Problem 1.3. A quantum particle of mass m = 1/2 sits in a well of depth V and size 2a:

Eψ = −ψ′′ + V (x)ψ(x), V (x) = −V0 for −a < x < a, 0 otherwise.

How many even different eigenstates with E < 0 are there?

∗Hint. For x > a, ψ(x) = Be−x
√

|E|; for −a < x < a, ψ(x) = A cos(x
√
V0 − |E|) (since we

are interested in even eigenstates). Request the continuity of ψ and ψ′ at x = a.

In the previous problem, the interval 0 ≤ E < ∞ is the essential spectrum of the equation.

To physicists, for any E ≥ 0, there are solutions ∼ e±ix
√
E for x large, called plane waves. In

the mathematical sense, the values E ≥ 0 do not belong to the point spectrum since there are no

nontrivial L2 solutions to (−∂2x+V −E)ψ = 0; yet, they belong to the essential spectrum since

the operator −∂2x + V − E has no bounded inverse (on L2). To show this, take the functions

ub(x) = ρ(x− a)ρ(b− x) cos(x
√
E), with ρ ∈ C∞(R), ρ|

x≤0
≡ 0, ρ|

x≥1
≡ 1; one can see that

‖ub‖L2 → ∞ as b→ ∞, while ‖(−∂2x + V − E)ub‖L2 remains bounded.
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Problem 1.4. The stationary Schrödinger equation which describes the electron in the atom of

Hydrogen has the form

Hψ ≡ − ~2

2m
∆ψ(x) +

(
−ke

2

|x|
)
ψ(x) = Eψ(x), x ∈ R3. (1.2)

E is the eigenvalue which corresponds to the eigenfunction ψ (or, equivalently, E is the energy

of the electron with the wave function ψ). ~ is the Planck constant divided by 2π; m is the mass

of electron, and −e is its (negative) charge; V (x) = −ke2

|x| is the potential energy of the electron

at the point x ∈ R3 in the Coulomb potential of the nucleus with charge +e and located in the

origin. The function ψ is called the wave function of the electron. |ψ(x)|2 is interpreted as the

probability density (the chance to find the electron near the point x). The operator

H = − ~2

2m
∆+ V (x) (1.3)

is called the Schrödinger operator.

There are infinitely many solutions to equation (1.2). The solutions which correspond to

ψ ∈ L2(R3) are called eigenstates. Normally, they correspond to negative eigenvalues E, and

called bound states: the electron can not escape the nucleus; some energy is needed to pull

the electron away to infinity, where its energy would become zero. The solutions with E ≥ 0
normally have infinite L2-norm. At the same time, there are examples of V (x) with slow decay

with L2-eigenstates of positive energy, called embedded eigenstates. Such examples exist even

in one dimension.

Assuming that the eigenfunction ψ that correspond to the lowest energy bound state, or

ground state, “1s”, is spherically symmetric, estimate E using the Rayleigh quotient.

∗Hint. As a sample function, take ψ(r) = e−βr and find β > 0 which gives the best (smallest)

value for E.

Solution.

E0 ≤
∫
R3

(
− ~2

2m
ψ∆ψ − ke2

|x| ψ
2
)
d3x

∫
R3 |ψ(x)|2 d3x

=

∫
R3

(
~2

2m
|∇ψ|2 − ke2

|x| ψ
2
)
d3x

∫
R3 |ψ|2 d3x

=

=
4π

∫∞
0

(
~2

2m
(∂rψ)

2 − ke2

r
ψ2

)
r2 dr

4π
∫∞
0

|ψ|2 r2 dr =

∫∞
0

(
β2~2

2m
e−2βr − ke2

r
e−2βr

)
r2 dr

∫∞
0
e−2βr r2 dr

=

=

∫∞
0

(
β2~2

2m
e−2βrr2 − ke2e−2βrr

)
dr

∫∞
0
e−2βr r2 dr

=
β2~2

2m
2(2β)−3 − ke2(2β)−2

2(2β)−3
=
β2~2

2m
− ke2β.(1.4)

The minimal value is achieved when β~2

m
− ke2 = 0; we conclude that

β = −mke
2

~2
, E0 ≤

β2~2

2m
− ke2β = −mk

2e4

2~2
= −α

2

2
mc2, (1.5)

where α = e2/(~c) ≈ 1/137 is the fine structure constant.
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Remark 1.5. ψ(x) = e−β|x|, x ∈ R3 is the true eigenfunction of H; E0 in (1.5) is the smallest

eigenvalue of H .

Remark 1.6. The quantity a = β−1 = ~2

mke2
≈ 0.5 · 10−8cm is interpreted as the radius of the

Bohr orbit. The first term in the right-hand side of (1.4) has the meaning of the kinetic energy

of a particle moving with the momentum |p| = β~; the second term is the potential energy of

the electron at the distance a from the nucleus. Note that
∮
|q|=a p · dq = β~ · 2πa = 2π~, in the

agreement with the Bohr-Sommerfeld quantization condition.
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2 Derrick’s theorem and Vakhitov–Kolokolov criterion

2.1 Derrick’s theorem on instability of stationary localized solutions

Let us consider the linear instability of stationary solutions to a nonlinear wave equation,

−ψ̈ = −∆ψ + g(ψ), ψ = ψ(x, t) ∈ R, x ∈ Rn, n ≥ 1. (2.1)

Let the nonlinearity g(s) be smooth and g(0) = 0. Equation (2.1) can be written as a Hamilto-

nian system π̇ = −δψE, ψ̇ = δπE, with the Hamiltonian

E(ψ, π) =

∫

Rn

(π2

2
+

|∇ψ|2
2

+G(ψ)
)
dx,

where G(t) =
∫ t
0
g(s) ds.

There is a well-known result [Der64] about non-existence of stable localized stationary so-

lutions in dimension n ≥ 3, known as Derrick’s theorem, which we briefly recall. Denote

T (θ) = 1
2

∫
Rn |∇θ|2 dx, V (θ) =

∫
Rn G(θ) dx. If ψ(x, t) = θ(x) is a localized stationary solu-

tion, so that 0 = ψ̇ = δE
δπ
(θ, 0), 0 = π̇ = − δE

δψ
(θ, 0), then for the family θλ(x) = θ(x/λ), using

the identities T (θλ) = λn−2T (θ), V (θλ) = λnV (θ), one has:

0 =
〈δE
δψ

(θ, 0),
∂θλ
∂λ

|
λ=1

〉
= ∂λ|λ=1

E(θλ, 0) = (n− 2)T (θ) + nV (θ); (2.2)

this relation is known as Pokhozhaev’s identity [Poh65] or the virial theorem. It follows that

∂2λ|λ=1
E(θλ) = (n− 2)(n− 3)T (θ) + n(n− 1)V (θ) = −2(n− 2)T (θ),

which is negative as long as n ≥ 3. That is, δ2E < 0 for a variation corresponding to the

uniform stretching, and the solution θ(x) from the physical point of view is to be unstable. We

remark that the fact that ∂2λE(θλ)|λ=1
was not negative for n = 1 and 2 does not prove that

in these dimensions the localized stationary solutions are stable; it just means that a particular

family of perturbations failed to catch the unstable direction.

Problem 2.1. For which p > 1 are there localized real-valued C2 solutions to −u = −∆u−up,
x ∈ Rn?

∗Hint. Pokhozhaev’s identity (2.2) yields (n−2)
∫
Rn

1
2
|∇u|2 dx = n

∫
Rn

(
1
p+1

up+1 − 1
2
u2
)
dx;

one more identity is obtained by multiplying the equation by u(x) and integrating. This allows

to express
∫
|∇u|2 dx in terms of

∫
u2 dx, leading to the restriction p < (n+ 2)/(n− 2).

More details and construction of solitary waves for n ≥ 3 are in [BL83].

Let us modify Derrick’s argument to show the linear instability of stationary solutions in

any dimension.

Lemma 2.2 (Derrick’s theorem for n ≥ 1). For any n ≥ 1, any stationary solution θ ∈
H∞(Rn) to the nonlinear wave equation is linearly unstable.
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Proof. Since θ satisfies −∆θ + g(θ) = 0, we also have −∆∂x1θ + g′(θ)∂x1θ = 0. Due to

lim
|x|→∞

θ(x) = 0, ∂x1θ vanishes somewhere. According to the minimum principle, there is a

nowhere vanishing smooth function χ ∈ H∞(Rn) (due to ∆ being elliptic) which corresponds

to some smaller (hence negative) eigenvalue of L = −∆+ g′(θ):

Lχ = −c2χ, c > 0.

Taking ψ(x, t) = θ(x) + r(x, t), we obtain the linearization at θ, −r̈ = −Lr, which we rewrite

as ∂t

[
r
s

]
=

[
0 1
−L 0

] [
r
s

]
. The matrix in the right-hand side has eigenvectors

[
χ

±cχ

]
, cor-

responding to the eigenvalues ±c ∈ R; thus, the solution θ is linearly unstable. Let us also

mention that ∂2τ |τ=0E(θ + τχ) < 0, showing that δ2E(θ) is not positive-definite.

Remark 2.3. A more general result on the linear stability and (nonlinear) instability of stationary

solutions to (2.1) is in [KS07]. In particular, it is shown there that the linearization at a stationary

solution may be spectrally stable when this particular stationary solution is not from H1 (such

examples exist in higher dimensions).

2.2 Solitary waves in 1D

Let us construct solitary wave solutions in the simple one-dimensional case. We consider the

U(1)-invariant nonlinear Schrödinger equation,

i∂tψ = −∂2xψ + g(|ψ|2)ψ, ψ(x, t) ∈ C, x ∈ R,

with g smooth real-valued function.

Definition 2.4. The solitary waves are solutions of the form

ψ(x, t) = φω(x)e
−iωt, φω ∈ H1(R), ω ∈ R.

The amplitude of a solitary wave solves the stationary equation ω2φ(x) = −φ′′(x)+g(φ2)φ,
which we rewrite as

φ′′(x) = g(φ2)φ− ωφ(x) = −∂φ
ωφ2 −G(φ2)

2
, (2.3)

withG(s) =
∫ s
0
g(s′) ds′. (We will see in a moment that if there is a solitary wave, then φω could

be chosen positive.) We will interpret this equation as describing the particle in the “effective

potential”

Vω(φ) :=
ωφ2 −G(φ2)

2
,

so that x is “the time” and φ is “the position” of the particle. The “mechanical” energy corre-

sponding to the system described by equation (2.3) is E(φ) = |φ′|2/2 + Vω(φ). For a particular

solution φ(x) to (2.3), E(φ) is constant (it does not depend on the “time” x). We are interested
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in soliton-like solutions, such that φ→ 0 and φ′ → 0 as |x| → ∞, and hence E(φ) ≡ 0. If there

is a “turning point” µω > 0 such that Vω(φ) < 0 for φ ∈ (0, µω), Vω(µω) = 0, and V ′
ω(µω) > 0,

then there exists a set of solutions with zero “mechanical” energy E , φ(x) = φω(x+C), C ∈ R,

where φω(x) satisfies limx→±∞ φω(x) = 0. Such a soliton is defined up to a shift along x. We

fix φω by requiring that φω assumes its maximum value at the origin: φω(0) = µω (then φω is

symmetric). φω is obtained by integration from dφ/dx = −
√
Vω(φ) for x > 0 (we assume that

φ(0) > 0, and hence dφ/dx < 0 for positive values of x). See Figure 1.

µω

φω(x)

Vω(φ)

V

φ

x

Figure 1: Solitary wave profile φω(x) as a “particle trajectory” in the effective potential Vω(φ)

2.3 Vakhitov-Kolokolov criterion for the nonlinear Schrödinger equation

By Derrick’s theorem [Der64], any stationary localized solution is unstable (Cf. Lemma 2.2).

To get a hold of stable localized solutions, Derrick suggested that elementary particles might

correspond to stable, localized solutions which are periodic in time, rather than time-independent.

Let us show that the (generalized) nonlinear Schrödinger equation indeed could have stable soli-

tary wave solutions.

In one dimension, the nonlinear Schrödinger equation is given by

i∂tψ = −∂2xψ + g(|ψ|2)ψ, ψ = ψ(x, t) ∈ C, x ∈ R, t ∈ R, (2.4)

where g(s) is a smooth function. For our convenience, let us assume that g(0) = 0. One can

easily construct solitary wave solutions φω(x)e
−iωt, for some ω ∈ R and φω ∈ H1(R): φω(x)
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satisfies the stationary equation ωφ = −φ′′ + g(φ2)φ, and can be chosen strictly positive, even,

and monotonically decaying away from x = 0. The value of ω can not exceed g(0) = 0. We

consider the Ansatz ψ(x, t) = (φω(x)+ρ(x, t))e
−iωt, with ρ(x, t) ∈ C. The linearized equation

on ρ is called the linearization at a solitary wave:

∂tρ = JL(ω)ρ, ρ(x, t) =

[
Re ρ(x, t)
Im ρ(x, t)

]
, (2.5)

where

J =

[
0 1
−1 0

]
, L(ω) =

[
L+(ω) 0

0 L−(ω)

]
,

with

L−(ω) = −∂2x + g(φ2
ω)− ω, L+(ω) = L− + 2g′(φ2

ω)φ
2
ω. (2.6)

Since lim
|x|→∞

φω(x) = 0, the essential spectrum of L− and L+ is [g(0)− ω,+∞).

First, let us note that the spectrum of JL is located on the real and imaginary axes only:

σ(JL) ⊂ R∪ iR. To prove this, we consider (JL)2 = −
[
L−L+ 0

0 L+L−

]
. Since L− is positive-

definite (φω ∈ kerL−(ω), being nowhere zero, corresponds to its smallest eigenvalue), we can

define the selfadjoint root of L−(ω); then

σd((JL)
2)\{0} = σd(L−L+)\{0} = σd(L+L−)\{0} = σd(L

1/2
− L+L

1/2
− )\{0} ⊂ R,

with the inclusion due to L
1/2
− L+L

1/2
− being selfadjoint. Thus, any eigenvalue λ ∈ σd(JL)

satisfies λ2 ∈ R.

Given the family of solitary waves, φω(x)e
−iωt, ω ∈ Ω ⊂ R, we would like to know at

which ω the eigenvalues of the linearized equation with Reλ > 0 appear. Since λ2 ∈ R, such

eigenvalues can only be located on the real axis, having bifurcated from λ = 0. One can check

that λ = 0 belongs to the discrete spectrum of JL, with

JL

[
0
φω

]
= 0, JL

[
−∂ωφω

0

]
=

[
0
φω

]
,

for all ω which correspond to solitary waves. Thus, if we will restrict our attention to functions

which are even in x, the dimension of the generalized null space of JL is at least two. Hence,

the bifurcation follows the jump in the dimension of the generalized null space of JL. Such a

jump happens at a particular value of ω if one can solve the equation JLζ =

[
∂ωφω
0

]
. This leads

to the condition that

[
∂ωφω
0

]
is orthogonal to the null space of the adjoint to JL, which contains

the vector

[
φω
0

]
; this results in 〈φω, ∂ωφω〉 = ∂ω‖φω‖2L2/2 = 0. A slightly more careful analysis

[CP03] based on construction of the moving frame in the generalized eigenspace of λ = 0 shows
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that there are two real eigenvalues ±λ ∈ R that have emerged from λ = 0 when ω is such that

∂ω‖φω‖2L2 becomes positive, leading to a linear instability of the corresponding solitary wave.

The opposite condition,

∂ω‖φω‖2L2 < 0, (2.7)

is the Vakhitov-Kolokolov stability criterion which guarantees the absence of nonzero real

eigenvalues for the nonlinear Schrödinger equation. It appeared in [VK73, Sha83, GSS87]

in relation to linear and orbital stability of solitary waves.

Lemma 2.5 (Vakhitov-Kolokolov stability criterion). There is λ ∈ σp(JL), λ > 0, where JL is

the linearization (2.5) at the solitary wave φω(x)e
−iωt, if and only if d

dω
‖φω‖2L2 > 0 at this value

of ω.

Proof. We follow [VK73]. Assume that there is λ ∈ σd(JL), λ > 0. The relation (JL−λ)Ξ = 0
implies that λ2Ξ1 = −L−L+Ξ1. It follows that Ξ1 is orthogonal to the kernel of the selfadjoint

operator L− (which is spanned by φω):

〈φ,Ξ1〉 = − 1

λ2
〈φ,−L−L+Ξ1〉 = − 1

λ2
〈L−φ,−L+Ξ1〉 = 0,

hence there is η ∈ L2(R,C) such that Ξ1 = L−η and λ2η = −L+Ξ1. Thus, the inverse to L−
can be applied: λ2L−1

− Ξ1 = −L+Ξ1. Then

λ2〈η, L−η〉 = −〈Ξ1, L+Ξ1〉.

Since L− is positive-definite and η /∈ kerL−, it follows that 〈η, L−η〉 > 0. Since λ > 0,

〈Ξ1, L+Ξ1〉 < 0, therefore the quadratic form 〈·, L+·〉 is not positive-definite on vectors orthog-

onal to φω. According to Lagrange’s principle, the function r corresponding to the minimum of

〈r, L+r〉 under conditions 〈r, φω〉 = 0 and 〈r, r〉 = 1 satisfies

L+r = αr + βφω, α, β ∈ R. (2.8)

Since 〈r, L+r〉 = α, we need to know whether α could be negative. Since L+∂xφω = 0, one

has λ1 = 0 ∈ σp(L+). Due to ∂xφω vanishing at one point (x = 0), there is exactly one negative

eigenvalue of L+, which we denote by λ0 ∈ σp(L+). (This eigenvalue corresponds to some non-

vanishing eigenfunction.) Note that β 6= 0, or else α would have to be equal to λ0, with r the

corresponding eigenfunction of L+, but then r, having to be nonzero, could not be orthogonal

to φω. Denote λ2 = inf(σ(L+) ∩R+) > 0. Let us consider f(z) = 〈φω, (L+ − z)−1φω〉, which

is defined and is smooth for z ∈ (λ0, λ2). (Note that f(z) is defined for z = λ1 = 0 since the

corresponding eigenfunction ∂xφω is odd while φω is even.) If α < 0, then, by (2.8), we would

have f(α) = 〈φω, (L+ − α)−1φω〉 = 1
β
〈φω, r〉 = 0, and since f ′(z) > 0, one has f(0) > 0. On

the other hand, f(0) = 〈φω, L−1
+ φω〉 = 〈φω, ∂ωφω〉 = 1

2
d
dω

∫
R
|φω(x)|2 dx. Therefore, the linear

instability leads to α < 0, which results in d
dω

∫
R
|φω(x)|2 dx > 0.

Alternatively, let d
dω
‖φω‖2L2 > 0. We consider the function f(z) = 〈φω, (L+ − z)−1φω〉,

z ∈ ρ(L+). Since f(0) = 〈φω, L−1
+ φω〉 > 0, f ′(z) > 0, and lim

z→λ0+
f(z) = −∞ (where
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λ0 < 0 is the smallest eigenvalue of L+), there is α ∈ (λ0, 0) ⊂ ρ(L+) such that f(α) =
〈φω, (L+ − α)−1φω〉 = 0. Then we define r = (L+ − α)−1φω. Since 〈φω, r〉 = f(α) = 0, there

is η such that r = L−η. It follows that the quadratic form L
1/2
− L+L

1/2
− is not positive definite:

〈L
1
2
−η, (L

1
2
−L+L

1
2
−)L

1
2
−η〉 = 〈r, L+r〉 = 〈r, (αr + φω)〉 = α〈r, r〉 < 0.

Thus, there is λ > 0 such that −λ2 ∈ σ(L
1/2
− L+L

1/2
− ); then also −λ2 ∈ σ(L−L+). Let ξ be

the corresponding eigenvector, L−L+ξ = −λ2ξ; then

[
0 L−

−L+ 0

] [
ξ

− 1
λ
L+ξ

]
= λ

[
ξ

− 1
λ
L+ξ

]
,

hence λ ∈ σ(JL).

Problem 2.6. Find the explicit form of the solitary wave solutions ψ(x, t) = φω(x)e
−iωt, ω < 0,

to the nonlinear Schrödinger equation

i∂tψ = −∂2xψ − |ψ|2ψ, ψ(x, t) ∈ C, x ∈ R.

Problem 2.7. Let g(s) = −s (cubic NLS in 1D). Use the Birman-Schwinger principle to esti-

mate the number of discrete eigenvalues of L±(ω). Hint: you will need (−∆)−1 in

1D.

Problem 2.8. Let g(s) = −s (cubic NLS in 1D). Use the Birman-Schwinger principle to esti-

mate the number of discrete purely imaginary eigenvalues of JL±(ω) between λ = 0 and the

upper end of the spectral gap.

Hint: if one removes the x-dependent parts of JL(ω), the discrete spectrum disappears.
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3 Limiting absorption principle

3.1 Agmon’s Appendix A

We reproduce almost verbatim several results from Agmon’s paper [Agm75, Appendix A].

For s ∈ R, denote L2
s(R

n) = {u ∈ L2
loc(R

n): (1 + x2)s/2f ∈ L2(Rn)}.
For m ∈ N, denote Hm

s (Rn) = {u ∈ L2
loc(R

n): ‖u‖2Hm
s
:=

∑
a∈Zn

+, |a|≤m
‖∂axf‖2L2

s
<∞}.

Lemma 3.1 ([Agm75], Lemma A.1). Let u ∈ H1(R), λ ∈ C, s > 1/2. The following inequality

holds:

‖u‖L2
−s

≤ cs‖(
d

dx
− λ)u‖L2

s
, cs = 2

∫ ∞

0

(1 + x2)−s dx. (3.1)

Proof. We set

f(x) = (
d

dx
− λ)u(x), u ∈ H1(R). (3.2)

We may assume without loss of generality that f ∈ L1(R) (or else ‖f‖L2
s
= ∞ and (3.1) holds

trivially), and that Reλ ≤ 0. Solving (3.2) for u we get

u(x) =

∫ x

−∞
f(t)eλ(x−t) dt. (3.3)

From (3.3) it follows that

|u(x)|2 ≤
(∫ x

−∞
|f(t)| dt

)2

≤
(∫

R

(1 + t2)−s dt
)(∫

R

(1 + t2)s|f(t)|2 dt
)
. (3.4)

We multiply (3.4) by (1 + x2)−s and integrate:

∫

R

(1 + x2)−s|u(x)|2 dx ≤
(∫

R

(1 + t2)−s dt
)2

∫

R

(1 + t2)s|f(t)|2 dt.

Lemma 3.2 ([Agm75], Lemma A.2). Let P (D) = P (D1, . . . , Dn) be a partial differential

operator of order m. Then for ∀u ∈ Hm(Rn) and any given s > 1
2
, the following inequality

holds: ∫

Rn

(1 + x2j)
−s|P (j)(D)u|2 dx ≤ m2c2s

∫

Rn

(1 + x2j)
s|P (D)u|2 dx, (3.5)

for j = 1, . . . ,m, where cs is the constant from Lemma 3.1.

Let P (D) = P (D1, . . . , Dn) be a partial differential operator with constant coefficients of

order m, acting on functions on Rn. We denote its principal part by Pm(D). The operator P
is said to be of principal type if gradPm(ξ) 6= 0, ∀ξ ∈ Rn \ {0}; P is said to be elliptic if

Pm(ξ) 6= 0, ∀ξ ∈ Rn \ {0} (an elliptic operator is thus an operator of principal type).

We shall say that a number z ∈ C is a critical value of P if there exists a ξ0 ∈ Rn such that

P (ξ0) = z, gradP (ξ0) = 0. We shall denote the set of all critical values of P by ΛC(P ).
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Lemma 3.3 ([Agm75], Lemma A.3). Let P (D) = P (D1, . . . , Dn) be a partial differential

operator of order m. Set m′ = m if P is elliptic, m′ = m − 1 otherwise. Let K be a compact

set in C \ ΛC(P ) and let s be a real number. The following estimate holds:

‖u‖Hm′
s

≤ Cs

(
‖(P (D)− z)u‖L2

s
+

n∑

j=1

‖P (j)(D)u‖L2

)
(3.6)

for ∀u ∈ Hm
s (Rn) and ∀z ∈ K, where Cs is a constant not depending on z or u.

Theorem 3.4 ([Agm75], Theorem A.1). Let P (D) be a differential operator with constant

coefficients of orderm and of principal type. Setm′ = m if P is elliptic, m′ = m−1 otherwise.

Let K be a compact set in C \ ΛC(P ) and let s > 1
2
. The following estimate holds:

‖u‖Hm′
−s

≤ C‖
(
P (D)− z

)
u‖L2

s
(3.7)

for ∀u ∈ Hm(Rn) where C is some constant not depending on z or u.

3.2 Improvement at the continuous spectrum

For λ at the continuous spectrum, in [Agm75, Appendix B], Agmon gives an improvement of

Theorem 3.4 “moving” his estimates ‖u‖L2
s′

≤ C‖(P − z)u‖L2
s
, s′ < s, to the region with

s′ > 0. This “shift” is very important: it implies that

‖u‖Hd
s′
∼ ‖Pu‖L2

s′
+ ‖u‖L2

s′
≤ ‖(P − z)u‖L2

s′
+ (1 + |z|)‖u‖L2

s′
≤ (2 + |z|)‖(P − z)u‖L2

s
,

while for s′ > 0 Hd
s′ is compactly embedded into L2.

We will illustrate this improvement in the following lemma.

Lemma 3.5. Let u ∈ H1(R), Λ ∈ R, s > 1/2, ǫ > 0. Then, for some Cs,ǫ < ∞, the following

inequality holds:

‖u‖L2
s−1−ǫ

≤ Cs‖(
d

dx
− iΛ)u‖L2

s
. (3.8)

Proof. Similarly to (3.4),

|u(x)|2 ≤
(∫ x

−∞
|f(t)| dt

)2

≤
∫

R

(1 + t2)−s dt

∫

R

(1 + t2)s|f(t)|2 dt. (3.9)

For x ≤ 0, there is the following improvement:

|u(x)|2 ≤
( x∫

−∞

|f(t)| dt
)2

≤
x∫

−∞

(1 + t2)−s dt

∫

R

(1 + t2)s|f(t)|2 dt ≤ Cs〈x〉−2s+1‖f‖2L2
s
.

(3.10)
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In the last inequality, we used the bound s > 1/2. Since now Reλ = 0, we similarly have, for

x ≥ 0,

|u(x)|2 ≤
( x∫

+∞

|f(t)| dt
)2

≤
x∫

+∞

(1 + t2)−s dt

∫

R

(1 + t2)s|f(t)|2 dt ≤ Cs〈x〉−2s+1‖f‖2L2
s
.

(3.11)

Since 〈x〉−s+1/2 ∈ L2
s−1−ǫ(R), the result follows.

3.3 Limiting absorption principle for the Laplacian in 3D

Let us give a more general result for the Laplace operator, which is also valid in the vicinity of

the threshold λ = 0.

Lemma 3.6 ([JK79]). For any λ ≥ 0, s, t > 1/2, s+ t > 2, there is Cs,t,λ <∞ such that

‖u‖L2
−t

≤ Cs,t,λ‖(−∆− λ)u‖L2
s
, u ∈ H2(R3).

Proof. Since the resolvent (−∆−λ)−1 has the integral kernelK(x, y) = − ei
√

λ|x−y|

4π|x−y| (we assume

that Im
√
λ ≥ 0), it is enough to prove that

∥∥∥∥
1

|x| ∗ f
∥∥∥∥
L2
−t

≤ C‖f‖L2
s
, ∀f ∈ L2

s(R
3).

Let g ∈ L2
t (R

3); it suffices to show that

〈
g,

1

|x| ∗ f
〉
≤ C‖f‖L2

s
‖g‖L2

t
.

Equivalently, enough to show

∫

R3

f̂(k)ĝ(k)

k2
dk ≤ C‖f̂‖Hs‖ĝ‖Ht .

Since
∫
|k|>1

f̂(k)ĝ(k)
k2

dk ≤ C‖f̂‖L2‖ĝ‖L2 , it is enough to show that

∫

|k|≤1

f̂(k)ĝ(k)

k2
dk ≤ C‖f̂‖Hs‖ĝ‖Ht .

Let χ denote the characteristic function of the unit ball in R3. By the Hölder inequality, the

integral is bounded by

‖χf̂‖Lp‖χĝ‖Lq‖k−2χ‖Lr , p, q, r ≥ 1,
1

p
+

1

q
+

1

r
= 1.
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For the last factor to remain finite, we can take r ∈ (1, 3/2); this leads to 1/r > 2/3, hence

1

p
+

1

q
<

1

3
. (3.12)

By the Sobolev embedding, Hs(R3) ⊂ Lp(R3) for 2 ≤ p ≤ p0 with 1
2
− 1

p0
= s

n
= s

3
, leading to

1

p
≥ 1

p0
=

1

2
− s

3
,

1

q
≥ 1

q0
=

1

2
− t

3
, hence

1

p
+

1

q
≥ 1− s+ t

3
.

Comparing with (3.12) yields s+ t > 2. Besides, since p, q are nonnegative, (3.12) implies that

p, q > 3, which leads to the restriction s, t > 1/2.

Problem 3.7. Use the ∼ 1/r decay of the Coulomb potential to show that one can not bound

‖u‖L2 with ‖∆u‖L2
s

with arbitrarily large s ≥ 0.
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4 Bifurcations from the essential spectrum of the free Dirac

equation

4.1 Limiting absorption principle for the Dirac operator

Let n ∈ N. Let αj , 1 ≤ j ≤ n, and β be self-adjoint N ×N matrices such that

{αj, αk} = αjαk + αkαj = 2δjkIN , β2 = IN , {αj , β} = 0.

If n = 3, we can take αj =

[
0 σj

σj 0

]
, β =

[
I2 0
0 −I2

]
, where σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =

(
1 0
0 −1

)
are the Pauli matrices. The Dirac operator is defined by

Dm = −i
n∑

j=1

αj
∂

∂xj
+mβ, m ≥ 0. (4.1)

One can easily compute that

σess(Dm) = R \ (−m,m).

Note that D2
m = −∆+m2, with σess(−∆+m2) = [m2,+∞).

Theorem 4.1 ([Yam73], Theorem 3.1). Let K be a compact set in C \ {±m}. For any s > 1
2

there exists C = C(s,K) such that

‖u‖H1
−s

≤ C‖(Dm − z)u‖L2
s

for all u ∈ H1
s (R

n,CN ) and z ∈ K \ R.

Proof. We show that (Dm − z)−1 : L2
s(R

n,CN) → H1
−s(R

n,CN ) is uniformly bounded for

z ∈ K \ R. Indeed, by Theorem 3.4,

(−∆+m2 − z2)−1 : L2
s(R

n,CN) → H2
−s(R

n,CN )

is uniformly bounded for z ∈ K \ R, and then

Dm + z : H2
−s(R

n,CN) → H1
−s(R

n,CN)

is uniformly bounded for z ∈ K \ R. It follows that

‖(Dm + z)(−∆+m2 − z2)−1f‖H1
−s

≤ C‖f‖L2
s
.

Denote u := (Dm + z)(−∆+m2 − z2)−1f ; then

(Dm − z)u = (Dm − z)(Dm + z)(−∆+m2 − z2)−1f = f.

We conclude that ‖u‖H1
−s

≤ C‖(Dm − z)u‖L2
s
.

Problem 4.2. Prove that Dm : H2
s (R

n,CN ) → H1
s (R

n,CN ) is bounded for any s ∈ R.
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4.2 Nonrelativistic limit of nonlinear Dirac equation

The nonlinear Dirac equation in Rn has the form

i∂tψ = Dmψ − f(ψ∗βψ)βψ, ψ(x, t) ∈ CN , x ∈ Rn, (4.2)

where f ∈ C∞(R), f(0) = 0. We consider solitary wave solutions ψ(x, t) = φω(x)e
−iωt,

φω ∈ H1(Rn,CN). Let ϕω, χω ∈ H1(Rn,CN/2) be such that

φω =

[
ϕω
χω

]
. (4.3)

Let f(s) = sk; then we have:

ω

[
ϕω
χω

]
= −i

[
σj∂jχω
σj∂jϕω

]
+m

[
ϕω
−χω

]
− (|ϕω|2 − |χω|2)k

[
ϕω
−χω

]
. (4.4)

We write this system as the following equations:

−(m− ω)ϕω = −iσj∂jχω − (|ϕω|2 − |χω|2)kϕω, (4.5)

−(m+ ω)χω = −iσj∂jϕω − (|ϕω|2 − |χω|2)kχω. (4.6)

We consider the “nonrelativistic limit” ω . m; then the approximate solution is given by

χω =
1

m+ ω
σj∂jϕω, (4.7)

and the first equation takes the form −(m − ω)ϕω = − 1
m+ω

∆ϕω − |ϕω|2kϕω. By [BL83], for

n ≤ 2, k ∈ N and for n = 3, k = 1 there is a unique positive spherically symmetric function Φ
from the Schwartz class which solves the equation

− 1

2m
Φ = − 1

2m
∆Φ− |Φ|2kΦ.

Denote ǫ =
√
m2 − ω2. Let n ∈ CN/2, ‖n‖ = 1. It follows that there is a solution such that

ϕω(x) ≈ ǫ
1
kΦ(ǫx)n, χω(x) =

1

m+ ω
σj∂jϕω(x) ≈ ǫ1+

1
k

1

2m
σj(∂jΦ)(ǫx). (4.8)

Let us consider the Ansatz ψ(x, t) = (φω + ρ(x, t))e−iωt, and let

∂t

[
Re ρ
Im ρ

]
= Aω

[
Re ρ
Im ρ

]

be the linearized equation on ρ. One has:

Aω = J(Dm − ω +V(x, ω)),
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where J and Dm are representations of the action of −i and Dm in the space of R2N -valued

functions:

J =

[
0 IN

−IN 0

]
, Dm = Jαj∂j +mβ,

J =

[
0 IN

−IN 0

]
. αj =

[
Reαj − Imαj
Imαj Reαj

]
, β =

[
Re β − Im β
Im β Re β

]
. (4.9)

Above, V(·, ω) ∈ S (Rn,C2N×2N ), and moreover, by (4.8),

V(x, ω) ≈ ǫ2W (ǫx), (4.10)

for some W ∈ S (Rn,C2N×2N).

Problem 4.3. Explain (without computing anything) why αj and β commute with J.

4.3 Bifurcations from the essential spectrum

Let us consider families of eigenvalues in the limit of small amplitude solitary waves, which may

be present in the spectrum up to the border of existence of solitary waves: ω → ω0 := m. This

situation could be considered as the bifurcation of eigenvalues from the continuous spectrum of

the free Dirac equation.

Lemma 4.4. Let

L(ω) = Dm − ω +V(x, ω), ω ∈ [−m,m],

with V(·, ω) ∈ L∞(Rn,End(C2N)). Let ω0 = m. Assume that there is s > 1/2 such that

lim
ω→ω0

‖〈x〉2sV(ω)‖L∞ = 0. (4.11)

Let ωj ∈ O, ωj −→
j→∞

ω0. If λj ∈ σp(JL(ωj)), then the only possible accumulation points of

{λj: j ∈ N} are λ = {0;±2mi}.

Remark 4.5. By (4.8), the condition (4.11) is satisfied for solitary waves in the nonrelativistic

limit ω → m considered in Section 4.2.

Proof. Let K ⊂ C be a compact set, ±m /∈ K. According to [Yam73] (Cf. Theorem 4.1), there

is the limiting absorption principle for the free Dirac operator Dm = −iα ·∇+βm, so that the

following action of its resolvent is uniformly bounded for z ∈ K\R:

(Dm − z)−1 : L2
s(R

n,CN ) → L2
−s(R

n,CN), s > 1/2, z ∈ K\R. (4.12)

Now let V ⊂ C be an arbitrary compact set which does not contain ±2(m ± ω0)i. To prove

the theorem, we need to show that for ω sufficiently close to ω0 there is no point spectrum of

JL(ω) in V . Let ω be close enough to ω0 so that V does not contain ±i(m ± ω). One has

lim|x|→∞ L(ω) = Dm − ω Since the eigenvalues of J are ±i, the operator J(Dm − ω) can be
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represented as the direct sum of operators i(Dm−ω) and −i(Dm−ω), acting in some subspaces

of C2N (spectral subspaces of J corresponding to ±i). By (4.12), the following map is bounded

uniformly for z ∈ V\iR:

(J(Dm − ω)− z)−1 : L2
s(R

n,C2N ) → L2
−s(R

n,C2N ), s > 1/2, z ∈ V\iR. (4.13)

The resolvent of JL(ω) is expressed as

(JL(ω)− z)−1 = (J(Dm − ω)− z)−1 1

1 + JV(J(Dm − ω)− z)−1
. (4.14)

Thus, the action (JL(ω) − z)−1 : L2
s(R

n,C2N) → L2
−s(R

n,C2N ) is uniformly bounded in

z ∈ V(ω)\iR as long as the operator V(ω) : L2
−s(R

n,C2N ) → L2
s(R

n,C2N) of multiplication

by V(x, ω) has a sufficiently small norm; it is enough to have

‖V(ω)‖L2
−s→L2

s
‖(J(Dm − ω)− z)−1‖L2

s→L2
−s
< 1/2. (4.15)

Due to the bound on the action (4.13), the inequality (4.15) is satisfied since

lim
ω→ω0

‖V(ω)‖L2
−s→L2

s
= lim

ω→ω0

‖〈x〉2sV(ω)‖L∞(Rn,End(C2N )) = 0

by the assumption of the theorem.

Lemma 4.6. If λ ∈ σp(JL) \ iR with the corresponding eigenvector ζ, then 〈ζ,Lζ〉 = 0,

〈ζ, Jζ〉 = 0,

Proof. One has JLζ = λζ, Lζ = −λJζ, hence

〈ζ,Lζ〉 = −λ〈ζ, Jζ〉. (4.16)

Since 〈ζ,Lζ〉 ∈ R and 〈ζ, Jζ〉 ∈ iR, the condition Reλ 6= 0 implies that both sides in (4.16)

are equal to zero.

Remark 4.7. If an eigenvector ζ corresponding to λ ∈ σp(JL) satisfies 〈ζ,Lζ〉 = 0, we will

say that λ has zero Krein signature. The Krein signature is only interesting for λ ∈ iR since,

according to Lemma 4.6, all eigenvalues of JL with nonzero real part have zero Krein signature.

Lemma 4.8. Let ω0 = ±m. Assume that, for each x ∈ Rn and ω ∈ [−m,m], V(x, ω) is a

self-adjoint 2N × 2N matrix, and there is C <∞ such that

‖V(ω)‖L2→L2 ≤ C(m2 − ω2). (4.17)

Let ωj ∈ (−m,m), j ∈ N; ωj → ω0. If there is a sequence λj ∈ σ(JL(ωj)), such that Reλj 6= 0
and lim

j→∞
λj = 0, then

|λj| = O(m2 − ω2
j ).
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Remark 4.9. By (4.10), for linearization at solitary waves, the condition (4.17) is satisfied as

ω → m.

Proof. Without loss of generality, we will assume that ω0 = m. We have: JL(ωj)ζj = λjζj,
ζj ∈ L2(Rn,C2N ), and without loss of generality we assume that ‖ζj‖L2 = 1. We write:

(Dm − ωj + Jλj)ζj = −V(ωj)ζj. (4.18)

Let Π± be orthogonal projections onto eigenspaces of J corresponding to ±i ∈ σ(J). Applying

Π± to (4.18) and denoting ζ±j = Π±ζj , we get:

(Dm − ωj + iλj)ζ
+
j = −Π+V(ωj)ζj, (Dm − ωj − iλj)ζ

−
j = −Π−V(ωj)ζj. (4.19)

Since ωj → m, without loss of generality, we can assume that ωj > m/2 for all j ∈ N. Since

the spectrum σ(JL) is symmetric with respect to real and imaginary axes, we may assume,

without loss of generality, that Imλj ≥ 0 for all j ∈ N, so that Re(iλj) ≤ 0 (see Figure 2). At

the same time, since λj → 0, we can assume that |λj| < m/2.

iλj
s

0 m−ωj−m−ωj

Figure 2: The closest point from σ(Dm − ωj) to iλj is m− ωj .

With Dm − ωj being self-adjoint, one has

‖(Dm − ωj − iλj)
−1‖ =

1

dist(iλj, σ(Dm − ωj))
=

1

|m− ωj − iλj|
. (4.20)

Combining (4.19) and (4.20), we get

‖ζ−j ‖L2 ≤ ‖Π−V(ωj)ζj‖
|m− ωj − iλj|

≤
C(m2 − ω2

j )

|m− ωj − iλj|
. (4.21)

We used the normalization ‖ζj‖ = 1 and the bound ‖Π−V(ωj)‖L2→L2 ≤ C(m2 − ω2
j ) (Cf.

(4.17)). At the same time, due to Reλj 6= 0, Lemma 4.6 yields

0 = 〈ζj, Jζj〉 = i‖ζ+j ‖2L2 − i‖ζ−j ‖2L2 ,

hence ‖ζ+j ‖2 = ‖ζ−j ‖2 = 1
2
‖ζj‖2 = 1

2
, thus (4.21) yields

|m− ωj − iλj| ≤
√
2C(m2 − ω2

j ),

leading to

|λj| ≤
√
2C(m2 − ω2

j ) + |m− ωj| ≤
(√

2C +
1

2m

)
(m2 − ω2

j ).
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5 The Paley-Wiener theorem

Theorem 5.1 (Paley-Wiener). (1) Let ϕ ∈ S (Rn). If suppϕ ⊂ BR ⊂ Rn (ball of radius

R), then ϕ̂(ζ) is an entire function of ζ ∈ Cn (analytic function in the whole space Cn)

and for any N ∈ N there is CN <∞ such that

|ϕ̂(ζ)| ≤ CN〈ζ〉−NeR| Im ζ|. (5.1)

(2) Conversely, if ϕ̂ ∈ S (Rn) has a holomorphic extension to Cn (also denoted ϕ̂) which

satisfies (5.1) with some R <∞, for any N ∈ N, then ϕ ∈ C∞(Rn), suppϕ ⊂ BR.

Above, Im ξ = (Im ξ1, . . . , Im ξn) ∈ Rn.

Proof. The first part is immediate: integrate by parts in x in the integral ϕ̂(ξ) =
∫
e−ix·ξϕ(x) dx.

For the second part, we pick x 6= 0 and define ω = x/|x|. Then, due to analyticity of ϕ̂,

ϕ(x) =

∫

Rn

ϕ̂(ξ)eiξ·x
dξ

(2π)n
=

∫

Rn

ϕ̂(ξ + iτω)ei(ξ+iτω)·x
dξ

(2π)n
,

|ϕ(x)| ≤ CN

∫

Rn

〈ξ〉−NeRτe−τ |x| dξ.

Taking N = n + 1 and sending τ to +∞, we see that for |x| > R the integral is arbitrarily

small, hence ϕ(x) = 0 for |x| > R.

Problem 5.2. Let f be smooth and compactly supported. Prove that if r > 0 is the smallest value

such that supp f ⊂ [−r, r], then R = 2r is the smallest value such that supp f ∗ f ⊂ [−R,R].
Hint: Apply the Paley-Wiener theorem to f̂ ∗ f = f̂2.

Problem 5.2 is a particular case of the Titchmarsh convolution theorem:

Theorem 5.3 (Titchmarsh convolution theorem). For any f, g ∈ E ′(R) (compactly supported

distributions), there are the following relations:

sup supp f ∗ g = sup supp f + sup supp g, inf supp f ∗ g = inf supp f + inf supp g.

Problem 5.4. Let u ∈ L2(R) satisfy

(−∆− λ2)u(x) = f(x)u(x),

where λ > 0 and f ∈ C(R), |f(x)| < e−ǫ|x| for some ǫ > 0. Prove that for any N > 0 there is

CN <∞ such that |u(x)| < CNe
−N |x|, x ∈ R.

Hint: |f(x)u(x)| ≤ Ce−ǫ|x|, hence f̂u(ξ) is analytic for | Im ξ| < ǫ.

Hint: So is û(ξ) = f̂u(ξ)
ξ2−λ2 since f̂u(±λ) = 0, or else û = ûf(ξ)

ξ2−λ2 6∈ L2(R).

Hint: By Paley-Wiener, |u(x)| ≤ Ce−ǫ|x|; then |f(x)u(x)| ≤ Ce−2ǫ|x|.
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6 Carleman estimates

We will illustrate the technique of Carleman estimates on the following easy result:

Proposition 6.1. Let L = i∂x −W (x), D(L) = H1(R), with W ∈ C(R) such that |W (x)| ≤
Ce−ǫ|x| with some ǫ > 0 and C < ∞. Then there are no eigenvalues embedded into σess(L) =
R.

The argument goes like this: |ψ| ≤ CNe
−N |x|, ∀N > 0; ψ has compact support; ψ ≡ 0.

Lemma 6.2. If (i∂x −W (x))ψ = λψ with λ ∈ R, ψ ∈ L2(R), then for any N > 0 there is

CN <∞ such that

|ψ(x)| ≤ CNe
−N |x|, x ∈ R.

This lemma immediately follows from Problem 5.4. Note that ψ ∈ L2(R) implies ψ ∈
H1(R) ⊂ C(R).

Lemma 6.3 (Hardy-type estimate; by N. Boussaı̈d). Let ϕ ∈ C1(R), ϕ′ > 0. Then one has

‖
√
ϕ′eϕu‖ ≤ ‖ 1√

ϕ′ e
ϕu′‖ for any u ∈ H1(R) with compact support.

Proof. It is enough to consider u ∈ C1
comp(R,R). We integrating by parts and apply the Cauchy-

Schwarz inequality:

∣∣∣∣
∫

R

ϕ′e2ϕu2 dx

∣∣∣∣ =
∣∣∣∣
∫

R

e2ϕuu′ dx

∣∣∣∣ ≤
(∫

R

ϕ′e2ϕu2 dx
)1/2(∫

R

1

ϕ′ e
2ϕ(u′)2 dx

)1/2

.

Let ϕ(x) = xτ , τ > 0, suppu ⊂ (0,∞). Then Lemma 6.3 yields τ‖eϕu‖ ≤ ‖eϕu′‖, hence

(τ − |λ|)‖eτxu‖ ≤ ‖eτx(u′ − λu)‖, supp x ⊂ R+. (6.1)

Here τ > 0 could be arbitrarily large; such estimates are called Carleman estimates.

Now we prove Proposition 6.1. Let ρ ∈ C∞(R) be such that ρ|
(−∞,0)

= 0, ρ|
(1,+∞)

= 1,

sup |ρ′| ≤ 2. Let a ≥ 0, b ≥ a+ 2. Denote

ρa,b = ρ(x− a)ρ(b− x), supp ρa,b ⊂ [a, b]; sup
x∈R

|∂xρa,b| ≤ 2.

Since (i∂x − λ)ψ = Wψ, the function u = ψρa,b ∈ C1
comp(R) satisfies (i∂x − λ)u = Wu +

iψ∂xρa,b. Therefore, by (6.1),

(τ − |λ|)‖eϕu‖ ≤ ‖eϕ(Wu+ iψ∂xρa,b)‖.

Let a > 0 be large enough so that |W ||
(a,∞)

≤ 1. Then, due to supp ∂xρa,b ⊂ [a, a+1]∪[b−1, b],

(τ − |λ| − 1)‖eϕu‖ ≤ ‖eϕψ∂xρa,b‖ ≤ 2‖eϕψ‖L2(a,a+1) + 2‖eϕψ‖L2(b−1,b).
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Fix τ ≥ |λ| + 2, so that the coefficient on the left is not smaller than 1. Sending b → ∞ and

noticing that ‖eϕψ‖L2(b−1,b) → 0 due to Lemma 6.2, we conclude by the monotone convergence

theorem that v(x) = |ψ(x)|ρ(x− a) satisfies ‖eϕv‖ ≤ 2‖eϕψ‖L2(a,a+1), and moreover we have

e(a+2)τ‖v‖L2(a+2,∞) ≤ ‖eϕv‖L2(a+2,∞) ≤ ‖eϕv‖ ≤ 2‖eϕψ‖L2(a,a+1) ≤ 2e(a+1)τ‖ψ‖L2(a,a+1).

Since τ could be arbitrarily large, ‖v‖L2(a+2,∞) = 0. Since v ∈ H1(R) ⊂ C1(R), one has

suppψ ⊂ supp v ⊂ Ba+2, which is the ball of radius a+ 2.

Finally, one needs the unique continuation principle; this is a property of certain equations

that once a solution to such an equation vanishes on an open interval then it is identically zero.

In one dimension, this is immediate due to the local well-posedness: Since the solution to

iψ′ − Wψ = λψ vanishes identically on an open interval (in the 1D case, cancellation at a

single point would be enough), one has ψ(x) ≡ 0.

By [BG87], there are the following Carleman estimates for the Dirac operator: for R > 0
sufficiently large,

‖
√
τeτru‖ ≤ Cλ,R‖

√
reτr(Dm − λ)u‖, λ ∈ R \ [−m,m], ∀τ > 0, u ∈ H1, u|

BR
≡ 0.

22



References

[Agm75] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann.

Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), pp. 151–218.

[BG87] A. Berthier and V. Georgescu, On the point spectrum of Dirac operators, J. Funct.

Anal. 71 (1987), pp. 309–338.

[BL83] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a

ground state, Arch. Rational Mech. Anal. 82 (1983), pp. 313–345.

[CP03] A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with

minimal energy, Comm. Pure Appl. Math. 56 (2003), pp. 1565–1607.

[Der64] G. H. Derrick, Comments on nonlinear wave equations as models for elementary

particles, J. Mathematical Phys. 5 (1964), pp. 1252–1254.

[GSS87] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the pres-

ence of symmetry. I, J. Funct. Anal. 74 (1987), pp. 160–197.

[JK79] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay

of the wave functions, Duke Math. J. 46 (1979), pp. 583–611.

[KS07] P. Karageorgis and W. A. Strauss, Instability of steady states for nonlinear wave and

heat equations, J. Differential Equations 241 (2007), pp. 184–205.
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