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Poncelet’s porism and periodic triangles in ellipse !

Vladimir Georgiev, Veneta Nedyalkova

1 Small historical introduction

One of the most important and beautiful theorems in projective geometry is that of Poncelet,
concerning closed polygons which are inscribed in one conic and circumscribed about another
(below we give the precise statement as well proof for the case of triangles). The theorem has
deep interaction with other math fields. The aim of this section is to clarify one aspect of these
these relations: the connection between Poncelet’s theorem and billiards in an ellipse. At first
sight these topics seem unrelated, belonging to two distinct mathematical fields: geometry and
dynamical systems. But there is a hidden thread tying these topics together: the existence
of an underlying structure (we name it the Poncelet correspondence which turns out to be an
elliptic curve. As is well known, elliptic curves can be endowed with a group structure, and the
exploitation of this structure sheds much light on the aforementioned topics.

However, to read most of the books and available references some prerequisites (usually covered
in undergraduate and first year graduate mathematics courses) are needed: complex analysis,
linear algebra, and some point set topology.

In this sense the argument can not be adapted easily to some extracurricula activities in High
Schools.

For this we are trying to find approach that needs only tools from the standard High School
Programs.

This is not an easy problem. The classical A. Cayley (see [2], [3]) approach uses elliptic integrals,
some other sources (see [5], [6], [8] and the references cited there) apply arguments for projective
geometry and group theory.

The statement of the Poncelet’s problem needs only to know the definition and the equation of
the ellipse.

Theorem 1. (Poncelet’s Porism) Given one ellipse inside another, if there exists one circum-
inscribed (simultaneously inscribed in the outer and circumscribed on the inner) n -gon, then
any point on the boundary of the outer ellipse is the vertex of some circuminscribed n-gon.

There are several proofs of this remarkable theorem, most of which are not elementary. Poncelet’s
theorem dates to the nineteenth century and has attracted the attention of many mathematicians
of that period (a detailed historical account is given in [I]). The main reason for this interest
seems to stem from the fact that several proofs of this theorem require the use of complex and
homogeneous coordinates, notions which were beginning to emerge at the time (1813) when
Poncelet discovered his theorem. Poncelet discovered the theorem while in captivity as war
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Figure 1: Poncelet’s theorem for the case of circle and ellipse.

prisoner in the Russian city of Saratov. After his return to France, a proof appears in his
book [7], published in 1822. The proof, which is synthetic and somewhat elaborate, reduces the
theorem to two (not’ necessarily concentric) circles. A discussion of the ideas in Poncelet’s proof
is given in [1], pp. 298-311.

Our purpose is to find elementary proof in one nontrivial situation: the case n = 3 and the
situation, when we have two ellipses
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such that e is inside e.

We shall prove in this case the Poncelet’ theorem as well as the following more precise result.
Theorem 2. (see Figure[dl ) Suppose the ellipse ([2) is inside the ellipse (), i.e.
a>b>0,a1 >b >0,

a>ai,b>by.
Then the following conditions are equivalent:
i) there exists a triangle A AgBoCy inscribed in e and circumscribed on ey,

i1) we have the relation

iii) for any point A on the ellipse e one can find a unique triangle A ABC' inscribed in e and
circumscribed on ej.



2 Reduction to the case of circle and ellipse and preliminary facts

Consider two ellipses
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such that e is inside e. This condition can be expressed as
a>b>0,a1 >b >0,
a>ay,b>b.

One can use a simple change of coordinates in the plane

x y
a’ b’ (5)

so that the ellipse e in the new coordinates X,Y has equation
X24y?=1. (6)

so it is the circle £(O, 1) with center at the origin O of the new coordinate system and has radius
1.

The second ellipse e; becomes
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and it is clear that this change of coordinates preserves the notions of intersection, line is
transformed in line, circle in circle, ellipse in ellipse (or circle as a partial case) and if the line
and ellipse are tangent they remain tangent after the change of the coordinates (see Figure [2]).

Exercise 1. Prove the fact that if line and ellipse are tangent they remain tangent after the
change of the coordinates (H).
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Figure 2: Ellipse is transformed in circle.
For this from now on we shall work with circle (O, 1) with center at the origin O and radius 1

22 +y? =1 (8)



and ellipse e;
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inside k(O, 1) as it is shown on Figure [Il

We prepare again a list of questions preparing the solution of the problem (or proof of the
Poncelet’s theorem):

e Given an ellipse e; : 22/a? +y?/b? = 1 and the point Ag(xg,%0) on k(O, 1) find the tangent
lines from Ag to e; and find also the points A, A of the intersection of these tangent lines
with the circle 22+ y? = 1 (we need formula expressing the coordinates of A;, A in terms
of xg,yo and the angular coefficients k1, ko of the lines AgA; and AgAs respectively;

e Using the parametrization
xj =cos;,yj; =sing;, j=0,1,2 (10)
find a relation between ¢; and 01 2 = arctank; s.

e Given an ellipse e : 22/a? + y?/b? = 1, the point Ag(zo,yo) on k(O, 1), the tangent lines
from Ay to e; intersecting k(O,1) into the points Aj, A and using the parametrization
([I0) express the necessary and sufficient condition that the line AygA; is tangent to the
ellipse ey in terms of g, 1 and 61 = arctank;.

e Given an ellipse e; : #2/a? + 3?/b? = 1, the point Ag(zo, o) on k(O, 1), the tangent lines
from Ay to e; intersecting k(O,1) into the points Aj, A and using the parametrization
([I0) express the necessary and sufficient condition that the line AygAs is tangent to the
ellipse ey in terms of g, w9 and 6y = arctanks.

e Using simple trigonometric transformations show that the following two conditions a)
the line AgA; is tangent to the ellipse e; (condition is expressed in terms of g, ¢ and
01 = arctank;) b) the line AgAy is tangent to the ellipse e; (condition is expressed in
terms of g, p2 and 6 = arctanky) imply a) the line AjAs is tangent to the ellipse e;
(condition is expressed in terms of ¢, 2 and 61 2 = arctank; 2)

Step by step we give answers presenting some Lemmas that can be verified without difficulty.

Lemma 1. Given an ellipse ey : %/a? +y?/b? = 1 one can express the necessary and sufficient
condition such that the line y — yo = k(z — xo) through the point Ay(zg,yo) is tangent to ey as
follows
(yo — kxo)? = 03 + K2al.
Lemma 2. Given an ellipse e1 : x2/a? + y? /b3 = 1 and point Ag(zo,y0) on the unit circle and
denote by
try —yo=k(z — o)
any line through Ao and by Aj(x1,y1) the point of the second intersection of this line with the
unit circle k(0,1) : 2% + y* = 1, such we have
k-1 2k
= xro —
SRS L
2k k-1
— xTo — .
10 k21l

z1

Y1 =



AoAr 1y — o = klz — =)

Jq-ﬂ(ml'h Fﬂ] !
Ay(1,81) z o
! w5+ =1
c “ al b}
8 &
| |O

Figure 3: When AgA; is tangent to e;?.

Proof. The intersection points are given by the equations
2 + (yo + k(z — 29))* = L.

This equation has two roots xy and x1 so

2k(yo — ko)
o+ 21 = 1152
From this relation we get the expression for z;. Similarly we proceed for . O

Lemma 3. Given an ellipse e1 : 2%/a2 + y?/b3 = 1 and a point Ay(cos pg,sinpg) on the unit
circle denote by

t:y—yo=k(z — o)
any line from Ay and let Ay the second point of intersection of this lines with the circle k(O, 1) :
22+ y? =1, such that Ai(cos ¢,sinp). Then the relations of Lemma [d take the form we have

0:90_}—900_71-

5 +mm,m € Z,

where
6 = arctan k.
Proof. We have the relations

K2 -1 2k
= —cos(2
2y m

= sin(260).

Making the substitution
T1 = Cosp,y; = sinp

we find
cos p = — cos(26) cos py — sin(26) sin ¢y =



= c0s(260 + ) cos g + sin(260 + ) sin g = cos(20 + T — ¢p),
sin p = —sin(26) cos ¢ + cos(20) sin gy =

= 8in(260 + ) cos g — cos(26 + ) sin g = sin(20 + 7 — o),

and these relations lead simply to the needed relation
204+ 7 — o=+ 2mm,m e Z.
This completes the proof.
O
Lemma 4. Given an ellipse ey : 2%/a2 4+ y?/b? = 1 and a point Ay(cos po,sin pg) denote by
try —yo=k(z — o)

a line through Ag and by Ay the point of the intersection of this line with the circle e : z2+y? = 1,
such that Aj(cos p,sin). Then t is tangent to ey if and only if

we have

cos? <(‘0_2LP0> = b?sin? (tp—;@o> + a2 cos? <L—;(‘OO> = (a2 — b}) cos? <cp—;<po> + b2

Proof. From Lemma [l we see that we need to transform (yo — kxg)? into a function of ¢ and
po. Indeed, we have
cosfsingy —sinfcos py  sin(pg — 6)

Yo 0 cos 6 cos 6 (11)

Using now the relation
g Prpo—m
2
from Lemmal[Il we see the the numerator in (1) is

sin(gpo — 9) = sin (“OO%W _ m7r> — (_1)771 CoS <(p02_ ()O>

+mmr,m € Z,

while the denominator becomes
COSH = COS <W + m7T> — (_1)m Sin <g0 _;SDO>

so we find
sin? (L —;%) (yo — kzp)® = cos? (L _2@0> .
Applying Lemma [Il combined with the above relations, we complete the proof of the Lemma.
O
Remark 1. We can rewrite the relations of Lemma [{] in different ways using the formula
1
cos o — + cos(2a) ’
2
also as
cos(p — o) = ¢ cos(ip + o) + D, (12)
or
(1 — ¢?) cos pcos pg + (1 + ¢?)sinpsin pg = D, (13)
where

c=al-b,D=a}+b -1 (14)



3 Proof of Poncelet theorem using trigonometric functions
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Figure 4: The meaning of the assumption A AgByCy is circumscribed on e;?

We take a point Ag(cosgy ,sin¢g) on the unit circle and find of two tangent lines ¢, o through
Ap to the ellipse
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Then we find the intersection points of ¢1,ts with the unit circle (see Figure ) and denote the
two intersection points (different from Agp) by

By (coser ,sin 1), Co(cospa ,sin pa).

First, let us express the assumption of Poncelet’s theorem that there exists at least one triangle
A AgByCy inscribed in the unit circle, i.e.

Ap(cospg ,sin @o), Bo(cospr ,sin 1), Co(cospa ,sinpz), 0 <o < p1 < p2 <27

and circumscribed on the inner ellipse e; Since Ay By is tangent to e; we know that:

cos? <7¢1 ; SDO) = (a% - b%) cos” <901 _g SDO) + b% (15)
(this is due to Lemmal[d]). Similarly, the fact that AoCy and ByCj are tangent to e;, and Lemma
4 imply

cos? (7@2 ; ('OO) = (a] — b}) cos? <7cp2 ;— <P0> + 07 (16)

cos? (7802 g SDI) = (a% - b%) cos” <7§02 ;— SDI) + b?- (17)

We can unify all these relations into one

i (25) st ot (432) o, o5 mez oo



What we know from the assumptions the Poncelet theorem and what we have to prove?

Take any point A(cosig,sint)g) on the unit circle and find of two tangent lines t1,%s through
Ap to the ellipse
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Then we find the intersection points of ¢1,ts with the unit circle (see Figure []) and denote the
two intersection points (different from A) by

B(cosyy ,sintpy), C(cospa , sintha).
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Figure 5: Two sides tangent = the third side is also tangent.

Since AB is tangent to e; we know that:

cos? <7¢1 ;Q/)O) = (a? — b?) cos? <¢1 ;—M)) + b2 (19)
(this is due to Lemmal[d). Similarly, the fact that AoCy and ByCy are tangent to e, and Lemma
M imply

cos? <7¢2 ; T/)0> + (a? — b?) cos? <L2 ;Q/)O) = b (20)

So we summarize all assumptions of Poncelet’s theorem and can say that (I8]), (19) and (20) are
satisfied.

What we have to prove?
Having in ming again Lemma Ml we see that our purpose is to show that

cos? (;ﬁz ; ¢1> = (a2 — b?) cos? <7¢2 ;‘¢1> + b2 (21)



This relation can be rewritten as

(1 —c*) costhgcosthy = (14 c?)sinpgsineyy + D, (22)

where
A =a2—-b,D=a+0b7—1. (23)

according to Remark [11
Now we are in position to apply the trigonometric lemma from the appendix and conclude that

o (V2 —1) 4¢* D? o (Y2t D?
s (252) = (U50) ot 2

Comparing this relation with (2I]) we see that the following conditions
4D* = (1 = A)* (1 + )%, D? =b3(1 + ¢*)? (25)
are required. This relations and (23]) lead to the following sufficient condition
a;+b =1 (26)

that implies A ABC'is circumscribed on e;. The condition (23]) is also necessary for the fulfillment
of the property

e there exists a triangle A AgByCy circumscribed on e;.

If there exists at least one A AygByCy circumscribed on e, then (26) and hence A ABC is
circumscribed on e;.

This completes the proof of the Theorem.

4 Appendix: Trigonometric Lemma

Lemma 5. Suppose

sin <1/11 — 1/12> #0, cos <¢1 +¢2> #£ 0, cos Yg

2 2
and
(1 — c?) cos 9y cos g + (1 +c?)sinypysingyg = D ; o7
(1 — ¢?) cosya cos g + (1 + ¢2) sin g sin g = D (27)
Then
(1 —¢?)tan <¢1 ‘;7/)2> = (1 + ¢?) tan vy (28)
and moreover
ofP2—1\ 4c* D? o (Y2t D?
o (552) = s rer e (U5 taver >



Proof. Take the difference between the relations in [27)). We get

1,!)1—1!)2) . <¢1+7/)2 ¢1—¢2> ‘<w1+¢2
Sin COS
2 2 2

—(1—¢?) sin ( > cos 1o+ (14-¢?) sin < 5 > sin ¢g = 0.

The assumption

sin <¢1;¢2> 40

implies that

(1 —¢?)sin (7/)1 _£¢2> cos 1y = (14 ¢?) cos (7/)1 ;¢2> sin ¢)g.

This proves (28]). The other relation can be obtained following the plan

e first equation in (27 x sin¢o— second equation in (7)) X siny;

e first equation in (27) x coso— second equation in (7)) X cos ;.

In this way we get

2D sin <¢2 — 7/)1> coS <¢2 * ¢1>
2 2
—2D sin <¢2 ; 7/)1> sin <¢2 ;¢1> = —2(1 + *)sin <@> cos (7/)2 ; 7/)1> sin vy,

so using the assumption
sin <1/11 ; ¢2> 40

1_—D02 cos <¢2 i ¢1> = coS <¢2 ; ¢1> cos i,

2(1 — ¢?)sin <1’b2 g ¢1> cos <1’b2 ; 7/)1> cos Yy,

we find

2

D sin Y2t = cos Y2 = sin
1+¢ 2 - 2 0

Taking the sum of squares of these identities we obtain

D? cos <¢2 +¢1> n D? sin? <¢2 +¢1> _ co? <¢2 —¢1>
(1—¢?)? 2 (14 ¢?)? 2 2

and this equation yields (29).
This completes the proof of the Lemma.
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