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Napoleon polygons

Titu Andreescu, Vladimir Georgiev, and Oleg Mushkarov

Abstract. An n-gon is called Napoleon if the centers of the regulagons erected outwardly
on its sides are vertices of a regutaigon. In this note we obtain a new geometric charac-
terization of Napoleom- gons and give a new proof of the well-known theorem of Barlotti -
Greber ([, [3]) that ann-gon is Napoleon if and only if it is affine - regular. Moreover, we
generalize this theorem by obtaining an analytic characterization of-tjens leading to a
regularn-gon after iterating the above constructiotimes.

1. INTRODUCTION. A popular topic in plane geometry is to study configurations
obtained by constructing polygons on the sides of a given polygon. The most classical
result in this direction is the so-called Napoleon’s theorem which states that if equi-
lateral triangles are erected outwardly(inwardly) on the sides of an arbitrary triangle
then their centers are vertices of an equilateral triangle. There are various interesting
generalizations of this beautiful theorem ( see e.§ajid the literature cited there)

of which we mention that obtained first by Barlotti][th 1955 and then by Greber
[3]in 1980. It says that if regulat-gons are erected outwardly(inwardly) on the sides

of ann-gon P, then their centers are vertices of a regulagon if and only if P is
affine-regular, i.e. it is the image of a regutaigon under an affine transformation of

the plane. We call the polygons having this property Napoleon polygons.

In this paper, we obtain a new geometric characterization of Napoleon polygons.
Namely, we proved in Theorem 1 that any suchragon is obtained by fixing two
consecutive vertices of a regulargon and translating the remainifig — 2) vertices
by collinear vectors with lengths whose ratios we compute explicitly. As an application
we give a new proof of the theorem of Barlotti-Greber (Theorem 2). Moreover, we
examine the polygons obtained by iterating the above construction. Giveigan P
denote byP") then-gon whose vertices are the centers of the regulgons erected
outwardly on its sides. Then we define recursively the sequEeeof n-gons by

PO = p plk+l) — (p(k))(l)’ k> 0.

We say that a polygot® is k-step Napoleon if the polygoR*) is regular. For ex-
ample, the Barlotti-Greber theorem says that a polygdrstep Napoleon if and only

if it is affine-regular. In Theorem 3 we generalize this result by obtaining an analytic
characterization of thke-step Napoleon polygons for &l > 1.

2. NAPOLEON POLYGONS. In what follows we denote a point on the plane and
the complex number it represents by the same symbol. Also we always assume that all
polygons under consideration are simple and non-degenerate plane polygons.

Given ann-gon P with verticeszy, 2o, ..., 2z, (as usual all subscripts are taken
modulon) we denote byP") the n-gon whose vertices\", 2{" ..., () are the
centers of the regular-gons erected outwardly on its sides:s, 2223, . - . , 2,21, l€-
spectively.

Definition. We say that a polygo® is Napoleon if the polygo® (" is regular.

In this section we give a new proof of the Barlotti-Greber theorem mentioned
in Introduction. To do this we first prove the following analytic characterization of
Napoleon polygons.
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Theorem 1. Let P be ann-gon with vertices , 2o, . . ., 2, and letz), 29, ..., 20 be
the vertices of the regulai-gon erected inwardly on the sidgz, of P. ThenP is a
Napoleon-gon if and only if

2 = 2y + DU 1)

whereu is a complex number and

sin —(kf)” sin —(k;:)”
Pr = (2)

sin Z sin 2&
n n

forall1 < k <n.

Proof. Setw = ' % Sincez,(j) is the center of the regular-gon erected outwardly

on the sidez; 2,1 of P we have

2 — 2 = wleen — 24)
and we get

(1) Rk — W-Zpt1
zy, =

1<k <n. 3)
1—w

On the other hand the-gon P(!) is regular if and only if
z,(izl — z,(cl) = wkfl(zél) — zil)), 1<k<n. 4)

Hence it follows from (3) and (4) thd? is a Napoleom-gon if and only if its vertices
satisfy the following recursive relation

Wzpgr — (T +w)zpgpr + 2 =W Hwzs — (1 +w)ze+21), 1 <k<n. (5)

We now set;, = z} + uy, 1 < k < nand notice that;, = u, = 0. Set alsauz = u.
Sincez} satisfy the relation (5) and

w.zg — (14+w)zy +22 =0
pluggingz, in (5) gives the following relation fow,:
Wottgys — (1 + w)upgy +up = WP, 1 <k < n. (6)

If w=0thenu, = uy, =--- = u, = 0. Hence we may set;, = p;..u, wherep, =
po, = 0, p3 = 1 andp,, satisfy the recurence relation

WPtz — (L +w)prp +pp =w", 1 <k <n. 7
Now settingg, = pr.1 — pi We obtain from (7) that
G — W = ", 1<k <n.

It follows by induction onk that

1<k<n. (8)
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Now taking into account that

Pe=@+@a+ - +ag-1,3<k<n

and using (8) we get

B k—1 w—5+2 — W B (1 _ wk*?)(l _ wk*l) (9)
Pr= 1—w? w31 —w)(1 —w?)

forall 1 < k < n. Finally, to obtain (2) it is enough to apply the formula

.. ST s
1 —w®=—2¢sin —w?2
n

in the above identity.
[

The above theorem gives a nice geometric description of #ygolonn-gons.
Namely, it shows that each of them can be obtained by fixingdevisecutive vertices
of a regularn-gon and translating the remainimg— 2 vertices by collinear vectors
with lengths in ratiqps : p4 : - - - : p,, Wwherepy, is given by (2).

Now we can prove the Barlotti-Greber theorem by using Thadte

Theorem 2. (Barlotti-Greber) A polygon is Napoleon if and only if it iffiae-regular.

Proof. Note first that using complex numbers every affine transftionaf the (com-
plex) plane has the forme = az + bz + ¢, wherea, b, c are complex numbers. Hence
ann-gon P with verticeszy, z,, . . ., 2, is affine-regular if and only if there are com-
plex numbers:, b, c such that

2 =aw® + b +¢, 1 <k<n,

wherew = ¢ . One can see easily thatis a regulam-gon if and only if there are
complex numbers, ¢ such that

2z =aw’ +¢, 1<k<n.

Let now P be ann-gon with vertices:y, 2o, ..., 2, and letz?, 23, ... 20 be the

rn

vertices of the regulan-gon erected inwardly on the sidgz, of P. Then there are
complex numbers, ¢ such that

zgzawk+c,1§k§n.

Hence by the first remark above and Theorem 1 it follows thatdoe the theorem it
is enough to show that there are complex numbers, v such that

aw® + ¢+ pru = aw® + " + v (10)
for all 1 < k < n. Plugging the formula fop;, given in (9) ando = % in (10), and

then clearing the denominators we can write both sides ofdbkelting equality as
quadratic functions with respectdd®. Now comparing the coefficients leads to
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R TR R s TR A w5

a=a-+

Hencex, (5, v are uniquely determined hy; ¢, v and vice versa the theorem is proved.
[

Remark 1. Theorems 1 and 2 are true also if regulagons are erected inwardly on
the sides of the given-gon.

3. A GENERALIZATION OF BARLOTTI-GREBER THEOREM.  Given ann-
gon P we can iterate the construction of thegon P(!) k times to obtain am-gon
denoted byP*). More precisely, this sequence of polygons can be definedsively
as follows:

poO — P, P+l — (P(S))(l), s> 0.

Definition. A polygon P is said to be:-step Napoleon if the polygoR®) is regular.

For instance, a polygon i8-step Napoleon iff it is regular anttstep Napoleon
if it is affine-regular. The next theorem gives an analytiaretterization ofc-step
Napoleon polygons for every > 0.

Theorem 3. Ann-gon with vertices, 2o, ..., z, is k-step Napoleon if and only if
there are complex numbetsc and a degreé: — 1 polynomialb;, _; (x) with complex
coefficients such that

Zm = aw™ + b1 (M)W +¢,1 <m < n. (11)
Hereb_, = 0 andb, = const.

Proof. We proceed by induction oh. For k£ = 0 the statement follows by the char-
acterization of regulan-gons used in the proof of Theorem 1 and ko 1, by The-
orem 1. Suppose it is true for sonkeand letP be a(k + 1)-step Napoleom-gon.
This means thaP(!) is a k-step Napoleon polygon and it follows by the inductive
assumption that

2 = qw™ 4+ by (m)@™ +¢, 1 <m <n, 12)

wherea, c are complex numbers abg_; (z) is a degreé: — 1 polynomial with com-
plex coefficients. On the other hand we know that

(1) _ Pm — W-Zmy1

and we obtain from (12) that
Zm — WZme1 = a(1 —w)w™ + (1 — w)bp_ 1 (m)@™ + c(1 —w), 1 <m < n.

13)
Denote the right hand side of (13) bY;,,. Then it follows by induction omn that

n
Zm = g WA, w2

sS=m
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Now plugging the expression fot, in the above identity and summing up we find

awm(l _ w2(n—m+l))

14w

Zm =

+(1—w)™ Z bre_1(8) +c(1 —w™ My 4 nmmtl s
Notice thatw™ = 1 and>_"_ b, (s) is a polynomial of degreg on'm. Hence we
can writez,, in the form

Zm = Aw™ + bp(m)w™ + ¢
where

a a

~Tr o br(m) = (21 —c— ——)w + (1 —w);bk,l(s).

A
1+w

Conversely, suppose th&is ann-gon whose vertices are given by (11). Then using
(3) it follows easily by induction os that for all1 < s < k we have

28 = a(1 +w)*w™ + dj_s_1(M)T™ +¢, 1 <m < n,
whered;,_,_,(x) is a polynomial of degrek — s — 1. Hence
2 = a1l +wfu™+ce,1<m<n

and thereforeg”®) is a regular polygon. Thus the theorem is proved.
[

Finally, let us note that Theorem 3 holds also true if we carestregularn-gons
inwardly on the sides of the givenrgon P. In this case one has to switch the roles of
w andw in the formula for the vertices aP.
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