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Presentation of the Comenius books and course

The team preparing the ebook is not homogeneous and it is
composed by specialists in didactics of Mathematics as well as pure
mathematicians without long experience in didactics. This
particular point seems to become very useful since real interaction
between different fields can give very positive impact on the whole
work( but can provoke also negative results also!).
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Presentation of the Comenius books and course

There were no particular restrictive schemes imposed at the
beginning of the work.

1) The arguments in the didactic units had as an initial point
models and events from the surrounding world

2)The arguments in the units have reasonable math contents
supporting the preparation of future and in service teachers in
Mathematics

3) We tried to unify all different arguments by using creative and
attractive new ideas in posing, solving math problems and teaching
math
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Presentation of the Comenius books and course

The e-book "Dynamat” can be found on the homepage
http://www.dynamathmat.eu/
of the "Dynamat” Comenius project.
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Presentation of the Comenius books and course
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Introduction to DNLS.

Some of the simplest recurrence sequences might be solved
explicitly , for example

ant1 = 2a,, a; =1

The corresponding graphics is in the next picture
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Figure: Simple recurrence relation
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Introduction to DNLS.

Some other famous recurrence sequences as Fibonacci one might
be solved explicitly,

ant+1 =ap+ap-1, a1 = 1,32 =1

The corresponding graphics is in the next picture
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Figure: Simple recurrence relation
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Introduction to DNLS.

More complicated is the scalar DNLS (discrete nonlinear
Schrddinger equation)

ant1 =2ap — an—1 — a?,_l, a=a,a =p.

There is no explicit formula for general initial data «, 5. For
example one can pose the question to find a couple («, 3) so that
Xp is a decreasing, bounded sequence of positive numbers.
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Introduction to DNLS.

One can choose for example
a=0,=0.1

and compute (even with Excell) the first 15 terms for example.
The corresponding graphics is as follows

041

0.2

Figure: DNLS

Vladimir Georgiev, University of Pisa Math Models in Biomedicine



Jourmal of Cosmlogy
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Introduction to DN

MATURE Vol 490130 March 2006 .

Quantum mechanics in the brain

Daoes the enormous computing power of neurons mean consciousness can be explained within
a purely neurobiclogical framewark, or is there scope for guantum computation in the brain?
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Introduction to DNLS.

Research Article
Mozart K.545 Mimics Mozart K.448 in Reducing Epileptiform
Discharges in Epileptic Children

Lung-Chang Lin,"? Mei-Wen Lee,* Ruey-Chang Wei,! Hin-Kiu Mok,* Hui-Chuan Wa,?
Chin-Lin Tsai,* and Rei-Cheng Yang®
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Figure: Mozart effect
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Introduction to DNLS.

Talk of Prof. Alfonso ludice
EPILESSIA o EPILESSIE?

List of intelectuals suffuring from this desease:
Maometto, Socrate, Platone, Giulio Cesare, Petrarca, Carlo V, San
Paolo, Blaise Pascal, Niccolé Paganini, George Byron, Vittorio
Alfieri, Fedor Dostoevskij, Alessandro Magno, Giulio Cesare,
Napoleone Bonaparte, George Frederick Handel, Nietzsche,
Moliére, Flaubert, Torquato Tasso, Dickens, Francesco Petrarca,
Lewis Carroll, il matematico Isaac Newton, il Cardinale Richelieu,
papa Pio IX, Alfredo Nobel, Michelangelo Merisi detto il
Caravaggio e Vincent Van Gogh (7).
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Introduction to DNLS.

Figure: Creation of Adam, Michelangelo and Neurons ( ludice)
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Introduction to D
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Kodowski and Marciak oz lowska. Schrodingsr eguation and human neuron mass

QOriginal Article

Modified Schrédinger Equation for Particles
with Mass of the Order of
Human Neuron Mass

L PR Lol

Miroslaw
Abstract
In this paper the modified Schridinger aguation [MSE) for the particles with
mass = mass of the human neuron ks obtained and solved. Considering that
newuran mass is of the order of Planck mass it was shewn that for mass of the
order of the human neuran mass the transition quantum - classical behavior
can occurs, Mareover it was argued that the human brain can be described as
the fluid of the Planck particles. It is interesting to observe that the Planck gas
was created at the beginning of the Universe.
Key Words: Modified Schriidinger Equation, Planck particles, neurons,

Neurofuantol ogy 2010; 4: 564-570
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Figure: Modified NLS
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Some simple properties of recurrence sequences

Stability of nonlinear first-order recurrences

Xp = f(Xp—1).

This recurrence is locally stable, meaning that it converges to a
fixed point x* from points sufficiently close to xx, if the slope of f
in the neighborhood of xx is smaller than unity in absolute value:
that is,

If'(x*)] < 1. (1)

A nonlinear recurrence could have multiple fixed points, in which
case some fixed points may be locally stable and others locally
unstable.
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Some simple properties of recurrence sequences

Simplified version of the discrete nonlinear Schrodinger equation
— 2 —
dnt+l = dp —dp_1, 41 = Q.

There is explicit formula for initial data o =1, i.e. a, =0 for
n>2. If «a =0.5 we have

Figure: Simplified first order recurrence sequence
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Some simple properties of recurrence sequences

One can verify the following assertions

Q for any a € (0,1) the recurrence sequence

2
dnt+l = 3ap —dp_1, d1 =«

is a decreasing sequence of positive numbers

Q the sequence a, tends to 0.
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Discrete predator-prey models

Consider a two-species predator-prey discrete model in which one
species preys on another. Examples in the nature include sharks
and fish, lynx and snow-shoe hares, ladybirds and aphids, wolves
and rabbits. A very simple model, known as the Lotka-Volterra
model is the following:

Xnt1 = Xn(1+ p1— PaXn — P3Yn)
Yn+1 = }/n(l—ql‘f‘CDXn)a n:071727°°°
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Discrete predator-prey models

Here p1, p2, p3, g1 and g are nonnegative constants; x, and y,
represent the number of prey and predator populations respectively
at time n. The terms appearing in the right-hand sides of the
equations, have a biological meaning as follows:
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Discrete predator-prey models

o (1 + p1)xn, — p2x?2 represents the logistic growth of the
population of prey in the absence of predator;
® p3x,yn and gox,Yy, represent species interaction: the population

of prey suffers and predators gain from the interaction;
e (1 — 1)y, represents the extinction of predators in the absence

of preys.
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Discrete predator-prey models

There are three particular types of outcome that are often observed
in the real world. In the first case, there is coexistence, in which
the two species live in harmony. In nature, this is the most likely
outcome. In the second case, one of the species becomes extinct,
and in the third case both species go to extinction.
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Discrete predator-prey models

Having some values at the initial time n = 0, say (xo, o), we can
consecutively compute by means of (2) an infinite sequence of
points in the (x,y)-plane

(Xluyl)u (X27.y2)7"'7(xn7.yn)7 (Xn+17 yn—i—l)u"' (3)
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Discrete predator-prey models

This sequence describes the evolution of the populations as time
increases and is called a trajectory of (xo, yo); (X0, ¥0) is called
initial point or initial condition. Obviously, the values of the
sequence members depend on the choice of (xp, yo) as well as on
the values of the constants p1, p2, p3, g1 and g2. The main
question is: given some initial point (xo, yo) what can we say about
the behavior of the trajectory (3) for sufficiently large n? Figure
1(a) presents three trajectories within
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Discrete predator-prey models

p1 = 0.05, pp = 0.0001, ps=0.001, g =0.03, go = 0.0002

(4)
for three different initial conditions (xo, yo) = (20, 5),
(%0, Yo) = (100, 10) and (xo, ¥0) = (50,40), denoted by solid boxes.
As you can see, when n increases, the three trajectories approach
one point in the plane and remain close to it.
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Discrete predator-prey models

Such a point is called a stable steady state or attractor. You can
find it by replacing in (2) Xp+1 = Xp = X, ¥nt1 = ¥n = y and then
solve the obtained nonlinear system for x and y. You will obtain
three different solutions (x,y) = (0,0), (x,y) = (500,0) and
(x,y) = (150, 35). The third point (150, 35) is the attractor,
shown in Figure Lotka Volterra - variant A. The other two steady
states are called unstable, because the trajectories of initial points,
even slightly different from these steady states, move away from
them as time n increases.
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Discrete predator-prey models

Now set po = 0 in the model (2); in this way you change the
growth rate law in the prey population. The system becomes

Xpr1 = Xp(1+4 p1— p3yn)
Yn+1 = Yn(l_q1+q2xn)7 n:0)172)"'

(5)
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Discrete predator-prey models

Figure Lotka Volterra - variant B presents one trajectory with the
same coefficient values for p1, p3, g1 and g2 from (4) and with
initial condition (xo, o) = (20,5), denoted by a solid box. Now we
see a totally different picture: the two populations oscillate,
building a stable cycle. How can the system (5) be interpreted in
terms of species behavior? If the ratio of predators to prey is
relatively high, then the population of predators drops. When the
ratio of predators to prey drops, then the population of prey
increases. If there is sufficient quantity of prey, the predator
number starts to increase. The resulting cyclic behavior is repeated
over and over.
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Discrete predator-prey models




Discrete predator-prey models
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Figure: Lotka Volterra - variant B
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