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ABSTRACT 
A quandle is a set with a binary operation satisfying some properties. A quandle 

homoraorphism is a map between quandles preserving the structure of their binary op­
erations. A knot determines a quandle called a knot quandle. We show that the number 
of all quandle homomorphisms of a knot quandle of a knot to an Alexander quandle 
is completely determined by Alexander polynomials of the knot. Further we show that 
the set of all quandle homomorphisms of a knot quandle to an Alexander quandle has a 
module structure. 
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1. Introduction 

A quandle, introduced in [6, 1], is defined to be a set X with a binary operation 
* : I x I - > I satisfying some properties. A typical example of a quandle is a 
group with the binary operation derived from the conjugation of elements in the 
group. In this sense the notion of a quandle is obtained from the notion of a group 
by forgetting the product structure, but not forgetting the structure of conjugation. 
Another typical example of a quandle is a knot quandle, introduced in [6]; it is a 
quandle derived from a knot. D. Joyce showed in [6] that the set of knot quandles 
is a complete invariant of knots, while it is known that a set of knot groups is not 
a complete invariant of knots. 

A quandle homomorphism is defined to be a map of a quandle to another quandle 
preserving the structure of their binary operations. It is known to be useful for 
classifying knots to count the number of all homomorphisms of a knot group to 
a fixed finite group. It might be useful that to count the number of all quandle 
homomorphisms of a knot quandle to a quandle. 
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In this paper we show that the number of all quandle homomorphisms of a knot 
quandle of a knot to an Alexander quandle is completely determined by the series 
of the Alexander polynomials of the knot (Theorem 1). Further we show that the 
set of all quandle homomorphisms of a knot quandle to an Alexander quandle has 
a module structure. 

For each quandle, there is a cohomology group of the quandle. Further there 
is an invariant of links called cocycle invariant associate to each 2-cocycle of the 
cohomology group (see [1, 2, 3]). The cocycle invariant is called trivial if the value 
is a positive integer. In particular, it is known that if the 2-cocycle used is a 
coboundary, then the invariant is trivial. Theorem 1 gives a way of computation of 
the trivial cocycle invariant of the knot derived from an Alexander quandle. 

2. Knot Quandles 

In this section, we review definitions of quandles, Alexander quandles and knot 
quandles. 

Definition 1 ([1, 6]). A quandle is defined to be a set X with a binary operation 
* : X x X —> X satisfying the following properties: 

(Ql) For each x € X, x * x = x, 
(Q2) For each pair of x, y € X, there is a unique element z £ X such that x = z*y. 
(Q3) For each triple of x, y, z € X, (x * y) * z = (x * z) * (y * z). 

The property (Q2) is equivalent to the following property: 

(Q2') For any x,y e X, there is a binary operation *" : X x X —• X such that 
(x * y) *" y = x = (x *" y) * y. 

We remark that *" is uniquely determined such that the element z described in (Q2) 
is equal to x * y. 

Let q be a natural number, Aq the Laurent polynomial ring in t with coefficients 
in the cyclic group %q of order q and J C Aq an ideal of Aq. The quotient ring Aq/ J 
with the binary operation such that x * y = tx -f (1 — t)y for each pair of x, y € Aq/J 
is called an Alexander quandle. We remark that x ? y is equal to t~lx + (1 — t~l)y. 

Definition 2. Let X and Y be quandles. A quandle homomorphism of X to Y 
is defined to be a map <p : X —> Y satisfying (p(x * y) = ip(x) * (p(y) for any x, y € X. 

Throughout this paper let K be an oriented knot in the 3-sphere S3 and DK a 
regular diagram of K. We put RDK to be the set {ai, a2, • • •, an} of all over arcs of 
DR. Here the number n is equal to the number of all over arcs of DK- We regard 
5 3 as being R3 together with an extra point at infinity. We may assume that DK 
lies in R x 1 x {0}. Let &i, 62, • • •, bn be arcs in I x 1 x (—e,0] such that each 6̂  
satisfies a condition illustrated in Fig. 1 at each crossing point. Then the union of 
DK and these arcs is isomorphic to K. Therefore we put K again to be this union 
in the following. 

Let N be the union of the closed unit disk D2 = {z G C | \z\ < 1} and the 
interval {z € R C C | 1 < z < 5}. An elemental map of K is defined to be a 
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x E x {0} 

Fig. 1. bi connects CLJ and â  

continuous map /x : (iV, 0) —> (E3 U {oo}, K) such that pTl(K) is equal to 0, /x(5) is 
equal to (0,0,1), /x|jr>2 is an embedding and the Gauss linking number of two curves 
K and fJi\dD2 is equal to 1 (See Fig. 2). Let Q(K) be the set of all homotopy classes 
of elemental maps of K. For each [/x], [v] E Q(K)1 We define an element [/x] * [v] 
of Q(K) as a homotopy class of an elemental map /x * v such that /x * v{z) = fi(z) 
for |s | < 1, ^(4z - 3) for 1 < z < 2, i/(13 - 4z) for 2 < 2 < 3, i /^*-3*™) for 
3 < z < 4 and i/(4^ -15) for 4 < 2; < 5 (See Fig. 3). It is known, see [6], that this is 
well defined and satisfies the defining properties (Ql), (Q2) and (Q3) of a quandle. 
Therefore Q(K) becomes a quandle with this binary operation *. This quandle is 
called the knot quandle of K. 

(0,0,1) 

Fig. 2. An elemental map /x 

Let [fii] be the homotopy class of an elemental map illustrated in Fig. 4 for each 
i. We remark that arbitrary element of Q(K) is generated by [/xi], [/X2], • •, [/xn]. 
Further there is an equation of generators [/Xfcm] *€m [/xj ] = [Mm] corresponding to 
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(0,0,1) (0,0,1) 

K K K K 

Fig. 3. The rule of the binary operation 

each crossing point r m (illustrated in Fig. 5). Here *e denotes a binary operation * if 
e = l , * i f e = —1. Therefore for an arbitrary quandle X, a quandle homomorphism 
ip : Q{K) —• X is determined by deciding ^([M»]) € X for each i satisfying <p([/im]) = 
^([ /%J) *€m v([/*Jm])- Therefore the map c : RDK -+ X with c(ai) = <p(\fAi]) 
determines a quandle homomorphism. This map is called a coloring on DK by X 
(see[l]). 

(0,0,1) 

Fig. 4. The generator of the knot quandle 

3. Quandle Homomorphisms to Alexander Quandles 

In this section, we investigate quandle homomorphisms of a knot quandle to 
Alexander quandles. 

Let K, DK and RDK be as in Section 2. Let a% be an element of the knot 
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[Wbm] * [ R J = W (em = 1) [/%»] * [ « m ] = [Mm] (Cm = - 1 ) 

Fig. 5. The equation of generators corresponding to a crossing point 

group of K represented by a loop going around the over arc a^ (See Fig. 6). The 
Wirtinger presentation derived from DK is the presentation of the knot group of 
the knot which given by (c*i, a2, • • •, an | #i, 62, * • •, 0n) (see [7]). Here the relation 
9m is made up corresponding to each crossing point of DK by the rule illustrated 
in Fig. 7. 

(0,0,1) 

Fig. 6. The generator of the knot group 

Let Fn = (ai , c*2, * • •, an) be a free group and ZFn its group ring. Let d/don : 
ZF n —> ZF n be the Fox free differential operator in the variable a* (see [5]) and 
a : ZFn —> Z ^ f * 1 ] the ring homomorphism defined by putting a(a±) = a(«2) = 
• • • = a(a n ) = t. The Alexander matrix ApK of the regular diagram DK is defined 
by A D K = (a O d/dai(6j))id<n. 

The i-i/i Alexander polynomial A^ (t) of if is defined to be the greatest common 
divisor polynomial of all (n — i — l)-th minor determinants of Ap K . They are 
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**„ aK 

- 1 ^ , - 1 Om = aimakmal7na, e™ = adakmaimam 

Fig. 7. The relation of the Wirtinger presentation 

invariants of knots (see [5, 7]). In particular, the 0-th Alexander polynomial is 
called the Alexander polynomial and simply denoted by A#(t) . 

It is known that A ^ (£) is divisible by A ^ + \t) for each i. 
Let Aq/J be an Alexander quandle and yi an element of Aq/ J associate to each 

over arcs a* of DK- For each crossing point of DK, if elements ykm, yim and ym 

satisfy the rule illustrated in Fig. 8 then (oi, a2, • • *, an) H-> (yi, y2, * * •, yn) induces 
a quandle homomorphism of Q(K) to kq/J (See [4]). 

Fig. 8. A map satisfying these rules is a coloring 

Let BDK = Em=i B™> ^ e a n ( n x ^)-m&trix where Bm is the (n x n)-matrix 
corresponding to each crossing point rm (illustrated in Fig. 8) such that (&m,ra) 
entry is t€m, (Zm, m) entry is 1 — t€rn and otherwise is 0. Here em means the sign of 
crossing point r m . 

Let yi be an element of kq/J and 7 : Q(K) —> A 9 / J a map which takes 
[/ii] to yi for each i. The map 7 is a quandle homomorphism if and only if 
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{yi,V2->''' 5 Vn)(BDK ~En) is equal to (0,0, • • •, 0). Here En denotes the n-dimensional 
identity matrix. 

Lemma 1. We have {BDK — En) = A&K. 
Proof. We write matrices ADK and BDK by (a^) and (6^), respectively. Let 

5ij be the Kronecker's delta, i.e. Sij = 1 if i = j , 0 otherwise. If the crossing point 
rm (illustrated in Fig. 8) is a positive crossing, then a%m — — 1 for i = m, t for 
i = kmi 1 — t for % = im , 0 otherwise, bim = 0 for i = m, t for % — kmi 1 — t for 
t = Zm, 0 otherwise. If the crossing point r m is a negative crossing, then a^m = — 1 
for i = m, t - 1 for i = fcm, 1 - 1 " 1 for i = im , 0 otherwise, bim = 0 for % = m, t _ 1 

for i = fcm, 1 — f"1 for i = im , 0 otherwise. Therefore, a^m is equal to 6im — Sim for 
all pairs of i, m D. 

The above lemma says that the set of all quandle homomorphisms of the knot 
quandle Q{K) to an Alexander quandle Aq/ J is determined by the Alexander matrix 
oiAD]K. 

In particular, if q = p is a prime number, then: 
Theorem 1. Let p be a prime number, J an ideal of the ring Kp and Q(K) a 

knot quandle. For each i > 0? we put 6i(t) = A ^ ( t ) / A ^ + 1 ) ( t ) . Then the number 
of all quandle homomorphisms of the knot quandle Q(K) to the Alexander quandle 
Kp/J is equal to the cardinality of the module Ap/J 0 ®^To2{Ap/(e*(^)' </)}• 

Proof. Let tj): (Ap/J)n —• (Ap/J)n be the map which takes a row vector x to 
XADK. 

On one side we show that the number of all quandle homomorphisms is equal 
to the cardinality of ker̂ /?. It is clear from the Lemma 1. 

On the other hand we show that the cardinality of the module of the theorem is 
equal to the cardinality of cokert/?. Since p is a prime number, Ap/J is a principal 
ideal domain. Therefore ADK can be expressed as 

*DK U 

/ 0 
0 

0 

0 
e0(t) 

0 
0 

\ 

en-s(t) 0 
0 en_2W J 

V 

with some unimodular matrices U and V. It takes that the cardinality of cokert/> is 
equal to the cardinality of the module of the theorem. 

Since (Ap/ J ) n /ker^ is isomorphic to Im^, the cardinality of ker̂ > is equal to 
the cardinality of (Ap/J)n/lmijj. Therefore the cardinality of ker^ is equal to the 
cardinality of coker^? D-

It is shown by definition of a quandle homomorphism that for any quandle X, if 
each element of Q(K) is mapped to a fixed element x € X then this map becomes 
a quandle homomorphism. This homomorphism is called a trivial coloring on K. It 
is clear that for any knot, the number of trivial colorings on the knot is equal to the 
cardinality of the quandle. Hence if Ap/{ei{t), J ) = 0 for all i > 0, then there is no 
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quandle homomorphism other than trivial colorings. Therefore, we have following 
corollaries: 

Corollary 1. For a knot quandle Q(K), if the Alexander polynomial A#(£) is 
equal to 1 then for any Alexander quandle Ap/J there is no quandle homomorphism 
other than trivial colorings. 

Corollary 2. For an Alexander quandle Ap/J and a knot quandle Q{K), there 
is no quandle homomorphism other than trivial colorings if and only if the ideal 
generated by A#(£) and J is equal to Ap. 

Let (f1 ip' be quandle homomorphisms of a knot quandle Q{K) to an Alexander 
quandle Aq/J and f(t) an element ofAq/J. Let [/i] be an element of Q(K). The sum 
of <p and if1 is defined to be the map which takes an element [/i] to tp([lA) + ^'(M)* 
Further the scalar product of cp by f(t) is defined to be the map which takes [/x] to 

/(*MM). 
Lemma 2. The sum and the scalar product are quandle homomorphisms. 
The sum and scalar product of quandle homomorphisms correspond to the sum 

and scalar product of the vector space kert/? of Theorem 1, respectively. Moreover 
we have the following proposition: 

Proposition 1. The set of all quandle homomorphisms of the knot quandle 
Q(K) to the Alexander quandle Ap/J is isomorphic to Ap/J0®^ro

2{Ap/(e^(t), J ) } . 
Proof. Let ipf : (Ap/J)n —> (Ap/J)n be the map which takes a row vector xf 

to X'UADKV. Then ken/? is isomorphic to ken/?'. The map u : ken/; —> ken// such 
that y »-• yU~l for all y € ker^?, gives such an isomorphism. 

Further since the matrix UADKV is a diagonal matrix, ker^' is isomorphic 
to ker(/(t) .-• 0) 0 0^To

2ker(/(t) ^ ei(t)f(t)) for all f(t) € AP/J and coker^ is 
isomorphic to Ap/(J,0) 0 0^To

2Ap/(J,ei(t)). Let gj(t) e AP/J be the generator 
of the ideal J . Then the map d : ker^' —» coker^ such that (yLi,yb, • • •,y'n-2) *"* 
foil, 2/O0J W e o ( t ) " \ • • •, yn-25r«/(*)en-2(t)"1) for all (yL1? y£, • • •, y'n_2) € ker^Z gives 
such an isomorphism of ker^' to coker^. 

Therefore the composite map d o u defines an isomorphism of the Proposition 1 

•. 
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