ESERCITAZIONE 3.2

	Ī																				
			(Co	ogno	ome)						(No:	me)			(Nu	ıme	ro d	i ma	atric	ola)

PUNTEGGIO: risposta mancante = 0; risposta esatta = +2; risposta sbagliata = -2 se la risposta non esiste, indicare N.E.

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$\arctan(\log x)$ è iniettiva		
$\arctan(\sqrt{ x })$ è iniettiva		
$\exists \min\{e^{x^4 - 3x^2 + 2} \mid x \in \mathbb{R}\}$		
$\exists \min\{e^{-x^2} \mid x \in \mathbb{R}\}$		
$\log(3x+3) = \log(4x+5) \Rightarrow x = -2$		
$\log(3x+3) = \log(4x+2) \Rightarrow x = 1$		
$\lim_{x \to +\infty} \arctan(2x) = \pi$		
$x \cdot \sin x $ è derivabile in \mathbb{R}		
$x \cdot \sin x $ è derivabile in 0		
$e^x = x$ ha soluzioni reali		

• Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{\arctan(2x)}{3x} = \dots \qquad \qquad \lim_{x \to 1^+} \frac{\log x}{x} = \dots \qquad \qquad \lim_{x \to +\infty} \frac{\arctan(x^3)}{x} = \dots$$

- Determinare $\sup_{e^x-1} \{ \frac{x}{e^x-1} | x > 0 \} = \dots$
- Determinare $\sup\{x \mid \arctan(x) < 1\} = \dots$
- Determinare $\inf\{e^{\frac{1}{x-1}}| \quad 0 < x < 1\} = \dots$

•
$$f(x) = \arctan(-\sin(2x))$$
 \implies $f'(0) =$

•
$$f(x) = \log(\frac{3x^2 - x}{x + 2})$$
 \Longrightarrow $f'(1) =$