ESERCITAZIONE 3.1

																								Ī												
(Cognome)								-	(Nome)										_	(Numero di matricola)																

PUNTEGGIO: risposta mancante = 0; risposta esatta = +2; risposta sbagliata = -2 se la risposta non esiste, indicare N.E.

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$\sin(\log x)$ è iniettiva		
$\log(\sqrt{x})$ è iniettiva		
$\exists \min\{x^4 - 3x^2 + 2 \mid x \in \mathbb{R}\}$		
$\exists \min\{e^x - e^{-x} \mid x \in \mathbb{R}\}$		
$\arctan(3x+3) = \arctan(4x+2) \Rightarrow x = 1$		
$\tan(3x+3) = \tan(4x+2) \Rightarrow x = 1$		
$\lim_{x \to +\infty} x \cdot \arctan x = 1$		
$ x\cdot x-1 $ è derivabile in $\mathbb R$		
$ x\cdot x-1 $ è derivabile in 0		
$e^x = x^2$ ha soluzioni reali		

• Determinare
$$\sup\{\frac{\sin x}{x} | x > 0\} = \dots$$

• Determinare
$$\sup\{|x^2 - 4x + 3| \mid -1 < x < 4\} = \dots$$

• Determinare
$$\inf\{e^{\frac{1}{\sin x}}| \quad \pi < x < 2\pi\} = \dots$$

• Determinare
$$\sup \{e^{\frac{1}{\sin x}} | \pi < x < 2\pi\} = \dots$$

• Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{\arctan(2x)}{x} = \dots \qquad \qquad \lim_{x \to \frac{\pi}{2}^+} \frac{\sin x}{x} = \dots \qquad \qquad \lim_{x \to +\infty} \frac{\arctan(2x)}{x} = \dots$$