ESERCITAZIONE 2.2

												Ī												
			(C	ogn	ome))				_			(No	me)	i			(N	um	ero	di 1	mat	rico	la)

$$\label{eq:punteggio} \begin{split} & \text{PUNTEGGIO: risposta mancante} = 0 \ ; \quad \text{risposta esatta} = +2 \ ; \quad \text{risposta sbagliata} = -2 \\ & \text{se la risposta non esiste, indicare N.E.} \end{split}$$

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
La successione $\{\log n + 4\}$ è monotona		
La successione $\{n^2 - 4n + 4\}$ è monotona		
Se $\{a_n\}$ è limitata allora esiste $\lim_{n\to\infty} a_n$		
Se esiste $\lim_{n\to\infty} a_n = l$ allora $\lim_{k\to\infty} a_{2k} = l$		
e esiste $\lim_{n\to\infty} a_n = 25$ allora $\lim_{k\to\infty} \cos(a_n)$		
Esiste \overline{n} tale che $\forall n \geq \overline{n} e^n + 20 \cdot n \geq 2000^{2000}$		
$\lim_{n \to \infty} \frac{(-1)^n \cdot n^3}{3^n} = 0$		
$\lim_{n \to \infty} \sqrt[n]{n^7 + n^5 + n^3} = 1$		

• Determinare
$$\sup\{y = -n^2 + 6n - 5 : n \in \mathbb{N}\}\$$

• Calcolare i seguenti limiti

$$\lim_{n \to \infty} \frac{\log(n^3 + n + 1)}{\log n} = \dots$$

$$\lim_{n \to \infty} \log\left(\frac{n^3 + n + 1}{n}\right) = \dots$$

$$\lim_{n \to \infty} \log n \cdot \sin\left(n\frac{\pi}{6}\right) = \dots$$

$$\lim_{n \to \infty} \log\left(1 + \frac{2}{n^2}\right) \cdot n^2$$

$$\lim_{n \to \infty} \frac{\log(1 + \frac{2}{n^2})}{1 - \cos\frac{1}{n^2}}$$

$$\lim_{n \to \infty} \frac{(n^3 + n + 1)}{e^n + 1} = \dots$$

$$\lim_{n \to \infty} \frac{\log\left(\frac{n!}{e^n + 1}\right)}{1 - \cos\frac{1}{n^2}}$$