Corso di Analisi Matematica Ingegneria Informatica

TEST finale

(Cognome)										(Nome)									(Numero di matricola)											

PUNTEGGIO : risposta mancante = 0; risposta esatta = +2; risposta sbagliata = -2

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$\int_1^{+\infty} \arctan(\frac{1}{x}) \cdot \frac{1999}{x+9} dx$ converge		
$\int_{1}^{2} \frac{2}{(x-1)^{2}} dx \text{ converge}$		
$z = 2 + i2 \Rightarrow z^2 = 4 + i4$		
$ z = 2 \Rightarrow z^{-1} = \frac{1}{2}$		
$z^3 = i \implies z = 1$		
$e^z = 1 \implies z = 0$		
$e^{-i\frac{\pi}{2}} = -i$		
una base di \mathbb{R}^3 è costituita da 3 vettori lin. ind.		
A matrice $2 \times 3 \Rightarrow rk(A) \le 2$		

 $\int_{\pi/4}^{\pi/2} \cos(2x) dx = \dots$

• Calcolare i seguenti integrali definiti

$$\int_0^{20} x - [x] dx = \dots$$

• Calcolare i seguenti integrali indefiniti :

$$\int x^2 \log x \ dx =$$

$$\int \frac{3x}{1+x^2} \ dx =$$

• I vettori
$$\begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$ sono linearmente INDIPENDENTI Vero Falso

$$\bullet \ rk \left(\begin{array}{ccc} 5 & 6 & 7 & 0 \\ 3 & 0 & 2 & 0 \\ 2 & 1 & 2 & 1 \end{array} \right) = \dots$$

•[Punteggio: 0-3] Scrivere le soluzioni dell'equazione $z^3 = 8i$