Corso di Analisi Matematica Ingegneria Informatica

ESERCITAZIONE -1: numeri reali

															ĺ																			
(Cognome)							 (Nome)									_	(Numero di matricola)																	

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$7 \ge 4$		
$19876 \ge 19876$		
$-1999 \le -2000$		
Se $x \ge 0$ allora $x^2 \ge 0$		
Se $x^2 \ge 0$ allora $x \ge 0$		
Se $x \le 4$ allora $x^2 \le 16$		
L'equazione $3x - 5 = 14$ ammette soluzioni in $\mathbb Z$		
L'equazione $725x - 1261 = 9014$ ammette soluzioni in $\mathbb Q$		
L'equazione $3x^2 - 666 = 0$ ammette soluzioni in \mathbb{R}		
L'equazione $x^2 + 1999 = 0$ ammette soluzioni in \mathbb{R}		
$\sqrt{4} = -2$		
$(\sqrt{8})^4 = (2^2)^3$		
$\cos\frac{\pi}{3} = \frac{1}{2}$		
$\sin(-\frac{\pi}{3}) = \frac{1}{2}$		
$\cos(\frac{\pi}{2} - \frac{\pi}{3}) = -\sin(-\frac{\pi}{3})$		

• Siano a,b due numeri reali positivi. Inserire il segno giusto (\leq , \geq , =) nelle seguenti espressioni $\frac{1}{a+b}$ \square $\frac{1}{a}+\frac{1}{b}$ $\sqrt{a+b}$ \square $\sqrt{a}+\sqrt{b}$ $\frac{a^4+b^4}{a^2-b^2}$ \square a^2 +

$$\frac{1}{a+b}$$
 \square $\frac{1}{a} + \frac{1}{b}$

$$\sqrt{a+b} \ \Box \ \sqrt{a} + \sqrt{b}$$

$$\frac{a^4+b^4}{a^2-b^2} \square a^2 + b^2$$

• Ordinare in ordine crescente i seguenti numeri

$$2^{\frac{1}{3}}$$

$$2^{\frac{1}{3}}$$
 $(\frac{1}{3})^{-\frac{1}{2}}$ $(\frac{3}{4})^3$ $(\frac{3}{5})^4$ $(0,3)^5$

$$(\frac{3}{4})^3$$

$$(\frac{3}{5})^4$$

$$(0,3)^5$$