Corso di Analisi Matematica

Ingegneria Informatica Prova scritta del 20 dicembre 1999

TEST \mathbf{B}

		(C	ogno	ome)							(N	ome)			(N	um	ero	uı	mat	rico	la)

 $PUNTEGGIO: risposta \ mancante = 0 \ ; \quad risposta \ esatta = +2 \ ; \quad risposta \ sbagliata = -2$

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$\int_{2}^{+\infty} \frac{\pi}{x+7} \cdot \arctan(\frac{1}{x}) \ dx \ \text{diverge}$		
$\int_1^2 \frac{3}{\sqrt{(x-1)^3}} dx \text{ converge}$		
f definita e continua in \mathbb{R} , dispari $\Rightarrow \int_{-9}^{0} f(x) dx = -\int_{0}^{9} f(x) dx$		
$ z = 9 \Rightarrow z^{-1} = \frac{1}{9}$		
$z^3 = i8 \implies z = 2$		
$z = 2 + i3 \implies z^2 = 1 - i9$		
Esiste almeno una soluzione in $\mathbb C$ dell'equazione $e^z=-e$		
$e^{i\frac{3\pi}{2}} = i$		
2 vettori in \mathbb{R}^{2} sono linearmente indipendenti		
A matrice $3 \times 3 \Rightarrow rk(A) \leq 3$		

• Calcolare i seguenti integrali definiti

$$\int_0^9 \left[\frac{x}{3}\right] dx = \dots \qquad \qquad \int_{\pi/3}^{\pi/2} \cos(3x) dx = \dots$$

• Calcolare i seguenti integrali indefiniti :

$$\int 3x^3 \cdot \log x \ dx =$$

$$\int \frac{\cos x}{\sin x + 7} \ dx =$$

• I vettori
$$\begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ -1 \\ -11 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$ sono linearmente INDIPENDENTI Vero Falso

•
$$rk \begin{pmatrix} 1 & 5 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 2 & 0 & 2 & 0 \end{pmatrix} = \dots$$