ingegneria Gestionale

2-10-2001 : TEST

tempo a	${f disposizione}:$	3 0	minuti

					Ì									1					ĺ							Ī						
(Cognome)								(Nome)								-	(N	ume	ro d	i ma	trico	la)										

Esercizio 1. PUNTEGGIO: risposta mancante o completamente errata = -4; risposta esatta = +4;

• Sia $\lambda \in \mathbb{R}$ un autovalore relativo all'applicazione lineare $f: V \to V$. ALLORA: la molteplicità geometrica di λ è:

Esercizio 2. PUNTEGGIO: risposta mancante = 0; risposta esatta = +1; risposta sbagliata = -1

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$(1 - \sqrt{3}i)^4 = -8i$		
$ z^2 = z \cdot \overline{z}$		
$f: \mathbb{R}^3 \to \mathbb{R}^3$ t.c. $\dim(Ker(f)) = 1 \Rightarrow f$ è iniettiva		
$A \text{ matrice } 2 \times 2 \text{ , } A^2 = Id \Rightarrow \det(A) = 1$		
$A, B \text{ matrici } 3 \times 3 \Rightarrow rk(A+B) = \max\{rk(A), rk(B)\}$		

Esercizio 3. PUNTEGGIO: risposta mancante = 0; risposta esatta = +2; risposta sbagliata = -1

$$\bullet \ e^{\frac{1}{2} + 3\pi i} = \boxed{}$$

•
$$z = 2 + i4$$
, $w = 3 - i2$ \Rightarrow $Im(z \cdot w) =$

$$\bullet \ A = \left(\begin{array}{cc} 0 & 0 & -1 \\ 1 & 1 & 0 \end{array} \right) \Rightarrow A \cdot ({}^{t}A) = \left(\begin{array}{cc} \end{array} \right)$$

• dim
$$\langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rangle =$$

 \bullet Il seguente prodotto scalare $\langle\ ,\ \rangle:\mathbb{R}^3\times\mathbb{R}^3\longrightarrow\mathbb{R}$

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right\rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + 3x_3y_3$$

definito		indefinito e non degenere		degenere	
----------	--	---------------------------	--	----------	--