Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010

ESERCITAZIONE 4.2

(Cognome)							(Nome)									(Numero di matricola)														

• Si consideri un prodotto scalare $\langle \ , \ \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$

Proposizione	Vera	Falsa
$\langle v, w \rangle = \langle w, v \rangle \ \forall v, w$	•	
$\langle v, w \rangle \ge 0 \ \forall v, w$		•
$\langle v, v \rangle \ge 0 \ \forall v$	•	
$\langle 2v, w \rangle = 2\langle v, w \rangle$	•	
$\langle 2v, w \rangle = 4\langle v, w \rangle$		•
$\langle 2v_1 + 3v_2, w \rangle = 2\langle v_1, w \rangle + 3\langle v_2, w \rangle$	•	
Se $\langle v, v \rangle = 4$ allora $\langle 2v, 2v \rangle = 8$		•
Se $\langle v, v \rangle = 4$ allora $\langle 2v, 2v \rangle = 16$	•	

- Dato il prodotto scalare $\langle \ , \ \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ definito da $\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle = 3x_1y_1 2x_1y_2 2x_2y_1 + 3x_2y_2$
 - (i) determinare la matrice associata al prodotto scalare rispetto alla base canonica.

$$A = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$

(ii) Dimostrare che il prodotto scalare è definito positivo.

 $M_1 = a_{11} = 1 > 0$; $\det(M_2) = \det(A) = 7 > 0$. Per il criterio dei minori principali il prodotto scalare è definito positivo.

- Dato il prodotto scalare $\langle \ , \ \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ definito da $\langle \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \rangle = 2x_1y_2 + 2x_2y_1 + x_2y_2$
 - (i) determinare la matrice associata al prodotto scalare rispetto alla base canonica.

$$A = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}$$

(ii) Determinare un vettore v tale che $\langle v, v \rangle = 0$

Il coefficiente $a_{11} = 0$ corrisponde al prodotto scalare $\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle$. Pertanto il vettore cercato è $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

- Dato il prodotto scalare $\langle \ , \ \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ definito da $\langle \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \rangle = x_1y_1 2x_2y_2$
 - (i) determinare la matrice associata al prodotto scalare rispetto alla base canonica.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

(ii) Determinare un vettore v tale che $\langle v, v \rangle = 0$.

Il prodotto scalare $\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle = 1$. Il prodotto scalare $\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle = -2$. Cerchiamo quindi il vettore

v come combinazione lineare dei due vettori della base canonica, $v = \lambda_1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Poichè $\langle v,v\rangle=0$ se e solo se anche $\langle \lambda v,\lambda v\rangle=0$, (dividendo i coeff. per λ_1) possiamo porre $\lambda_1=1,\lambda_2=t$.

Sia quindi
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ t \end{pmatrix}$$
. Allora $\langle v, v \rangle = \langle \begin{pmatrix} 1 \\ t \end{pmatrix}, \begin{pmatrix} 1 \\ t \end{pmatrix} \rangle = 1 + t^2(-2)$.

Quindi $\langle v, v \rangle = 0 \Leftrightarrow 1 + t^2(-2) = 0 \Leftrightarrow t = \pm \sqrt{2}/2$

RISPOSTA:
$$v = \begin{pmatrix} 1 \\ \sqrt{2}/2 \end{pmatrix}$$
.

(iiia). Determinare un vettore w tale che $\langle v, v \rangle = 5$;

$$\left\langle \left(\begin{array}{c} 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 \\ 0 \end{array}\right) \right\rangle = 1 > 0. \text{ Quindi cerchiamo un multiplo di } \left(\begin{array}{c} 1 \\ 0 \end{array}\right). \text{ Sia } w = s \cdot \left(\begin{array}{c} 1 \\ 0 \end{array}\right) = \left(\begin{array}{c} s \\ 0 \end{array}\right).$$

Allora
$$\langle w, w \rangle = \langle \begin{pmatrix} s \\ 0 \end{pmatrix}, \begin{pmatrix} s \\ 0 \end{pmatrix} \rangle = s^2.$$

Quindi $\langle w, w \rangle = 5 \Leftrightarrow s^2 = 5 \Leftrightarrow s = \pm \sqrt{5}$

RISPOSTA:
$$w = \begin{pmatrix} \sqrt{5} \\ 0 \end{pmatrix}$$
.

(iiib). Determinare un vettore z tale che $\langle z, z \rangle = -3$.

$$\left\langle \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \right\rangle = -2 < 0. \text{ Quindi cerchiamo un multiplo di } \left(\begin{array}{c} 0 \\ 1 \end{array}\right). \text{ Sia } z = r \cdot \left(\begin{array}{c} 0 \\ 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ r \end{array}\right).$$

Allora
$$\langle z, z \rangle = \langle \begin{pmatrix} 0 \\ r \end{pmatrix}, \begin{pmatrix} 0 \\ r \end{pmatrix} \rangle = -2 \cdot r^2.$$

Quindi
$$\langle z,z\rangle=-3 \Leftrightarrow r^2=\frac{3}{2} \Leftrightarrow s=\pm\sqrt{\frac{3}{2}}$$

RISPOSTA:
$$z = \begin{pmatrix} 0 \\ \sqrt{\frac{3}{2}} \end{pmatrix}$$
.

• Dato il prodotto scalare
$$\langle \ , \ \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 definito da $\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_2y_2$

(i) determinare la matrice associata al prodotto scalare rispetto alla base canonica.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

(ii) Determinare un vettore v tale che $\langle v, v \rangle = 0$.

Il prodotto scalare è indefinito perchè det(A) < 0 (n.b. $A \ge 2 \times 2$.)

Pertanto un vettore v non nullo tale che $\langle v, v \rangle = 0$ deve esistere.

Come nell'esercizio precedente poniamo $v=\begin{pmatrix}1\\t\end{pmatrix}$, e cerchiamo per quali valori del parametro t il prodotto scalare $\langle v,v\rangle=0$.

 $\langle v, v \rangle = \langle \begin{pmatrix} 1 \\ t \end{pmatrix}, \begin{pmatrix} 1 \\ t \end{pmatrix} \rangle = 1 + 4t + t^2$. Quindi $\langle v, v \rangle = 0 \Leftrightarrow 1 + 4t + t^2 = 0 \Leftrightarrow t = -2 \pm \sqrt{3}$

RISPOSTA:
$$v = \begin{pmatrix} 1 \\ -2 + \sqrt{3} \end{pmatrix}$$
 oppure $v = \begin{pmatrix} 1 \\ -2 - \sqrt{3} \end{pmatrix}$

• Per ciascuna delle seguenti matrici A_i si consideri il prodotto scalare $\langle \ , \ \rangle_i : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ definito da

$$\left\langle \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right), \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array}\right) \right\rangle_i = \left(y_1 \ y_2 \ y_3\right) \cdot A_i \cdot \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

Determinare in quali casi il prodotto scalare è nondegenere, definito positivo, definito negativo, indefinito.

$$A_{1} = \begin{pmatrix} 3 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & -2 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} 3 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
non degenere
$$A_{1} = \begin{pmatrix} 3 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
non degenere
$$A_{2} = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & -2 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} 3 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
definito positivo
indefinito
indefinito

Esercizio 1. Data la forma $f_t : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definita da

$$f_{t}\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}, \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix}) = (y_{1} \ y_{2} \ y_{3}) \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ t & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

Determinare per quali valori del parametro t f_t è un prodotto scalare.

La forma f_t è un prodotto scalare se e soltanto se la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ t & 0 & 4 \end{pmatrix}$ è simmetrica, ovvero se e solo se t = 1.

Esercizio 2.

Data la forma $f_{t,s}: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definita da

$$\mathbf{f}_{t,s}(\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right), \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array}\right)) = (y_1 \ y_2 \ y_3) \cdot \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ t & 0 & s \end{array}\right) \cdot \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

(i) Determinare per quali valori dei parametri t, s $\mathbf{f}_{t,s}$ è un prodotto scalare.

La forma $f_{t,s}$ è un prodotto scalare se e soltanto se la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ \vdots & \ddots & \ddots \end{pmatrix}$ è simmetrica,

ovvero se e solo se t = 1, s qualsiasi.

(ii) Determinare per quali valori dei parametri t, s $f_{t,s}$ è un prodotto scalare definito positivo.

Applichiamo il criterio dei minori principali alla matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & s \end{pmatrix}$.

$$M_1 = a_{11} = 1 > 0. \det(M_2) = \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 > 0. \det(M_3) = \det(A) = s - 1. \text{ Quindi}$$

$$\begin{cases} M_1 > 0 \\ \det(M_2) > 0 \iff s - 1 > 0 \Leftrightarrow s > 1. \end{cases}$$
RISPOSTA: $t = 1, s > 1.$

$$\begin{cases} M_1 > 0 \\ \det(M_2) > 0 \iff s - 1 > 0 \Leftrightarrow s > 1. \quad \text{RISPOSTA} : t = 1, s > 1. \\ \det(A) > 0 \end{cases}$$

Esercizio 3. Al variare di $\alpha \in \mathbb{R}$ sia $f_{\alpha} : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ la forma

$$f_{\alpha}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = x_1y_1 + \alpha \cdot x_1y_2 + \alpha^2 \cdot x_2y_1 + x_2y_2$$

(i) Determinare i valori di $\alpha \in \mathbb{R}$ per cui f_{α} è un prodotto scalare

La forma f_{α} è un prodotto scalare se e soltanto se la matrice $A = \begin{pmatrix} 1 & \alpha \\ \alpha^2 & 1 \end{pmatrix}$ è simmetrica, ovvero se e solo se $\alpha = \alpha^2$, cioè $\alpha = 0$ oppure $\alpha = 1$.

(ii) Determinare i valori di $\alpha \in \mathbb{R}$ per cui f_{α} è un prodotto scalare non degenere. Per il punto (i) dobbiamo considerare i casi $\alpha = 0$ e $\alpha = 1$.

Per $\alpha = 0$ la matrice associata al prodotto scalare è $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Si ha $a_{11} > 0$, det(A) > 0, quindi in questo caso il prodotto scalare è definito positivo.

Per $\alpha = 1$ la matrice associata al prodotto scalare è $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Si ha det(A) = 0, quindi in questo caso il prodotto scalare è degenere e quindi non può essere definito.

Esercizio 4. Al variare del parametro reale t si consideri il prodotto scalare $\langle \ , \ \rangle_t : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ la cui matrice rispetto alla base canonica è la seguente:

$$A_t = \left(\begin{array}{ccc} 8 & t & 2 \\ t & 1 & 0 \\ 2 & 0 & 2 \end{array}\right)$$

(i) Determinare i valori di t per cui il prodotto scalare è non degenere. Il prodotto scalare è non degenere se soltanto se $det(A_t) \neq 0$.

$$\det \begin{pmatrix} 8 & t & 2 \\ t & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix} = -2t^2 + 12t \neq 0 \Longleftrightarrow t \neq \pm \sqrt{6}.$$

(ii) Determinare i valori di t per cui il prodotto scalare è definito positivo. Applichiamo il criterio dei minori principali alla matrice A_t .

$$M_1 = a_{11} = 8 > 0. \det(M_2) = \det\begin{pmatrix} 8 & t \\ t & 1 \end{pmatrix} = 8 - t^2. \det(M_3) = \det(A) = -2t^2 + 12t.$$

Quindi dobbiamo imporre le tre condizioni

$$\begin{cases}
M_1 = 8 > 0 \\
\det(M_2) = 8 - t^2 > 0 \\
\det(A) = -2t^2 + 12t > 0
\end{cases}$$

La soluzione del sistema di disequazioni è : $-\sqrt{6} < t < +\sqrt{6}$.

Esercizio 5. Al variare del parametro reale t si consideri il prodotto scalare $\langle \ , \ \rangle_t : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ la cui matrice rispetto alla base canonica è la seguente:

$$A_t = \begin{pmatrix} 1 + 2t & t & -2 \\ t & -1 & 0 \\ -2 & 0 & 2 \end{pmatrix}$$

(i) Determinare i valori di t per cui il prodotto scalare è non degenere. Il prodotto scalare è non degenere se soltanto se $\det(A_t) \neq 0$.

$$\det \begin{pmatrix} 1+2t & t & -2 \\ t & -1 & 0 \\ -2 & 0 & 2 \end{pmatrix} = -2t^2 - 4t + 2 \neq 0 \iff t \neq -1 \pm \sqrt{2}.$$

(ii) Dimostrare che per ogni t esiste almeno un vettore isotropo (non nullo). Un vettore v non nullo si dice isotropo per il prodotto scalare \langle , \rangle se $\langle v, v \rangle = 0$.

Guardando i coefficienti sulla diagonale della matrice A osserviamo che prodotto scalare $\left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle = -1,$

mentre il prodotto scalare $\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle = +2$. Cerchiamo quindi il vettore v come combinazione lineare dei due

vettori,
$$v = \lambda_1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
.

Poichè $\langle v,v\rangle=0$ se e solo se anche $\langle \lambda v,\lambda v\rangle=0$, (dividendo i coeff. per λ_1) possiamo porre $\lambda_1=1,\lambda_2=t$.

Poiché
$$\langle v, v \rangle = 0$$
 se e solo se anche $\langle \lambda v, \lambda v \rangle = 0$, (dividendo i coeff. per λ_1) possiamo porre λ_2
Sia quindi $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix}$. Allora $\langle v, v \rangle = \langle \begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix} \rangle = -1 + 2t^2$.

RISPOSTA:
$$v = \begin{pmatrix} 0 \\ 1 \\ \sqrt{2}/2 \end{pmatrix}$$
.

Esercizio 6. Sia $V = \mathbb{R}[x]_{\leq 2}$ lo spazio vettoriale dei polinomi a coefficienti in \mathbb{R} di grado ≤ 2 e sia $\langle , \rangle : V \times V \longrightarrow \mathbb{R}$ l'applicazione definita da

$$\langle p_1(x), p_2(x) \rangle = \int_0^1 p_1(x) \cdot p_2(x) \ dx$$

(i) Dimostrare che $\langle \ , \ \rangle$ è un prodotto scalare.

La forma $\langle \ , \ \rangle : V \times V \longrightarrow \mathbb{R}$ soddisfa le proprietà:

(1) SIMMETRIA:

$$\langle p_1(x), p_2(x) \rangle = \int_0^1 p_1(x) \cdot p_2(x) \ dx = \int_0^1 p_2(x) \cdot p_1(x) \ dx = \langle p_2(x), p_1(x) \rangle$$

(2)BILINEARITÀ:

$$\begin{array}{ll} \langle \lambda_{1}p_{1}(x) + \mu_{1}q_{1}(x), p_{2}(x) \rangle &= \int_{0}^{1} \lambda_{1}(p_{1}(x) + \mu_{1}q_{1}(x)) \cdot p_{2}(x) \ dx = \\ &= \lambda_{1} \int_{0}^{1} p_{1}(x) \cdot p_{2}(x) \ dx + \mu_{1} \int_{0}^{1} q_{1}(x) \cdot p_{2}(x) \ dx = \lambda_{1} \langle p_{1}(x), p_{1}(x) \rangle + \mu_{1} \langle q_{1}(x), p_{1}(x) \rangle \\ \text{(ii) Rispetto alla base } \{1, x, x^{2}\} \ \text{determinare la matrice associata a < , >.} \end{array}$$

Il coefficiente di posto (1,1) è dato dal prodotto scalare $(1,1) = \int_0^1 1 \cdot 1 dx = 1$.

Il coefficiente di posto (1,2) è dato dal prodotto scalare $\langle 1, x \rangle = \int_0^1 1 \cdot x dx = \frac{1}{2}$.

Il coefficiente di posto (2,2) è dato dal prodotto scalare $\langle x,x\rangle=\int_0^1 x\cdot xdx=\frac{1}{3}$. etc...

Quindi la matrice associata è :
$$A = \begin{pmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{pmatrix}$$

(iii) Dimostare che $\langle \ , \ \rangle$ è un prodotto scalare definito positivo.

Si può applicare il criterio die minori principali alla matrice A

Oppure osservare che per qualsiasi polinomio p(x) non identicamente nullo

$$\langle p(x), p(x) \rangle = \int_0^1 [p(x)]^2 dx > 0$$

poichè $[p(x)]^2$ eè una funzione continua, sempre positiva, che assume almeno un valore diverso da 0.