Corso di laurea in Ingegneria Gestionale/ Chimica Esame di ALGEBRA LINEARE - anno accademico 2013/2014

Prova scritta del 13/01/2014 TEMPO A DISPOSIZIONE: 120 minuti

	(Cognome)	(Nome)	(Numero di matricola)
PRIMA PARTE			
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	risposta esatta $= +1$	risposta sbagliata = -1

- Sia $z = \sqrt{3} \sqrt{3}i$.
 - (i) Scrivere z nella rappresentazione trigonometrica $z=\varrho\cdot e^{i\vartheta}$: z=

(ii)
$$z^4 =$$

 \bullet DatiWe Zi seguenti sottospazi di \mathbb{R}^3 :

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 + x_2 - x_3 = 0 \right\}; \qquad Z = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\rangle.$$
 Allora:

- $\dim(W) = \boxed{ \qquad \qquad \dim(W \cap Z) = }$
- $A = \begin{pmatrix} 1 & 1 & 1 & 5 & 5 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix} \implies \dim(Ker(l_A)) = \boxed{\qquad} \operatorname{rg}(A) = \boxed{\qquad}$
- $\bullet \det \begin{pmatrix} 0 & 1 & 0 & 2 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & 0 & 0 \end{pmatrix} = \boxed{ }$
- Data $A = \begin{pmatrix} 2 & 3 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ si consideri l'autovalore $\lambda_0 = 2$. Allora: $m.g.(2) = \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$
- $\bullet A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \Longrightarrow A \cdot B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 1 \end{pmatrix}$

SECONDA PARTE

I risultati devono essere giustificati attraverso calcoli e spiegazioni

Esercizio 1. [punteggio: 0-6] Si determinino le soluzioni complesse del seguente sistema:

$$\begin{cases} (z-2i)^4 = -4\\ |e^{iz}| = \frac{1}{e} \end{cases}$$

Esercizio 2. [punteggio: 0-6]

Al variare del parametro reale t sia $\mathcal{L}_{A_t}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare associata alla matrice

$$A_t = \left(\begin{array}{ccc} 4 & 4 & 4 \\ t & 1 & 1 \\ 1 & t & 1 \end{array} \right)$$

- i) Determinare, al variare di $t \in \mathbb{R}$, $\dim(Ker(\mathcal{L}_{A_t}))$ e $\dim(Im(\mathcal{L}_{A_t}))$.
- ii) Determinare i valori di $t \in \mathbb{R}$ per cui esiste almeno una soluzione del sistema

$$A_t \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

(iii) Dato il sottospazio vettoriale di $\mathbb{R}^3,\,W=\langle\begin{pmatrix}1\\1\\1\end{pmatrix}\rangle$

determinare, se esistono, i valori di t per cui $\mathbb{R}^3 = W \bigoplus Ker(\mathcal{L}_{A_t})$.

Esercizio 3. [punteggio: 0-4] Determinare un'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che

$$Im(f) = \langle \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} \rangle \; ; \quad Ker(f) = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} , \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \rangle$$

Si determini una matrice $A \in \mathbb{R}^{3\times 3}$ tale che $f = \mathcal{L}_A$.

Esercizio 4. [punteggio: 0-6] Si consideri la matrice A

$$A = \begin{pmatrix} 3 & 2 & 0 & 3 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

- (i) Si determinino gli autovalori di A specificandone la molteplicità algebrica e geometrica.
- (ii) Si determinino gli autovettori di A.
- (iii) Dire se A è diagonalizzabile