prova scritta del 28/1/2008

TEMPO A DISPOSIZIONE: 75 minuti per ciascuna parte

PRIMA PARTE (75 minuti)

I risultati devono essere giustificati attraverso calcoli e spiegazioni

Esercizio 1. [punteggio: 0-4]

Dato il numero complesso z = 2 - 2i

- (i) determinare la parte reale e la parte immaginaria di z^4
- (ii) determinare la parte reale e la parte immaginaria di z^{-1}

Esercizio 2. [punteggio: 0-6]

Si determinino le soluzioni complesse del seguente sistema:

$$\begin{cases} e^z = \frac{i}{2-2i} \\ |e^{iz}| > 1 \end{cases}$$

Esercizio 3. [punteggio: 0-5]

Siano
$$W$$
 il sottospazio di \mathbb{R}^3 generato dai vettori $w_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} w_2 = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, w_3 = \begin{pmatrix} 5 \\ 4 \\ 4 \end{pmatrix}$

$$Z$$
il sottospazio di \mathbb{R}^3 di equazione $Z=\{\left(\begin{array}{c}x_1\\x_2\\x_3\end{array}\right)\in\mathbb{R}^3\ :\ 4x_1+x_2-x_3=0\}$

- (i) Determinare una base di W e una di Z
- (ii) Determinare una base di $W \cap Z$.

prova scritta del 28/1/2008

TEMPO A DISPOSIZIONE: 75 minuti per ciascuna parte

SECONDA PARTE (75 minuti)

I risultati devono essere giustificati attraverso calcoli e spiegazioni

• Esercizio 4. [punteggio: 0-6]

Al variare del parametro reale t sia $f_t: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$f_t \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 & +(t-1)x_2 & +x_3 \\ tx_1 & +x_2 & -tx_3 \\ x_1 & +tx_2 & +2x_3 \end{pmatrix}$$

- (i) Al variare del parametro reale t si determini la dimensione di $Ker(f_t)$ e la dimensione di $Im(f_t)$.
- (ii) Determinare per quali valori di t esiste almeno una soluzione del sistema $f_t \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$
- (iii) Dato il sottospazio di \mathbb{R}^3 $Z = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 + x_2 x_3 = 0 \right\}$ determinare per quali valori di t si ha $\mathbb{R}^3 = Z \bigoplus Ker(f_t)$

• Esercizio 5. [punteggio: 0-5]

Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione lineare espressa rispetto alla base canonica dalla matrice

$$\begin{pmatrix}
-1 & 0 & 2 & 0 \\
0 & 0 & 2 & 2 \\
2 & 0 & -1 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

- (i) Si determinino gli autovalori di f specificandone la molteplicità algebrica e geometrica.
- (ii) Si determinino gli autovettori di f.

• Esercizio 6. [punteggio: 0-4]

Determinare per quali valori del parametro β la seguente matrice A è triangolarizzabile e/o diagonalizzabile

$$A = \begin{pmatrix} \beta & 0 & (1-\beta) \\ 0 & \beta & 2 \\ 0 & 2 & 0 \end{pmatrix}$$

prova scritta del 28/1/2008

TEMPO A DISPOSIZIONE: 75 minuti per ciascuna parte

PRIMA PARTE (75 minuti)

I risultati devono essere giustificati attraverso calcoli e spiegazioni

Esercizio 1. [punteggio: 0-4]

Dato il numero complesso z = -2 + 2i

- (i) determinare la parte reale e la parte immaginaria di z^4
- (ii) determinare la parte reale e la parte immaginaria di z^{-1}

Esercizio 2. [punteggio: 0-6]

Si determinino le soluzioni complesse del seguente sistema:

$$\begin{cases} e^z = \frac{i}{-2+2i} \\ |e^{iz}| < 1 \end{cases}$$

Esercizio 3. [punteggio: 0-5]

Siano
$$W$$
 il sottospazio di \mathbb{R}^3 generato dai vettori $w_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} w_2 = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}, w_3 = \begin{pmatrix} 5 \\ 4 \\ 5 \end{pmatrix}$

$$Z$$
il sottospazio di \mathbb{R}^3 di equazione $Z=\{\left(\begin{array}{c}x_1\\x_2\\x_3\end{array}\right)\in\mathbb{R}^3\quad :\quad 4x_1+x_2-4x_3=0\}$

- (i) Determinare una base di We una di ${\cal Z}$
- (ii) Determinare una base di $W \cap Z$.

prova scritta del 28/1/2008

TEMPO A DISPOSIZIONE: 75 minuti per ciascuna parte

SECONDA PARTE (75 minuti)

I risultati devono essere giustificati attraverso calcoli e spiegazioni

• Esercizio 4. [punteggio: 0-6]

Al variare del parametro reale t sia $f_t: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$f_t \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 & +(t-1)x_2 & +x_3 \\ x_1 & +tx_2 & +2x_3 \\ tx_1 & +x_2 & -tx_3 \end{pmatrix}$$

- (i) Al variare del parametro reale t si determini la dimensione di $Ker(f_t)$ e la dimensione di $Im(f_t)$.
- (ii) Determinare per quali valori di t esiste almeno una soluzione del sistema $f_t \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$
- (iii) Dato il sottospazio di \mathbb{R}^3 $Z=\{\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}\in\mathbb{R}^3 : x_1-x_2-x_3=0\}$ determinare per quali valori di t si ha $\mathbb{R}^3=Z\bigoplus Ker(f_t)$

• Esercizio 5. [punteggio: 0-5]

Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione lineare espressa rispetto alla base canonica dalla matrice

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 \\
2 & 0 & 0 & 2 \\
0 & -3 & 0 & 3
\end{pmatrix}$$

- (i) Si determinino gli autovalori di f specificandone la molteplicità algebrica e geometrica.
- (ii) Si determinino gli autovettori di f.

• Esercizio 6. [punteggio: 0-4]

Determinare per quali valori del parametro β la seguente matrice A è triangolarizzabile e/o diagonalizzabile

$$A = \begin{pmatrix} \beta & 0 & (2-\beta) \\ 0 & \beta & 3 \\ 0 & 3 & 0 \end{pmatrix}$$