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Università di Pisa, Italy.

dinasso@dm.unipi.it

Marco Forti
Dipart. di Matem. Applicata “U. Dini”
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Abstract

We name Hausdorff those ultrafilters that provide ultrapowers
whose natural topology (S-topology) is Hausdorff. E.g. selective ul-
trafilters are Hausdorff. Here we give necessary and sufficient condi-
tions for product ultrafilters to be Hausdorff. Moreover we show that
no regular ultrafilter over the “small” uncountable cardinal u can be
Hausdorff. (u is the least size of an ultrafilter basis on ω.) We focus
on countably incomplete ultrafilters, but our main results hold also
for κ-complete ultrafilters.
2000 Mathematics Subject Classification 03E05; 03H05; 54D80.

Introduction

Let U be an ultrafilter over the set I. Given any set X, the corresponding
ultrapower XI/U can be given a natural topology by taking the family of all
subsets of the form AI/U for A ⊆ X as a (cl)open basis. (This topology is

∗ Work partially supported by MIUR PRIN Grant “Metodi logici nello studio di strut-
ture geometriche, topologiche e insiemistiche”, Italy.
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named S-topology (standard topology) in nonstandard analysis.) It turns out
that the resulting topological space is Hausdorff if and only if the ultrafilter
U satisfies a simple algebraic property, namely:

(H) for all f, g : I → I ( f(U) = g(U) =⇒ f ≡U g ).1

To the authors’ knowledge, this property was first isolated for ultrafilters
over ω in [8], under the name “property (C)”. There it is proved that (C)
holds for all 3-arrow ultrafilters, as introduced in [2]. In particular, weakly
Ramsey ultrafilters, and also products of pairs of non-isomorphic selective ul-
trafilters have property (C). Uniform Hausdorff ultrafilters over I are called
separating in [13], where it is shown that they cannot be regular if |I| ≥ 2ℵ0 .
Several large cardinal consequences are then derived from the existence of
separating ultrafilters on uncountable sets. A corresponding property S(I)
for (possibly non-maximal) ideals was studied in [16]. Focusing on uncount-
able cardinals κ, a combinatorial condition is given there in order to let S(I)
fail for suitable κ-complete ideals.

The Hausdorff ultrafilters came to the authors’ attention in their attempts
[3, 9] to isolate a few topological properties that could characterize the non-
standard models. It is a well-known fact in nonstandard analysis that every
nonstandard model X∗ can be canonically mapped into the Stone-Čech com-
pactification βX of the discrete space X (see e.g. [17]). Starting from this
fact, it is proved that a nonstandard model X∗ is Hausdorff (when equipped
with the S-topology) if and only if it is isomorphic to an invariant (i.e.
Rudin-Keisler downward closed) subspace of βX where all points (ultrafil-
ters) satisfy the property (H). The name Hausdorff ultrafilters was first used
in [9], to stress the “topological” significance of that special class of ultrafil-
ters. Also from a model-theoretic point of view, Hausdorff ultrafilters could
be of interest. In fact their existence is equivalent to that of nonstandard
extensions of the complete structure on the natural numbers where different
elements have different types.

The consistency strength of Hausdorff ultrafilters seems to be an interest-
ing problem. The countable case remained unsettled till very recently.2 On
the one hand, it is easily seen that all selective ultrafilters are Hausdorff, but
the two notions are different. For instance, under the Continuum Hypothesis
CH (or even Martin’s Axiom MA), there are Hausdorff ultrafilters that are

1 See Section 1 for definitions and notation.
2The question has been posted by the authors to the “Logic café” of Logic Colloquium

‘03, Helsinki.
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not P -points (hence not selective) and there are (necessarily non-selective)
P -points that are not Hausdorff. However the most interesting question as
to whether the existence of Hausdorff ultrafilters is provable in ZFC alone
has been solved in the negative by T. Bartoszynski and S. Shelah [1], when
this paper was almost completed.

Here we prove a general criterion for a product ultrafilter to be Hausdorff.
In particular, under a natural incompatibility condition, Hausdorff ultrafil-
ters are stable under products by Hausdorff P -points. Thus, provided many
non-isomorphic selective ultrafilters are at hand, one can produce a large
class of Hausdorff ultrafilters by means of iterated products. As first pointed
out in [13], Hausdorff ultrafilters on uncountable sets are highly problematic,
connected as they are to irregular ultrafilters. Here we show that Hausdorff
uniform ultrafilters on the small uncountable cardinal u cannot be regular.
(u is the least size of an ultrafilter basis on ω.) However, regular uniform
ultrafilters on ω1 can be constructed under Martin’s axiom plus 2ℵ0 = ℵ2.
The consistency of regular uniform Hausdorff ultrafilters on cardinals greater
than ω1 is an open problem.

The paper is organized as follows. In Section 1, we characterize those
products of ultrafilters that are Hausdorff. In Section 2 we give an upper
bound for the size of sets admitting regular uniform Hausdorff ultrafilters. In
the final Section 3, we face the problem of delimiting the consistency strength
of Hausdorff ultrafilters. We briefly discuss also κ-complete ultrafilters over
an uncountable measurable cardinal κ. We conclude with a list of open
questions and suggestions for further research.

Acknowledgements. The authors are grateful to Vieri Benci and Karel
Hrbàc̆ek for useful discussions, to Andreas Blass for several basic references,
and to Tomek Bartoszynski for interesting suggestions and for providing a
copy of [1].

1 Products of Hausdorff ultrafilters

While fixing notation, we recall some basic definitions and facts. Throughout
this paper, U and V will denote ultrafilters on I and J respectively. We are
mainly interested in the countable case, but all results of this section are
independent of the sizes of the sets I and J .

The additivity of a nonprincipal ultrafilter U is the least amount of sets
outside U having union in U . U is κ-complete if its additivity is at least κ,
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i.e. U is (nonprincipal and) closed under intersections of size less than κ. It
is well known that the additivity of any ultrafilter is a measurable cardinal.3

Ultrafilters of additivity ω are usually called countably incomplete.
Two functions f and g with domain I are equivalent modulo U (or U -

equivalent) iff {i ∈ I | f(i) = g(i)} ∈ U . In this case we write f ≡U g.
If f : I → J , the family f(U) = {B ⊆ J | f−1(B) ∈ U} is an ultrafilter
on J .4 The Rudin-Keisler preordering on ultrafilters is defined by setting
V ≤RK U whenever V = f(U) for some f . In this case we say that V is RK-
below U (or U is RK-above V). It is a basic fact in the theory of ultrafilters
that f(U) = U ⇔ f ≡U id, where id denotes the identity map. As a
consequence, both U ≤RK V and V ≤RK U hold if and only if f(U) = V for
some f : I → J which is 1-1 when restricted to a suitable U ∈ U . In this case
U and V are isomorphic, and we write U ∼= V . Thus ≤RK becomes a partial
order on the equivalence classes of isomorphic ultrafilters. We say that U ,V
are incomparable if U 6≤RK V and V 6≤RK U ; they are incompatible if there
is no non-principal ultrafilter W ≤RK U ,V . A non-principal ultrafilter U is
selective (or Ramsey) if every f : I → I is U -equivalent either to a constant or
to a 1-1 function. Selective ultrafilters are exactly the minimal elements of the
RK-preordering, i.e. those lying immediately above the principal ultrafilters.
An ultrafilter is uniform if all its elements have the same cardinality. Every
nonprincipal ultrafilter is isomorphic to a uniform ultrafilter over κ, where κ
is the least size of a set in U . However in the following we shall not restrict
ourselves to uniform ultrafilters.

The product filter U × V is the filter on I × J generated by all products
U × V where U ∈ U and V ∈ V . Notice that, in general, U × V is not ultra.
The product ultrafilter U ⊗V (sometimes called tensor product) is defined by
setting:

X ∈ U ⊗ V ⇐⇒ {i ∈ I | {j ∈ J | (i, j) ∈ X} ∈ V} ∈ U .

Let {Vi | i ∈ I} be a family of ultrafilters on J . The U -limit limU Vi of the
family is the ultrafilter on J such that:

X ∈ lim
U
Vi ⇐⇒ {i ∈ I | X ∈ Vi} ∈ U .

3 A cardinal κ is measurable if there is a nonprincipal κ-complete ultrafilter on κ.
(Notice that we include ω among the measurable cardinals.)

4 The notation f∗(U) is frequently used in the literature. We adhere to the simpler
notation f(U) since no ambiguity is likely to arise.
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Clearly, limU Vi = limUWi whenever {i ∈ I | Vi = Wi} ∈ U .

If not explicitly mentioned otherwise, we refer to [10] for all set-theoretic
notions and facts used in this paper, and to [7] for definitions and facts
concerning ultrapowers, ultrafilters, and nonstandard models.

Let us repeat our basic definition of Hausdorff ultrafilter:

Definition 1.1 An ultrafilter U is Hausdorff if it satisfies the condition:

(H) for all f, g : I → I ( f(U) = g(U) =⇒ f ≡U g ).

Notice that the above condition (H) is automatically satisfied whenever
any of the functions f and g is 1-1 or constant when restricted to some set
A ∈ U . In particular, all selective ultrafilters are Hausdorff. It is easily seen
that Hausdorff ultrafilters are downward closed with respect to the Rudin-
Keisler preordering.

We begin with a simple characterization of Hausdorff ultrafilters.

Lemma 1.2 The ultrafilter U is Hausdorff if and only if whenever an ultra-
filter W ≤RK U includes the square filter V × V of some nonprincipal V,
then W includes also the diagonal ∆ = {(j, j) | j ∈ J}.

Proof. Assume that f : I → J × J is a function such that V × V ⊆
f(U) = W . Let π1, π2 : J × J → J be the canonical projections. Then
π1(W) = π2(W) = V , while π1 ≡W π2 if and only if W includes the diagonal
∆ ⊆ J × J . Since Hausdorff ultrafilters are Rudin-Keisler downward closed,
we obtain the direct implication.

Conversely, let f, g : I → J be such that f(U) = g(U) = V is nonprincipal.
Define h : I → J×J by h(i) = (f(i), g(i)). Then clearly W = h(U) ⊇ V×V ,
and so W includes the diagonal. But then f and g are equivalent modulo
U , since they agree on h−1(∆) ∈ U . Therefore U is Hausdorff. 2

Corollary 1.3 If the product U⊗V is Hausdorff, then the ultrafilters U and
V are Hausdorff and incompatible.

Proof. If W = U ⊗V is Hausdorff, then both U and V are ≤RK W , hence
Hausdorff. If f : I → K, g : J → K are such that f(U) = g(V) = D, define
h : I × J → K × K by h(i, j) = (f(i), g(j)). Then the ultrafilter h(W)
includes D ×D, hence also the diagonal, according to Lemma 1.2. Now

h−1(∆) = {(i, j) | f(i) = g(j)} ∈ U⊗V ⇐⇒ {i | {j | f(i) = g(j)} ∈ V} ∈ U .
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But this implies that both f and g are constant, modulo U and V respec-
tively, and so D is principal. This proves that U and V are incompatible.

2

Our criterion to test whether a product of Hausdorff ultrafilters is itself
Hausdorff is obtained by adding a further condition, namely:

Theorem 1.4 The product U ⊗ V is Hausdorff if and only if the following
conditions are satisfied:
(i) U and V are Hausdorff and incompatible;
(ii) for i ∈ I, let V ′i 6= V ′′i be (possibly principal) ultrafilters on J that are
≤RK V. Then limU V ′i 6= limU V ′′i .

Proof. Assume first that the product U ⊗V is Hausdorff. The condition
(i) holds by Corollary 1.3. Proceeding by contradiction, let the ultrafilters
V ′i = fi(V), V ′′i = gi(V), and U witness that condition (ii) fails. Put f(i, j) =
fi(j) and g(i, j) = gi(j). A straightforward application of the definitions
proves the equalities

f(U ⊗ V) = lim
U
V ′i = lim

U
V ′′i = g(U ⊗ V).

Now f ≡U⊗V g if and only if {i | fi ≡V gi} ∈ U . But the latter condition
is not realized, because fi(V) = V ′i 6= V ′′i = gi(V), and so fi 6≡V gi, for all i.
Thus we obtain the contradiction that U ⊗ V is not Hausdorff.

Vice versa, assume that U and V satisfy conditions (i) and (ii). Given
f, g : I × J → K, define the functions fi, gi : J → K by fi(j) = f(i, j) and
gi(j) = g(i, j). Since V is Hausdorff, {i | fi(V) 6= gi(V)} = {i | fi 6≡V gi} ∈ U
if and only if f 6≡U⊗V g. In this case, take two sequences of ultrafilters V ′i,V ′′i
such that V ′i 6= V ′′i for all i, and V ′i = fi(V), V ′′i = gi(V) whenever fi 6≡V gi.
By condition (ii), we conclude that

f(U ⊗ V) = lim
U

fi(V) = lim
U
V ′i 6= lim

U
V ′′i = lim

U
gi(V) = g(U ⊗ V).

2

Notice that also principal ultrafilters are allowed in condition (ii). As
a consequence, that condition already implies that the ultrafilters U and
V are incompatible. In fact, if f(U) = g(V) is nonprincipal, let V ′i be the
principal ultrafilter generated by {f(i)} and let V ′′i = g(V) for all i ∈ I. Then
clearly limU V ′i = limU V ′′i , contradicting condition (ii). In order to simplify
the above criterion, the following notions are useful:
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Definition 1.5 A family {Vi | i ∈ I} of ultrafilters over J is discrete if there
exists a family {Ai | i ∈ I} of subsets of J such that Ai ∈ Vi and Ai∩Aj = ∅
whenever Vi 6= Vj. The family {Vi | i ∈ I} is U-compatible if there exists a
nonprincipal ultrafilter W such that {i ∈ I | W ≤RK Vi} ∈ U .

Theorem 1.6 Let U ,V be incompatible Hausdorff ultrafilters, and let κ be
the least size of a set in U . The product U ⊗ V is Hausdorff if the following
conditions are satisfied for every family {Vi | i ∈ I} of ultrafilters ≤ V:

(a) every subfamily of size κ is discrete;

(b) if limU Vi ≤RK U , then the family {Vi | i ∈ I} is U-compatible.

Proof. Let {V ′i | i ∈ I} and {V ′′i | i ∈ I} be families of ultrafilters
satisfying the hypotheses of condition (ii) of Theorem 1.4. Put A′ = {i ∈
I | V ′i principal} and A′′ = {i ∈ I | V ′′i principal}. We show that (a) and (b)
together imply (ii). We distinguish three cases.

Case 1: A′ ∈ U and A′′ ∈ U . Pick functions f, g : I → J such that
{f(i)} ∈ V ′i and {g(i)} ∈ V ′′i for all i ∈ A′ ∩ A′′. As f 6≡U g and U is
Hausdorff, we have

lim
U
V ′i = f(U) 6= g(U) = lim

U
V ′′i .

So condition (ii) of Theorem 1.4 is satisfied.

Case 2: A′ /∈ U and A′′ /∈ U . Assume w.l.o.g. that all V ′i,V ′′i are nonprinci-
pal. Enumerate

{V ′i | i ∈ I} ∪ {V ′′i | i ∈ I} = {Wh | h ∈ H}
in such a way that Wh 6= Wk for h 6= k. Let σ, τ : I → H be the functions
such that V ′i = Wσ(i) and V ′′i = Wτ(i). Notice that limU V ′i = limσ(U)Wh

and limU V ′′i = limτ(U)Wh. Since σ 6≡U τ and U is Hausdorff, it follows that
σ(U) 6= τ(U). So we can find a set A ∈ U of size κ such that σ(A)∩τ(A) = ∅.
The family {Wh | h ∈ σ(A) ∪ τ(A)} is discrete, by condition (a). Choose
a family {Ah | h ∈ σ(A) ∪ τ(A)} of subsets of J such that Ah ∈ Wh, and
Ah ∩ Ak = ∅ for h 6= k. Put X =

⋃
h∈σ(A) Ah and Y =

⋃
h∈τ(A) Ah. Then

X ∈ limσ(U)Wh, Y ∈ limτ(U)Wh, and X ∩ Y = ∅. Hence the limits are
different, and condition (ii) of Theorem 1.4 is fulfilled also in this case.

Case 3: A′ /∈ U and A′′ ∈ U (the case A′ ∈ U and A′′ /∈ U is symmetric).
Assume w.l.o.g. that all V ′i are nonprincipal. As in case 1, pick a function
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g : I → J such that limU V ′′i = g(U). If limU V ′i = limU V ′′i ≤RK U , then pick
a nonprincipal W (on K, say) witnessing that condition (b) is fulfilled. Let
A ∈ U be a set of size κ such that W ≤RK V ′i for all i ∈ A. Choose functions
fi : J → K such that fi(V ′i) = W and subsets Bi ⊆ J witnessing that the
family {V ′i | i ∈ A} is discrete. Pick a function f : J → K that agrees with
fi on Bi, for every i ∈ A. Then

W = lim
U

fi(V ′i) = lim
U

f(V ′i) = f
(
lim
U
V ′i

)
≤RK lim

U
V ′i ≤RK U .

But obviously W ≤RK V , contradicting the incompatibility of U and V .
2

Call κ-P -point a κ-complete ultrafilter U on I such that every function
f : I → I is U -equivalent either to a constant or to a “<κ-to-1” function.
(We say that f is <κ-to-1 if the fibers of f are “small”, i.e. |f−1(i)| < κ for
all i ∈ I.) Obviously every κ-complete selective ultrafilter is a κ-P -point. In
particular, U is a uniform selective ultrafilter on the uncountable set I if and
only if κ = |I| is measurable, and U is isomorphic to a normal κ-ultrafilter
(see e.g. [11]).

When V is a κ-P -point, the necessary condition (i) of Thorem 1.4 be-
comes sufficient:

Corollary 1.7 Let κ be the least size of a set in U and let V be a κ-P -
point. Then U ⊗ V is Hausdorff if and only if U and V are Hausdorff and
incompatible.

Proof. It is well known that a family of size not exceeding κ of κ-P -points
is discrete (see e.g. [11]). Moreover a κ-P -point is selective whenever its
additivity exceedes κ. On the other hand a κ-P -point of additivity κ is iso-
morphic to a κ-ultrafilter, i.e. a uniform κ-complete ultrafilter over κ. So, if
the additivity of V is uncountable, there is a unique normal ultrafilter lying
RK-below V (see e.g. [14]), which is, up to isomorphism, the least nonprinci-
pal ultrafilter ≤RK V . On the other hand, if V is countably incomplete, and
so κ = ℵ0, it follows from Theorem 5 of [4] that any sequence of nonprincipal
ultrafilters ≤RK V has a nonprincipal RK-lower bound W ≤RK V . Therefore
the conditions (a)-(b) of Theorem 1.6 are always met.

2

Similarly, if U is a κ-P -point, then the condition (b) of Theorem 1.6
is trivial, because only constant κ-sequences can converge to κ-P -points,
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and so (a) alone suffices for U ⊗ V to be Hausdorff. More generally, pro-
vided sufficiently many incompatible Hausdorff κ-P -points are available, one
can produce other Hausdorff ultrafilters that are (Rudin-Keisler) greater and
greater. Namely, by recalling that a P -point lies RK-below a product if and
only if it lies RK-below a factor (see e.g. [6]), one can prove by induction:

Corollary 1.8 Let {Uh | h ∈ H} be a family of pairwise incompatible Haus-
dorff κ-P -points over κ. Then the product Uh1 ⊗ . . . ⊗ Uhn is Hausdorff if
and only if the indices h1, . . . , hn are all different.

2 Regular Hausdorff ultrafilters

Recall that the ultrafilter U on I is (κ, ν)-regular if there exists a family
F ⊆ U of size ν such that the intersection of any subfamily of size κ of
F is empty. U is regular if it is (ω, |I|)-regular, i.e. if there is a family
{Ai | i ∈ I} ⊂ U such that every infinite subfamily has empty intersection.
Every regular ultrafilter is countably incomplete, and when I is countable the
two notions are equivalent (but in general regularity is a proper strengthening
of countable incompleteness).

According to [13], a uniform ultrafilter U on I is λ-separating if, whenever
the functions f, g : I → λ are such that f(U) = g(U) is uniform, then f ≡U g.
It is easily seen that U is Hausdorff if and only if it is λ-separating for all
λ ≤ |I|. For cardinals κ ≤ λ put

uκλ = the least size of a κ-subbasis of a uniform κ-complete ultrafilter on λ.

(B is a κ-subbasis of the filter F if the intersections of less than κ elements
of B generate F .) Notice that the cardinal uκλ may be undefined for some
(all) λ, when κ is uncountable. Clearly u = uωω is the least size of an
ultrafilter basis on any set I. Since obviously uκλ ≤ 2λ, the following theorem
generalizes and improves Theorem 2.5 of [13]:

Theorem 2.1 There are no (κ, uκλ)-regular λ-separating κ-complete ultra-
filters. In particular, if |I| ≥ u, no regular ultrafilter on I is Hausdorff.

Proof. Let U be a (κ, uκλ)-regular κ-complete ultrafilter on I. Let
{Aα | α < uκλ} be a family of uκλ-many sets in U such that every subfamily
of size κ has empty intersection. For i ∈ I put Fi = {α < uκλ | i ∈ Uα}.
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Then Fi has size less than κ, and we can assume w.l.o.g. that it is nonempty.
Let B = {Bα | α < uκλ} be a κ-subbasis of a uniform κ-complete ultrafilter
D on λ. Choose functions f, g : I → λ such that f(i), g(i) ∈ ⋂

α∈Fi
Bα and

f(i) 6= g(i) for all i ∈ I. Then clearly every Bα ∈ B belongs both to f(U) and
g(U). Hence f(U) = g(U) = D, but f 6≡U g, and U cannot be λ-separating.

2

The cardinal u is one of several cardinal invariants of the continuum con-
sidered in the literature (see [19, 5]). As usual for cardinals that are the sizes
of distinguished subsets of P(ω), all what is provable in ZFC about u is that
ℵ1 ≤ u ≤ 2ℵ0 (see [5]). So, under CH, there are no (ω, ω1)-regular Hausdorff
ultrafilters. In fact, uniform Hausdorff ultrafilters on the continuum require
very strong set theoretic hypotheses. In [13] one derives from the existence
of such ultrafilters that, under CH, there are inner models with measurable
cardinals. Even when the continuum is larger than ℵ1, one could expect that
similar results be derivable from Theorem 2.1. E.g. if 2ℵ0 = 2ℵ1 = ℵ2 and
u = ℵ1, then an argument similar to those of [13] yields the same implication.
On the other hand, in [12] it is proved that if 3 holds and there is a normal
ω1-dense ideal over ω1,

5 then for any nonprincipal ultrafilter D on ω there
exists a uniform ultrafilter U on R such that V <RK U implies V ≤RK D.
Since 3 implies CH, one can choose D to be Hausdorff and so U is a uniform
Hausdorff ultrafilter over R. On the contrary, when the continuum is “large”
and u = 2ℵ0 , the existence of Hausdorff uniform ultrafilters over “large” sets
should be obtained by very weak assumptions. E.g., Martin’s Axiom together
with 2ℵ0 = ℵ2 yields the existence of regular uniform Hausdorff ultrafilters
over ω1.

6

3 Final remarks and open questions

3.1 Sums of Hausdorff ultrafilters

Let {Vi | i ∈ I} be a family of ultrafilters on J . The U -sum ultrafilter
∑

U Vi

is the ultrafilter on I × J defined as follows:

X ∈
∑
U
Vi ⇐⇒ {i ∈ I | {j ∈ J | (i, j) ∈ X} ∈ Vi} ∈ U .

5 The consistency of this hypothesis has been proved by Woodin by assuming ADR+“Θ
is regular”.

6 Personal communication by K. Hrbàc̆ek.
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Notice that when all Vi = V , then
∑

U Vi = U ⊗ V .

The results of Section 1 can be easily adapted to ultrafilter sums.

Theorem 3.1 The sum
∑

U Vi is Hausdorff if and only if the following con-
ditions are satisfied:
(i) U is Hausdorff and {i ∈ I | Vi is Hausdorff } ∈ U ;
(ii) let V ′i 6= V ′′i be (possibly principal) ultrafilters on J such that V ′i,V ′′i ≤RK

Vi for all i ∈ I. Then limU V ′i 6= limU V ′′i .

Recall that a family {Vi | i ∈ I} of ultrafilters is U-incompatible if it is not
U -incompatible, i.e. if {i ∈ I | W ≤RK Vi} ∈ U only holds for principal W .

Theorem 3.2 Let {Vi | i ∈ I} be a U-incompatible family of Hausdorff ul-
trafilters, and let κ be the least size of a set in U . Then the sum

∑
U Vi is

Hausdorff if the following conditions are fulfilled for every choice of nonprin-
cipal ultrafilters V ′i ≤RK Vi:
(a) every subfamily of size κ is discrete;
(b) limU V ′i 6≤RK U .

Corollary 3.3 Let U be a κ-P -point and let {Vi | i ∈ I} be a U-incompatible
family of κ-P -points. Then the sum

∑
U Vi is Hausdorff.

We omit the proofs, which are straightforward modifications of the corre-
sponding proofs of Section 1. Having so treated those Hausdorff ultrafilters
that are Rudin-Frolik composite, the next natural step would be to investi-
gate Hausdorff P -points. We cannot enter here into this topic, that we aim
to consider in a separate paper.

3.2 Uncountably complete Hausdorff ultrafilters

We deal now briefly with κ-ultrafilters, i.e. κ-complete ultrafilters on sets of
measurable size κ > ω. Ultrapowers modulo such ultrafilters preserve well-
foundedness, and this fact has several important consequences. In particular
the natural ordering on the ultrapower κκ/U is a well ordering, and this is the
main tool used in the investigation of κ-complete ultrafilters (see [15, 14, 11]).
Moreover also the Rudin-Keisler preordering on κ-ultrafilters is well-founded,
and so every RK-descending chain is finite, and ends with a selective (normal)
one. If U is a κ-P -point, then there is exactly one normal κ-ultrafilter D ≤RK
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U , namely D = f(U), where f is the least nonconstant function in κκ/U . In
particular the existence of ω1-complete Hausdorff ultrafilters is equivalent
to that of uncountable measurable cardinals. Moreover, if U is a normal
κ-ultrafilter, then in L[U ] any κ-ultrafilter is a power of U (see [15]), and
so U is simultaneously the unique κ-P -point, the unique κ-Q-point, and the
unique Hausdorff κ-ultrafilter.

The above results on products and sums also hold for κ-ultrafilters. Be-
sides, due to the mentioned properties, some of them admit simplified for-
mulations. E.g.

Corollary 3.4 Let U be a Hausdorff κ-ultrafilter and let V be a Hausdorff
κ-P -point RK-above the normal κ-ultrafilter D. Then U ⊗ V is Hausdorff if
and only if D 6≤RK U .

3.3 The consistency strength of Hausdorff ultrafilters

It is well known that, under CH or MA, there are 22ℵ0 nonisomorphic se-
lective ultrafilters over ω. So, under any of these hypotheses, Corollary 1.8
provides equally many Hausdorff ultrafilters that are not P -points. Another
interesting consequence is that there are strictly RK-increasing sequences
of Hausdorff ultrafilters (which are necessarily not 3-arrow, see [2]). Tak-
ing direct limits of such sequences, one produces invariant analytic coherent
non-principal subspaces of βω in the sense of [9], thus answering a question
posed there. Moreover, under the same hypotheses, one can inductively de-
fine both Hausdorff and non-Hausdorff nonselective P -points. (Under CH
this fact follows from results of [8].) On the other hand there are models of
ZFC with only non-selective P -points over ω, models with a sole (necessarily
selective) P -point (up to isomorphism), and also models without P -points
(see [18]). The relationships between Hausdorff ultrafilters and other special
classes (P - and Q-points, arrow ultrafilters, etc.) will be investigated in a
forthcoming paper.

Be it as it may, as far as we do not abide ZFC as our foundational theory,
we cannot prove that Hausdorff ultrafilters exist at all. In fact the forcing
models recently defined by Bartoszynski and Shelah in [1] have no Hausdorff
ultrafilters, even in the weaker sense that considers only <ω-to-1 functions
in the condition (H).
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3.4 Some open questions

The results of the preceding sections suggest several questions. We itemize
below a few of those that seem most interesting to us.

1. Is it consistent that a product of Hausdorff incompatible ultrafilters be
non-Hausdorff? and that U ⊗ V is Hausdorff whereas V ⊗ U is not?

2. Is the existence of Hausdorff ultrafilters derivable from set-theoretic hy-
potheses weaker than those providing selective ultrafilters? (E.g. from x = c,
for suitable cardinal invariant x of the continuum?)

3. Is it consistent with ZFC that there are regular Hausdorff ultrafilters on
sets of size greater than ℵ1?

4. Assuming some large cardinal axiom, is it consistent with ZFC + ¬CH
that there are uniform Hausdorff ultrafilters on the continuum?

5. What about non-normal Hausdorff κ-ultrafilters?
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