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INTRODUCTION

Schur proved the following theorem in 1916: For every finite col-
oring of the set of natural numbers there exists a monochromatic
solution of the equation z +y = z. In other word, given a partition
N = Ay U---UA4, of the set of natural numbers, at least one of
the sets A; contains elements z,y such that z +y € A,;. As a con-
sequence of this theorem, Schur proved that for every natural m
the congruence ™ + y™ = z™(mod p) has a nontrivial solution for
every sufliciently large prime number p.

In 1927, van der Waerden proved the famous theorem on arith-
metic progressions: If the set of natural numbers is partitioned into
a finite number of subsets, then at least one of this subsets contains
arithmetic progressions of arbitrary finite length.

In 1930, Ramsey, in his paper on mathematical logic, proved
the following theorem. Let k,m be arbitrary natural numbers. If
the family of all k-element subsets of the set of natural numbers N
1s colored into m colors, then there is an infinite subset A C N such
that all its k-element subsets have the same color.

In his cycle of papers published in 1933, Rado generalized the
Schur theorem onto systems of linear homogeneous Diophantine
equations. Here we formulate his result for a single homogeneous
equation. A linear homogeneous equation ayzy + - + ayz; = 0
with nonzero entire coeflicients is called regular if for every finite
coloring of the set of natural numbers there exists a monochromatic
solution of this equation. By the Rado theorem, an equation is
regular iff some nonempty sum of its coefficients is equal to zero.
For example, the equations v +y—2z = 0, z+y—2z = 0 are regular,
while the equation z + y — 32z = 0 is not.

In one of the papers from the mentioned cycle Rado exposed
Gallai’s proof of a multidimensional counterpart of the van der
Waerden theorem. Let k, m,[ be arbitrary natural numbers and N*
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the set of k-dimensional vectors with positive integer coordinates.
For every partition N¥ = A; U .- U A,, there are a subset A; and
subsets

.mwd, ”M,QATQH J,u&u...i@w +§mﬁJ

mwn%ﬁayﬁmﬂ&;&....ugoni&u? Qd?...u@wd&mzq

such that mw Koo X Mw\n - xr..

In 1963, Hales and Jewett, investigating a higher dimension-
al counterpart of tic-tac-toe, proved an unexpected theorem on
partitions of semigroups: Suppose the free semigroup S with gen-

erators ay,...,a, is partitioned Into a finite number of subsets.
= Ay U---UA,,. There exists a containing the letter r semi-
group word f(z) in the alphabet {ai1,...,a,,z} and a subset A,

such that f(ay),..., flan) € A;.

The Gallai Theorem and, in particular, the van der Waerden
Theorem are easy consequences of the Hales-Jewett Theorem. In
1972, Graham, Leeb, and Rothchild deduced the following new
result from the Hales-Jewett Theorem: Suppose an infinite-dimen-
sional vector space over a finite field is partitioned into a finite
number of subsets. Then at least one of subsets of the partition
contains affine subspaces of arbitrary finite dimension.

At the end of 60s, Rado, Folkman, Sanders, Rothschild, and
Graham independently proved the following generalization of the
Schur Theorem: Denote by FS(A) the set of all finite sums of
distinct elements from the set A C N. For every partition N =
Ay U---UA,, of the set of natural numbers there exist a subset A;
and an arbitrarily large finite subset A such that F.S(A) C A;.

In 1974, Hindman essentially extended this theorem by prov-
ing existence of infinite subset A with the property F.S(A) C A
Because of its extremal complexity, Hindman’s proof did not suit
the specialists (including Hindman himself). Baumgartner slightly
simplified Hindman’s arguments, but his proof was still too compli-
cated. Attempts of finding a simple proof of the Hindman Theorem
soon led to a success and initiated development of topological and
algebraic methods in the combinatorics of numbers.

-1

INTRODUCTION

In 1975, Glaser developed Galvin’s idea and deduced the Hind-
man Theorem from the following known result: Suppose S is a com-
pact space with a semigroup operation which is continuous with re-
spect to the second argument. Then S contains an idempotent, i.e.,
an element s such that s> = s. This statement should be applied
to the Stone-Cech compactification SN of the discrete space N of
positive integers. The elements of the compact space SN are exact-
ly the ultrafilters — special families of subsets of N. The following
is one of the main properties of ultrafilters: for any partition of N
into a finite number of subsets one of the set of this partition is
an element of the ultrafilter.

The operation + on the set of natural numbers can be natural-
ly extended to a semigroup operation on SN, which is continuous
with respect to the second argument. The following property of
idempotents in the semigroup SN is crucial in Glaser’s proof of
the Hindman Theorem: Ifa subset B C N is an element of an idem-
potent ultrafilter, then B contains an infinite subset A such that
FS(A) C B.

Since the late 70s, the semigroup SN becomes one of the most
popular objects of attention for experts in the combinatorics of
numbers and topological algebra. Here is an incomplete list of in-
vestigators of this semigroup: Hindman, van Douwen, Pym, Blass,
Bergelson, Strauss. Creating the method of ultrafilters in the com-
binatorics of numbers is the most important result of investgations
of the semigroup SN.

The aim of this book is a systematic and self-contained exposi-
tion of the method of ultrafilters and demonstration of its applica-
tions. The structure of the book is very simple. The initial four
sections are devoted to development of the technique of ultrafilters.
Further, proofs of the mentioned above main results of the combi-
natorics of numbers and of some theorems that were first proved
by the method of ultrafilters are presented.

In 1979, Hindman proved that for each finite partition N =
Ay U -+ U A, there exists a subset A; and infinite subsets A4, B
with the property £ S(A) C A;, FP(B) C A,. Here FP(B) denotes
the set of all finite products of distict elements of the subset B.
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In 1990, Bergelson and Hindman made a synthesis of the addi-
tive and multiplicative versions of the van der Waerden Theorem:
For each finite partition N = Ay U --- U A,, there exists an ele-
ment A; of this partition which contains arbitrary long arithmetic
and geometric progressions.

In 1993, the author proved the following two theorems on par-
titions of groups and rings.

Let G be a group. For each finite partition G = \f U--U A,
of G there exists A = A; such that the following statements hold:
1) G =AY AK for some finite subset K C G;

2) (A7 A)" is a finite index subgroup of G for some natural num-

ber n;

3) flIAYN AT AAY A + & for every homomorphism f:G — G.

Let R be an infinite associative ring with division. If R is par-
titioned into a finite number of subsets R = Ay U ---U A,,, then
there exists m such that for the subset A = A, \ {0} the equalities
hold:

R=A1A— A A+ A" A- A" "A = AV AA YA A Y AA YA,

Finally, note that, besides the method of ultrafilters, anoth-
er topology-algebraic method was created in the combinatorics of
numbers. This is the method of symbolic dynamics developed by
Furstenberg and his collaborators. We mention only one brilliant
result — the Furstenberg-Weiss Theorem on joint recurrency that
implies van der Waerden Theorem.

Let Ty,..., Ty be commuting continuous mappings of a compact
metric space X. Then there exist a point z € X and an increasing
sequence (n;) of natural numbers such that

() — z,..., TV (z) — =

1—>00 100

Nel
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§1. FILTERS AND ULTRAFILTERS

A family F of subsets of a set X is called centered if the inter-
section of any finite number of its elements is nonempty.

A family F of subsets of a set X is called a filter if the following
conditions hold: .

Fl) o ¢ F;
F2) Fy,... . FpbeF=LNn---NF, cF;
F3) Fe F,FCF = F' ¢ F.

Clearly, every filter is a centered family of subsets and every
centered family is contained in some filter. In order to construct
such a filter, first consider all the finite intersections of elements of
a centered family and then take all their supersets.

1.1. Example. Let 2 € X and F, = {F C X : z € F}. The fil-
ter F, is called a principal filter corresponding to the element z.

1.2. Example. Let X be a topological space and z € X. The fam-
ily of all neighborhoods of z forms a filter.

1.3. Example. Let X be an infinite set, F, = {F C X

X \ F is finite}. The filter F is called a Fréchet filter.

The family of all filters on a fixed set X is partially ordered
by the relation F; C Fy. A filter which is maximal with respect
to this partial order is called an wltrafilter. Any principal filter is
an ultrafilter. Nonprincipal ultrafilters are called free. Obviously,
an ultrafilter F is free iff [} F = @. Thus, free ultrafilters can exist
on infinite sets only. We use the following classical statement which
is equivalent to the axiom of choice for constructing free ultrafilters.

1.4. Lemma (Kuratowski-Zorn). If every chain (i.e. linearly or-
dered set) in a partially ordered set has an upper bound, then
the set has a maximal element.

1.5. Ultrafilter Theorem. Every filter on a set is contained in
an ultrafilter.

§1. FILTERS AND ULTRAFILTERS 1

Proof. Let F' be a filter on a set X. Consider a collection « of all
filters F on X which contain F’. Let ~ be a chain in «a. It follows
immediately from the definition of filter that {F € F : F € ~}

4

is a filter on X which is an upper bound for ~. By Lemma 1.
1

the family « has a maximal element, i.e. an ultrafilter which con-
tains F'. N

1.6. Corollary. If X is an infinite set, then there exists a free
ultrafilter on X. ,

Proof. Consider an ultrafilter on X which contains the Fréchet fil-

—

ter on X. O
1.7. Ultrafilter Criterion. A filter F on a set X is an ultrafilter

iff either A€ F or X \ A € F, for every subset A of X.

Proof. Necessity. Let F be an ultrafilteron X, A C X, and A ¢ F
Condition F3) implies '\ A # @ forevery F e F. If I, ... | F,
F, then

—
[
Z

(FLNA)N - N(Fo\NA) =(Fn--NE)\A+# 0o,

/

and therefore the family {F'\ A : F' € F} is centered. By Theo-
rem 1.5, there exists an ultrafilter 7/ which contains this family.
Obviously, F C F' and hence F = F'. Since X \ A € F', we have
X\AeF.

Suffictency. Suppose, a filter F satisfies the indicated property
and F is contained in an ultrafilter F'. If F # F', there exists
a subset A € F' such that A ¢ 7. By the condition, X \ A € F
and hence X \ A € F'. However, AN (X \ A) = & and this contra-
dicts the definition of filter. Thus, F = F' and F is an ultrafilter.(]

1.8. Corollary. If F is an ultrafilfer on a set X, F' ¢ F, and
F=FKRU---UZF,, then there exists 1 such that F, ¢ F.

Proof. Suppose the contrary: Fy ¢ F,... F,, ¢ F. By Ultrafilter
Criterion, X \ F; € F,..., X \ F},, € F. Since

(X\NF)Nn-- N (X\Fp)=X\(Fi U - UF,),
F,

(X\NF)n--n{X\ Fy)

m-
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we have X \ F' € F. Since F' € F and F is a filter, we obtain

a contradiction. i

The property of ultrafilters indicated in Corollary 1.8 lies in
background of proofs of most theorems on partitions of infinite
sets. Suppose we have constructed on a set X an ultrafilter such
that each its element satisfies a certain property (defined on subsets
of X). Then, for each partition X = A; U .- U A4,, at least one
of the sets A; satisfles this property. For example, in order to
prove the van der Waerden Theorem it is sufficient to construct on
the set of natural numbers an ultrafilter such that each its element
contains arithmetic progressions of arbitrary length.

1.9. Ultrafilter Restriction Theorem. If F is an ultrafilter on
aset X and F' € F, then F' = {F': F' C F} is an ultrafilter on F.

Proof. We can immediately check conditions F1)-F3) thus showing
that 7' is a filter on F. Let Fy € F and Fy ¢ F. Then F} ¢ F and,
by Ultrafilter Criterion, X \ F; € F. Since F € F and X\ Fy € F,
we have (X \ Fy)NF = F\ Fy € F. Thus, F\ F} € 7' and, by
Criterion 1.7, F' is an ultrafilter. O

Suppose a map f: X — YV is given and F is an ultrafilter on X.
Note that
fF)={Ac

1s a filter on the set Y.

.
R

e F}

1.10. Ultrafilter Image Theorem. Let F be an ultrafilter on
a set X. For every map f: X — Y the filter f(F) is an ultrafilter
on the set V.

Proof. Y =Y, UY;, then X = & A 1)U F71(Y,). By Ultrafilter
Criterion, either f7!(Y1) € F or f7'(Y3) € F. To be definitive,
suppose that F = f~1(Y;) and Nﬁ € F. Then f(F) = Y, and
F(F) € f(F). Thus, V7 € f(F) and we have only to use Ultrafilter

Criterion. ] . O

Ultrafilters were introduced by Riesz in 1909. They were widely
used only after a paper of Ulam (1929). Riesz and Ulam proved ex-
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istence of free ultrafilters on countable sets in the presence of the ax-
iom of choice. The following question is natural: in the Zermelo-
Fraenkel set theory (ZF) without the axiom of choice, are there free
ultrafilters on countable sets? In 1970 Solovay proved that the fol-
lowing statement is consistent with ZF: every subset of the real
line is Lebesgue measurable? But already in 1938 Sierpinski proved
that the existence of a free ultrafilter on a coutable set implies exis-
tence of a subset of the real line which is not Lebesgue measurable.
Thus, the non-existence of free ultrafilters on a countable set is
consistent with ZF. In this book we accept the axiom of choice C
and work in the standard set theory ZFC.

EXERCISES.

1. A filter 7 on an infinite set X is called wniform if [F| = |X| for every
subset " € F. Prove that every uniform filter is contained in some uniform
ultrafilter.

2. Let  be an ultrafilter on an infinite set of cardinality «. Prove that |F| =
2¢.

3. Let F be a filter on a set X which is not an ultrafilter. Prove that F is
contained in at least two distinct ultrafilters.

4. Prove that the cardinality of the family of all ultrafilters on an infinite set
of cardinality o is 227 .

5. Let X be an infinite set, Exp X a family of all subsets of X. A map
wExp X — {0,1} is called two-valued finitely-additive measure if the fol-
lowing conditions are satisfied:

1) p(X) =1, pu{z}) =0 for each z € X;

2) if Ay, A C X and A; N A; = D for i # j, then p(A1 U-~UA,) =
p(AL) + -+ p(An).

Prove that for every infinite set X there exists a two-valued finitely-additive

measure defined on Exp X.

6. Prove that every infinite family of subsets of a set X contains a subfamily 2{
of the same cardinality such that either 2 is centered or 2/ = {X\ A : 4
2} is centered.



mm. ULTRAFILTERS ON TOPOLOGICAL SPACES.

Suppose that to each point x of a set X a collection B(z) of
subsets of X, which are called neighborhoods of z, is assigned so
that the following conditions are satisfied:

(B1) z € U for every neighborhood U € B(z);
(B2) if U CV, U € B(z), then V € B(z);

(B3) if Uy,..., Uy € B(z), then Uy -+ N U, € Blz);

(B4) if U € B(x), then there is a neighborhood V' & B(z) such that

U € B(y) for every y € V.

A subset A C X is defined to be open, if A is a neighborhood of
each its point, i.e. A € B(z) for every z € A. Evidently, open sets
satisfy the following properties:
(O1) X, @ are open sets;
(02) if Uy,..., U, are open sets, then U; N---N U, is an open set;
(03) if Uy, @ € J, is a collection of open sets, then { J{Uq : o € J}
is an open set.
The family 7 of all open subsets is called the topology on the set X,
and the pair (X, 7) is called a topological space. Remark, that we
have defined neighborhoods of points firstly, and then, with their
help — open subsets. But we could make otherwise. Suppose we
are given a family 7 of subsets of a set X, which satisfles the con-
ditions (O1)-(03). A subset W C X is called a neighborhood of
a point z, if there is an open set U & 7 such that ¢ € U C W.
Then the family B(z), ¢ € X, satisfies the conditions (B1)-(B4).

A point z € X is called a cluster point of a set A C X, if
W N A # @ for every neighborhood W of z. The set A of all
cluster points of the set A is called the closure of A. A subset
which coincides with its closure is called closed. It 1s easy to see
that a subset A is closed iff its complement X \ A is open. This
vields that closed subsets possess the following properties:

(Cl) X, are closed subsets; .
(C2) if Fy,..., F, are closed subsets, then 7 U---UF), is a closed
‘subset;
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(C3) if Fy, o € J, are closed subsets, then [[{F, : o € J} is
a closed subset.

Now we employ filters and ultrafilters to characterize certain

basic properties of topological spaces and their maps. By definition,

N

a filter F on a topological space (X, 7) converges to a point z if
W &€ F for every neighborhood W of z. In this case the point z
is called a limit of the filter F. Observe that a subset A C X is
closed iff a limit of any filter containing A belongs to the set A.

A topological space is called Hausdorff if any two distinct points

of this space have disjoint neighborhoods.

2.1. Theorem. A topological space (X, 7) is Hausdorff iff every
filter on X has at most one limit.

Proof. Suppose the space (X, 7) is Hausdorff, F a filter on X con-
verging to two distinct points z,y. Choose two disjoint neighbor-
hoods U,V € F of x,y respectively. Then we have U NV = &,
a contradiction with the definition of filter.

Now suppose that each filter on X has at most one limit but
the space (X, 7) 1s not Hausdorff. Choose two distinct points z,y €

chorﬁwwnqja\#@m@wmm%bmwmﬁvgﬁoommqmb@M\.Om.ﬂ
and y. The family {UNV : U € B(z),V € B(y)} is centered. It
can be completed to a filter F. Evidently, B(z) € F, B(y) C F,
the filter F converges to two distinct points z and y, a contradiction

—

with the hypothesis. O

Let (X1,71), (X3, 72) be two topological spaces. A map f: X, —
Xy is called continuous at a point z € Xy, if f71(V) is a neigh-
borhood of z for every neighborhood V of the point f(z). A map
which is continuous at every point of X is called continuous.

2.2. Theorem. A map f: X; — X, is continuous at a point z €
Xy iff for every ultrafilter 7 on X; convergent to z, the ultrafilter

N

f(F) converges to f(z).

/

Proof. Suppose f 1s continuous at z but the ultrafilter f(F) does
not converge to f(z) for some ultrafilter F convergent to z. Select
a neighborhood V of f(z) such that V ¢ f(F). Let U = X, \ V.
By the Ultrafilter Criterium, U € f(F) and thus f~'(U) € F. On
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the other hand, by the continuity of f, f~'(V) is a neighborhood
of z. Since F converges to z, f~H(V) € F. But f~HU)Nf V) =
&, a contradiction with the fact that F 1s a filter.

| Suppose the ultrafilter f(F) converges to f(z) for every ultrafil-
ter F convergent to z. Suppose the map f is not continuous at z.
Select such a neighborhood V of point f(z) that f~H(V) is not
a neighborhood of z. The centered collection {U \ f~(V) : U €
B(z)} can be completed to an ultrafilter 7. Evidently, F converges
to . Since, by our assumption, the ultrafilter f(F) converges
to f(z), we have f~H(V) € F. Then we obtain NH. \fHV) e F,
f7Y(V) € F, a contradiction with the fact that F is a filter. O

A topological space is called compact if every open cover of
the space has a finite subcover.

2.3. Theorem. A topological space (X, 1) is compact iff every
ultrafilter on X is convergent.

Proof. Suppose a space X is compact but there is an E.@mmsmm.\%w
on X which converges to no point of X. Then for every point
2 € X there is an open neighborhood U, of z such that U, ¢ F.
From the cover of X by open subsets U,, € X, select a finite
subcover X = Uy, U--- U U, . By Corollary 1.8, at least OD@.Om
the subsets U, ,...,U,, belongs to F contradicting to the choice
of these sets.

Suppose every ultrafilter on X converges, but the space (X V.i
is not compact. Then there is a cover Uy, o € J, of (X, 7) which
has no finite subcover. For every finite subset F' C J let U(F) =
\U{Us : @ € F}. By our hypothesis, X \ U(F) # . The centered
family {X \U(F) : F is finite subset from J} can be completed to
an ultrafilter F. By the hypothesis F converges to some z € X.
Let U, be an element of the cover containing z. Clearly U, €
F. Let F = {a}. By the construction of F, X \ U(F) € wﬂ
a contradiction with U(F) € F. O

Let (X4,7a), @ € J, be a collection of topological spaces, and
X = [[{Xs : @ € J} the Cartesian product of X,. The elements
of X are the functions f:J — [ J{ X, : o € J} satisfying f(a) € X4
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for alle € J. Fix a finite subset K = {a, ... ,ant € J and for ev-
ery a € K fix a neighborhood U, of f, in (Xa.7a). Such a choice
determines the standard neighborhood W(ly, ..., U, ) = {g €

X iglar) € Uayy. ..y glan) € Us, } of f € X. Under a neighbor-
hood of f we understand any subset of X containing a standard
neighborhood of f. It is easy to see that the family B(f), f € X
of all neighborhoods satisfies (B1)~(B4). The so defined topology
on X is called Tychonov and X equipped with this topology is
called the Tychonov product of the family (Xoy7a), a € J.

The Tychonov topology can be characterized as the weakest
topology on the Cartesian product X such that all projections
pry: X — Xy, where pr (f) = f(a), are continuous.

2.4. Tychonov Theorem. The Tychonov product of any collec-
tion of compact topological spaces is a compact space.

Proof. Consider an arbitrary ultrafilter 7 on X. By the Ultrafil-
ters Image theorem, pr,(F) is an ultrafilter on the compact space
(Xa, 7). By Theorem 2.3 the ultrafilter BT, (F) converges to some
point zo € Xo. Let f € X be such that f(a) = z,, for every a € J.
By definition of the Tychonov topology the ultrafilter & converges
to the point f € X. Now Theorem 2.3. completes the proof. O

Let X be a set and m a positive integer. A collection A of
subsets of X is called m-regular with respect to a subset ¥V C X if
for every partition ¥ = Y, U---UY,, there is k and a subset A € A
such that A C ¥;. If a collection A is not m-regular with respect
to Y, then there is a partition Y = ¥, U--- UV, such that A Y
for every A € A and for every i = 1,....m. Such a partition is
called non-regular.

2.5. Compactness Theorem for partitions. If a collection A
of subsets of a set X is m-regular with respect to X and every
element of A is a finite subset, then there is a finite subset ¥ C X
such that A is m-regular with respect to V.

Proof. Let M = {1,...,m}, M, be a copy of M for every z € X.
Consider the Tychonov product M¥ = [H{M: : 2z € X}, where
each factor is endowed with the discrete topology. Suppose our
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theorem is not valid. Then for every finite subset ¥ € X there

is a non-regular partition ¥ = Y3 U --- U Y,,. Define the char-
acteristic function A of this partition letting h(z) = 1 iff z € Vi
Extend the function h to a map fy € M*. Let Fy = {fx :

Y C K, K is a finite subset of X}. The centered family {Fy

Y isa bb?m subset of X} can be completed to an ultrafilter 7. By
Tychonov Theorem, the ultrafilter 7 converges to a point f € M*X.
Consider X = X; U -+ U X,,, where X; = {z € X : f(z) = i}.
By the conditions of the theorem there is & and A € A such that
A C Xj. Consequently, f(z) = k for all z € A. Since F con-
verges to f, there is a finite subset ¥ C X such that A C Y and
fy(z) = f(z) for all z € X. The restriction of fy to the sub-

set V determines a nonregular partition ¥ = ¥; U --- UY,,. Since
fy(z) = kforall z € A, we have A C Y}, contradicting to the non-
regularity of this partition. d

2.6. Ultrafilters and amenability. Let G be a group, Exp &
the family of all subsets of G, [0,1] the unit interval. A map
w:Bxp G — [0, 1] is called left-invariant measure if:

D) w(G) =

2) if Ay,..., A, are pairwise disjoint subsets of GG, then
p(Ay U UAR) = p(Ar) + -+ p(Am);

3) p(gA) = p(A) for every subset A C G and every g € G, where
gA = {ga:ac A}.
If a left-invariant measure p: Exp G — [0, 1] exists, then the group G
is called amenable. It is known that given a left-invariant measure
on a group G, one can construct a two side invariant measure,
which is called a Banach measure.
Using the technique of ultrafilters, let us prove the amenability
of the group Z of integers. For any subset A C 7Z and natural
number n let

AN [=n,n]]
n NL, = e,
pal4) 2n + 1
Define the map pa: N — [0,1] letting pa(n) = pn(A). Fix a free

ultrafilter F on the set of natural numbers. mSa [0, 1] is compact
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and mécﬁgowm the ultrafilter 774(F) converges to a unique lim-
it ETC. Therefore, we have defined a map u: Exp G — [0,1]. The
required properties of u follow from the following results:

1"} pn(Z) =1 for every natural n;

2"y if Aq,..., A, are pairwise disjoint subsets of Z, then

t:m\r Uy \wiv = tzm\w; 4+ +.t:mxw3v

for every natural n;

/ | < )
3 pun(A+a)—pu,(4)] < LML for every integer a and natural n.
We refer the interested reader to the book 2] for the details on
the theory of amenable groups.

EXERCISES.

1. A group G is defined to satisfy the Fglner condiiion if for every & > 0 and
every finite subset K C G there is a nonempty finite subset U C G such
that for every g € K we have

(gU\U) U (U\gU)
Ul

< £,

Prove that each group satisfying the Fglner condition is amenable.

2. Prove that each abelian group is amenable.

Lo

. Let F' be the free group with two generators a, b. For each i € Z let H;
be the set of all words of F' that can be written as a*b? for some j € Z.
The partition F = |J{H; : i € Z} is called the won Neumann partition.
Using this partition prove that the group # is not amenable.
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Let X be a set, (X the set of all ultrafilters on X. For a subset
AC X put A = ﬁu € BX : A€ p}. Asubset W C X is called
a neighborhood of an ultrafilter p € X if there exists A € p such
that A C W. Conditions (B1)—(B4) are easy to check. Thus, we
have introduced a topology on the set of ultrafilters by means of
system of neighborhoods at each point.

Let us show that for every subset A C X the set A is open and
closed in the space SX. If p € A, then A € p and, consequently, A
is a neighborhood of each its point, i.e., A is open. Since X\ A =
X \ A, we see that the subset A is cl Omma as the complement of
an open subset.

Let p,q € §X. Choose a subset A € p such that A ¢ ¢g. Then
N/\» € gand A, X \ 4 are disjoint neighborhoods of the points p, g,

, the space §X is Hausdorff.

3.1. Theorem. The space X is compact.

Proof. Let 2 be an open cover of the space #X. Since each open
subset on BX is the union of subsets of the form A, without loss
of generality, we may suppose that 2 = {A : A € F}, where F is
a family of subsets of X. Let

Fl={X\A:AcF}

Suppose F' is centered, then F’ is contained in some ultrafilter p.
Since 2 is a cover of BX, there exists a subset A € F such that
p € A. On the other hand, X \ A € p. Since A € p, we have
X \ A € p, thus obtaining a contradiction with the fact that p is
a filter. Therefore, the family F' is not centered. Choose subsets
Ay,.. ., A, € F such that

(XN AN N(X N\ A4,) =

Then A,U---UA, = X and A;U---UA, = 8X. Thus, {A1,..., 4.}

is a finite subcover of 2. O
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Let ¢ be a filter on a set X and @ = {p € 8X : v C p}. Since
v ={|{A: A€ ¢}, we see that ¥ is a nonempty closed subset
of BX.

3.2. Theorem. For every nonempty closed subset H C X there
exists a filter ¢ on the set X such that H =

Proof. Let ¢ = {F C X : F & pfor every ultrafilter p € H}.
Obviously, ¢ is a filter and H C . Suppose H # % and choose
an ultrafilter ¢ € @\ H. Since H is closed in §X, there exists
a subset B € q such that BN H = @. Hence, X \ B € p for every
ultrafilter p € H. By definition of the filter ¢, we have X \ B € ¢
Since ¢ € B, we see that X \ B € ¢ which contradicts to the fact
that ¢ i1s a filter. O

hve

Identify the set X with the subset of all principal ultrafilters
in BX. If © € X, then {z} is a neighborhood of the principal
ultrafilter z and {z} = {z}. Thus, each point of X is isolated
in X, i.e., X is a discrete subspace.

Show that the subspace X is dense in §X. Let p € 83X and
A € p. Choose an arbitrary element a € A. Then the principal
ultrafilter a is contained in the neighborhood A of the ultrafilter p.

3.3. Theorem. Fach map f: X — Y of the subspace X C 3X
into a compact Hausdorff space Y can be extended to a continuous
map [ X — Y.

Proof. Fix an arbitrary ultrafilter p € SG. By Theorem 1.10, f(p)
is an ultrafilter on Y. Since Y is a compact Hausdorff space, by
Theorem 2.3, the ultrafilter f(p) converges to a ﬁbw@zm point y. Put

f(p) = y. Clearly, f is an extension of the map f onto 3X. Show
that f is continuous. Let ¥V be an arbitrary closed neighborhood

of the point ¥ = f(p). Then f~1(V) € p and f(A) C V, where
A = f7Y(V). We have only to note that A is a neighborhood of
the ultrafilter p. O

A centered family F of subsets of a set X is called a base of
an ultrafilter p if for every subset A € p there exists a subset F € F
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such that F' C A. Note that F C p and p is a unique ultrafilter
with this property.

Any map [ X — 0X can be extended to a continuous map
f:X — BX. Fix an ultrafilter p € 3X, a subset A € p and for
every element a € A choose an arbitrary set F, € f(a). Show that
the centered family of subsets of the form [ J{F, : a € A F, €
f(a)} is a base of the ultrafilter f(p). Choose an arbitrary subset
B € f(a). Since B is a neighborhood of the ultrafilter f(p) and
the map f is continuous, there exists a subset A € p such that

i\»vmw.%W@DWEVmWWmoH@/\mJ\mHmmeﬁ@mb.mwbom\wm
an extension of the map f, we have f(a) € B, ie., B € f(a) for
every a € A. Put F, = B, a € A. Then | J{f, : a € A} € B and
the proof is complete.

The constructed base of the ultrafilter f(p) will be called canon-
1cal. :

The space of ultrafilters is a particular case of a general con-
struction, the Cech-Stone compactification of a Tychonov space.
Further, all spaces considered are assumed to be Hausdordl.

A topological space X is called Tychonov (or completely reqular)
if for every closed subset ' C X and every point a ¢ F there exists
a continuous function f: X — [0, 1] such that f(F) =0, fla) = 1.
In other words, there exists sufficiently many functions from X to
[0,1] in order to separate points and closed subsets. Obviously,
every discrete space is Tychonov.

In 1937 Cech and Stone independently proved the following theo-
rem. For every Tychonov space X there exists a compact space X
satisfying the following properties:

1) X is a dense subset of the space §.X;
2) every continuous map f from X into a compact space ¥ extends

to a continuous map f: X — Y. .

Clearly, the space 3X satisfying the conditions of this theorem
is unique up to homeomorphisms which are the identity on X.
The space BX is called the anb-mwosm compactification of X.
Thus, the considered above space X of ultrafilters on the set X is
essentially the Cech-Stone compactification of the discrete space X.

The minimal cardinality of dense subsets of a topological space
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X is called the density of X.

Note that if the space X is Hausdorff, ¥ is a dense subset in X
and [Y'| = o, then [ X| < 227, Indeed, to each point 2 € X mmqub,
the family of subsets {UNY : U is a neighborhood of z}. Since ww\
is Hausdorff, we thus obtain an injective map of X into mvm@ Exp Y.

w.\m. Lemma. If X is an infinite discrete space, | X| = «, then
d(X2) = a. o

kUﬁoSm Let D be the Tychonov power of the discrete two-point
space D. Since |D| = 2%, the family of indexes of the Tvchonov
power X% can be identified with D°. Consider the wmﬁbmu\ B
of all open and closed subsets of the compact space D% Since
every open and closed subset of D is the union of a finite family
of standard neighborhoods of points, we have |B| = a. For every
mbxmﬂmﬁvmmw {fe + k= 1,...,n} C D% there mwwm#w a Umﬁﬂﬁow
A={Ar k=1, ,n} of the space D by subsets mew B such
that fi € Ay. Further, for any such partition 2 and anv function
v:{l,...,n} = X we define a map Pg ,: D — X by By (f) =
¢(k) whenever f € A,. Put ¥V = {Pao(f) : m< .N‘mm_w. By

construction, the set ¥ is dense in X% and
V< M%Q:_%ma n=12...}=a.

T (2%) ; ity i

»wcmv.&ﬁw nv MXQ. me reverse inequality is a consequence of
the following fact: the image of each dense subset in a Tychonov
product under the projection map onto a factor is dense in this
factor. U

3.5. Theorem (Hewitt-Marczewski-Pondiczery). Let Xiiel}
wm a family of topological spaces, o an infinite cardinal number, and
d(X;) < a for eachi € I, If|I| € 2% then d(JJ{X;:i¢e I}) < a.

Proof. Consider a discrete space X of cardinality o and for each i €
I fix amap f; of the space X onto a dense subspace Y; of X;. Define
the map f: X' — J[{X; : i € I} by the condition: nr. flp) =
Jilpr;p). By Lemma 3.4, there exists a dense in X/ mm“oﬁmﬁm‘om Y
of cardinality < a. Then f(Y) is dense in 'HY: : 7 € I} and,
consequently, d([[{X;:i ¢ I}) < a. _ 0
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3.6. Corollary. If X is an infinite discrete space of cardinality «,
then |3X| = 22".

Proof. Since the Hausdorff space X contains a dense subset of
cardinality o, we have |JX| < 22" Prove the reverse inequality. By
Theorem 3.5, the compact space D% contains a dense subspace ¥’
of cardinality a. Extend a bijection f: X — Y fo a continuous
map f: 68X — DY) Since f(8X), being the continuous image of
a compactum, is closed in D% and Y C f(BX), we have f(8X) =
DC*) | Consequently, |3X]| = 227, O

.3.7. Independent families of subsets. Let 2 be a family of
subsets of an infinite set X with [ X| = o. A map f:2 — Exp X is
called a function of choice of either f(A) = A or f(A) = X\ A for
every subset A € 2. A family of subsets 2 is called independent
provided ({f(A4) : A € F} # @ for every finite subfamily 7 C 2
and arbitrary function of choice f. .

Prove that there exists an independent family 2 of subsets of
the set X of cardinality 2%. Let ¥ = {yx : = € X } be a dense subset
of the space D7, |J| = 2%. Define the family A = {F(n) :n € J}
of subsets of the set X by the condition

z € F(n) & pryys = 1.

Let F = {F(m),...,F(nx)} be afinite subset of 2l and f a function

of choice. Choose an element y, so that

1, if f(F(m)) = F(m);

T . Yy = X
Ply. ¥ 0, if F(F(n:)) =X\ F(n).

Then z € ({f(A): A € F} and hence 2 is independent.

EXERCISES.
1. Let X be an infinite family of cardinality «. Prove that the cardinality of
the set of all uniform ultrafilters on X is equal |X].

2.~Prove that the cardinality of every disjoint family of open subsets in the
space $X does not exceed the cardinality of X.
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3. Let X be a countable set. Construct a disjoint family of open sets in the
space X \ X whose cardinality is continuum.

Al

Prove that the closure of every open subset in the space 5X is open.

Let p be an arbitrary element of the space §X. Prove that each countable
cover of the space X \ {p} contains a finite subcover.

(e
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Let S be a semigroup endowed with the discrete topology. We
are golng to expose a construction of extending the multiplication
operation from S onto 35.

For each element a € 5 define the map R,: S — S by the rule:
Ry(z) = za for every z € S. Since S C 35, the map R, can be
extended to a continuous map R,:3S — (5. Clearly, for every
ultrafilter p € 85 the filter R, (p) is an ultrafilter with a canonical
base {Pa: P € p}. Thus, we have defined the product pa = R,(p)
of the ultrafilter p € 85 and the element a € S.

Further, for each ultrafilter p € 35 we can consider the map
LS — S defined by the formula L,(z) = pz for every z € S.
Extend the map L, to a continuous map L,: 35 — 4S. If ¢ € 35,
the ultrafilter L,(q) is called the product of the ultrafilters p and ¢
and is denoted by pg.

Find explicitly a canonical base of the ultrafilter pg as the image
of the ultrafilter ¢ under the map L,. Take an arbitrary subset
Q) € g and for each element z € ) choose a subset P, € p. Actually,
the subset | J{P,z : € @} is, by the definition from §3, an element

of a canonical base of the ultrafilter L,(g).

It follows from continuity of the map Hﬁ that the multiplication
operation in 4S5 is continuous with respect to the second argument
with the first argument fixed. Therefore, for each subset A € pg

there exists a subset Q € g such that pQ C A. It follows from
continuity of the map R,, a € S that the multiplication operation
is continuous with respect to the first argument provided the fixed
second argument is a principal ultrafilter. Thus, for every subset
A € pa there exists a subset P € p such that P, C A.

Using these properties of the multiplication, we are able to prove
the associativity of the multiplication operation. Let p,q,r € 35.
Since (pq)r and p(gr) are ultrafilters, it is sufficient to show that
(pg)r C p(gr). Fix an arbitrary subset A € (pg)r and choose

a subset R € r such that (pg)R C A. Consequently, (pg)z € A for
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every element z € R. Since z is a principal ultrafilter, there exists
a subset F, C pq such that F,z C A. Further, choose a subset
Q. € g such that ¢Q, € F,. Thus, (pQ,)z C A for every z € R.
Choose an arbitrary element y € Q.. Since (py)z = p(yz), we have
plyz) € A for every y € Q,. Put B = [ J{Q.z : = € R} and note
that B is an element of a canonical base of the ultrafilter ¢r and,
in particular, gr € B. Since pB C A, we have p(qr) € A ie A€
p(gr). By arbitrarity of A € (pg)r we conclude that (pg)r < p(gr).

Suppose now that 5 is a right cancellative semigroup, i.e., the
condition za = ya implies z = y. Prove that the closed subset
GBS\ S C S is a subsemigroup of the semigroup 3S. Indeed, let
p,q € 8BS\ S and A € pg. Choose subsets Q € gand P, € p,z € ¢
such that | {P,x: 2z € Q} C A. Since p € 85\ 5, every subset Py
is infinite. The right cancellativity implies that the subsets P,z
are infinite. Consequently, the subset A is infinite and pg € 35S\ S.

A semigroup endowed with a Hausdorff topology is called left-
topological if the multiplication operation is continuous with re-
spect to the second argument with the first argument fixed, i.e.,
the left shift by each element of the semigroup is a continuous
map. We have proved above that 45 is a compact left-topological
semigroup. :

Recall that an element s of a semigroup is called an idempotent
if 2 = 3. A subset A is called a left (right) ideal of a semigroup S
if A C A (respectively Az C A) for every z € 5. An ideal .of
a semigroup is a subset that is both a left and a right ideal.

4.1. Theorem. Every compact left-topological semigroup con-
tains an idempotent.

Proof. Consider any chain 2 of closed subsemigroups of the semi-
group S. By compactness of the semigroup, the set (]2l is nonemp-
ty and, consequently, is a closed subsemigroup. Therefore, every
chain of closed subsemigroups has a lower bound. By the Kuratow-
ski-Zorn Lemma, there exists a minimal closed subsemigroup H
of S§. Fix an arbitrary element ¢ € H. Since (eH)(eH) C ¢H,
the subset eH is a subsemigroup. Continuity of the left shift by
the element e, compactness, and Hausdorfiness of the semigroup S



28 COMBINATORICS OF NUMBERS

imply that eH is a closed subsemigroup. Since H is a minimal
closed subsemigroup and e C H, we have eH = H. Consider
the set £ = {x € H : ex = ¢}. Since e € H, we have F # @. Ob-
viously, £ is a subsemigroup. It follows from continuity of the left
shift by e that £ is a closed subsemigroup. Since F C H, we have

E = H. Thus, e € F and e = e. O

4.2. Theorem. Let S be a compact left-topological semigroup.
Every minimal right ideal R of the semigroup S is closed. Every
right ideal H of the semigroup S contains a minimal right ideal.

Proof. Take an arbitrary element ¢ € R. Since R is a minimal
right ideal, we have aS = R. Continuity of the left shift by the el-
ement a, compactness, and Hausdorffness of S imply closedness
of the subset aS. Prove the second statement. Take an arbitrary
element h € H. Since hS C H, we see that H contains a closed
right ideal of the semigroup S. Consider an arbitrary chain 2 of
contained in H closed right ideals of the semigroup S. Since S is
compact, the subset (|2 is nonempty and, consequently, is a closed
right ideal. By the Kuratowski-Zorn Lemma, there exists a min-
imal closed right,ideal of the semigroup S contained in H. Take
an arbitrary element a € K. Since a5 C K and aS is a closed
right ideal, we have ¢S = K. Therefore, K is a minimal right ideal
of the semigroup S. O

A systematic exposition of the semigroup theory with differ-
ent continuity properties of operations is given in the book [5].
Solutions of problems 1-3 below can be found in Chapter 2 of

the book [3].

EXERCISES.

1. Let .S be an arbitrary semigroup and R a minimal right ideal of S. Prove
the following statements:
1) aR i1s a minimal right ideal of the semigroup S for every element a € 5
2) |U{aR : a € S} is a minimal ideal of S,
3) R contains no proper right ideal of the semigroup of R.

b

Let S be a semigroup without proper right ideals, 7(S) the set of idempo-
tanmte Af tha camiarnnm § and F{QY 4 O Prave tha fallawing etatemanta:
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1) es = e for every e € E(S) and s € S;
2) Se is a group with the unit e;
3) the semigroup S is isomorphic to the direct product Se x £(S).

3. Let e be an idempotent of a semigroup S and e.5 a minimal right ideal of 5.
Prove the following statements:
1) Se is a minimal left ideal of the semigroup S for every element a € 5,
2) SeS is a minimal ideal of the semigroup S
3) eSe is a subgroup of the semigroup of 5.

4. Prove that the closure of a left ideal of any left-topological semigroup is
a left ideal.

5. Suppose a left-topological semigroup S contains a dense subset A such that
ax = za for every a € A, ¢ € 5. Prove that every closed lieft ideal of
the semigroup S is an ideal.




§5. RAMSEY THEOREM.

5.1. Ramsey Theorem (infinite version). Let k,m be natural
numbers and [N|¥ denote the family of all k-element subsets of
the set of natural numbers. For each coloring x:[N]* — {1,...,m}

of the set ﬁé» into m colors there exists an infinite subset A C N .

J

such that all its k-element subsets have the same color.

Proof. The case k = 1 is obvious and is an infinite version of
the Dirichlet principle.

Consider the case k = 2. We identify elements of the set [N}®
with edges of complete graph with N vertices. Let Xo-= N and
fix any point zo € Xo. Among edges connecting the point zg with
points of the set Xo \ {zy infinitely many have the same color,
say, cp. Let

Xy =1{i€ Xo\ {zo}: x(z0,7) = co}-

Fix any point 1 € X; and consider edges connecting z; with other
points of the set X;. Among such edges there are infinitely many
having the same color, say, cz. Let

X HAM@.m NM/ATEW ./ ,SHGNW.

Fix any point 3 € X, 2o > 21 and select in Xp \ {z2} an infinite
subset X3 such that all edges connecting the point z; with points
of the set X3 have the same color, say, cj3.

Continuing in this way, we will construct a sequence T = {zo,
21, ...} such that for each edge {¢,#'} connecting points of T the col-
or of H:ﬁww depends only on min{¢,t'}. Using this fact we may
define a new coloring x* letting x*(t) = x({¢,#'}), where t' € T
is any point with ¢ > t. By the Dirichlet principle, some infinite
subset A is monochromatic with wmmwmoﬁ to x*, L.e., x*(a) = ¢ for
every a € A. By the definition of x*, this precisely means that
all two-element subsets of the set A C T have the same color with

respect to x.
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Consider the case k = 3. Let Xg = N and fix a point 9 € Xj.
Any coloring x: [N]* — {1,...,m} induces a coloring xo of pairs
from Xo \ {zo} by the rule xo(7,7) = x(20,7,7). By the Ramsey
Theorem for k = 2, the set X\ {zo} contains an infinite subset X,
such that /\AQ Lv = ¢; for all distinct 7,7 € X;. Fix any 71 € X3
wit W 27 > zo. The coloring y induces a ooyotbm v1 of pairs from
\Am \TSJ by the rule xi({i,j}). By the Ramsey Theorem for

2 the set Xy \ {x1} contains an infinite subset X, such that
x; 7}) = ¢z for all distinet 7,7 € X,. Continuing in this way,
we may oobm@cnw a set T = {zo,x1,...} such that the color of
any three-element subset {¢,t',t"} mmwms% only on min{¢,#,t"}.
Define a new coloring x* of the set 7' letting x*(t) = x({t,¢,t"})
for any t',¢", t < t' < t". By the Dirichlet @HBQEP there exists
an infinite subset A C 7 monochromatic with respect to x*. By
the definition of x*, all elements of [A]® are colored by one color.

We can assure readers that the same arguments work for any £.0J

5.2. Ramsey Theorem (finite version). For every natural num-
bers k,l,m, k < [, there exists a natural number n(k,l,m) such

that for every n = n{k,l,m) and arbitrary coloring ¢: [1, 54_»
{1,...,m} of the family [1,...,n]* of all k-subsets of the set Jﬁ
n} BHO m colors there exists an [-subset of the set {1,...,n} mznw

that all its k-subsets have the same color.

huﬁo&ﬁ.Mucﬂumﬂez_»mbmmﬁﬂﬁmﬁumﬁz;m_!ﬁ.Qomm&mw
an arbitrary partition X = Ay U---UA,,. By the infinite version of
Ramsey Theorem, there exists an infinite subset A C N such that
[A]¥ C A;. Choose an arbitrary l-subset B C A. Then [B]* C A4,.
Thus, the family 2L of subsets of the set X is m-regular with respect
to X. By the definition, every subset from the family 2 is finite. By
the compactness theorem for partitions (Theorem 2.5), there exists
a finite subset ¥ C [N]* such that the family 2 is m-regular with

respect to Y. There exists a natural number n(k,l,m) such that

v C[1,...,n(k,l,m)]*. Then the subset [1,...,n]* is m-regular
with respect to the family 2 for all n = n(k,[,m). This completes
the proof. OdJ

The minimal natural number n(k, [, m) satisfying the finite ver-
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sion of Ramsey Theorem is called the Ramsey number and is de-
noted by R(k,l,m).

5.3. Schur Theorem (infinite version). For every coloring x: N —
{1,...,m} of the set of natural numbers into m colors the equation
z +y = z has a monochromatic solution.

Proof. Define the coloring x*:[N]* — {1,...,m} by the rule
X i gk = x(lt = D).

By the infinite version of Ramsey Theorem, there exists an infinite
subset A C N such that x*{, 7} = const for every distinct elements
i,7 € A. Choose three elements 7,7,k € A, 1 < j < k. Then

xHuat =x" k= x{o k)

Sinse (j—1)+(k—j) = k—1, we obtain a monochromatic solution j—
1, k—7g, k—1. O

5.4. Schur Theorem (finite version). For every natural num-
ber m there exists a natural number S(m) such that for every
n = S(m) and an arbitrary coloring x:{1,...,n} — {1,...,m}
the equation z +y = z has a monochromatic solution in the set

{1,...,n}.

Proof. Consider the family 2 of the triples of distinct natural num-
bers {1, 7,k} satisfying the condition ¢ 4+ 7 = k. By the infinite
version of Schur Theorem, the family 2 is m-regular with respect
to N. By the compactness theorem for partitions, the family 2l is
m-regular with respect to some finite subset ¥ C N. We can take
mwmASVmﬁ%wmgﬁ&mcgvmamcoﬁgwwM\Mﬁf.gmmng. D

J

5.5. Corollary. For every natural number m the congruence z™ +
y™ = z™(mod p) has nontrivial solutions for every sufficiently large
prime number p.

Proof. It is well-known that the multiplicative group Z; = {1,...,
p} of the fleld Zj is cyclic. Take an arbitrary generator g of
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the group Zj. Foreach k € Zj there exists a unique ¢, 0 < ¢ < p—1,
such that k& = g'(mod p). Write ¢t =7+ myj, 0 < ¢ < m, and define
the coloring x:Z} — {1,...,m — 1} by x(k) = i. By Theorem 5.4,
for p = S(m) there exist numbers a,b, ¢ € Zy such that a +b = ¢
and a, b, ¢ have the same color, say, «. Hence,

a =g W (modp), b= g™ (modp), ¢c= Qiﬁinvﬁgomﬁwu

gtmite) | gitmi(b) = pitmie)

g g =g BOQ@V.

Multiplying the above relation by ¢!

the required solution:

in the group Z; we obtain

Further information on the Ramsey Theorem, its applications
and generalizations can be found in the book [1].

EXERCISES.

1. Prove that 2(2,3,2) = 6.

2. Let (an) be an infinite sequence of distinct elements of the group G. Prove
that for every partition G = A; U - U A, there exists a subset A, and
subsequence (b, ) of the sequence {a, ) such that bib: L e Ay for every i > j.

(9%}

Suppose each antichain in a partially ordered set X is finite. Prove that X
contains an infinite chain. (Recall that an aniichain is a subset consisting
of mutually incomparable elements).

4. Prove that for every natural number m there exists a natural number f(m)
such that every subset of the plane consisting of f(m) points in general
position (i.e. each line contains at most two points of the set) contains m
points which are vertices of a convex m-polygon.

5. A subset A of a metric space (X, d) is called uniformly discrete provided
there exists € > 0 such that d(z,y) > € for every distinct elements z,y € A.
Suppose an infinite subset ¥ C X contains no nontrivial Cauchy sequence.
Prove that there exists an infinite uniformly discrete subset A C Y.

6. A free ultrafilter p on the set of natural numbers is called a Ramsey ulira-

filter provided for each finite partition [N]? = A; U---U A, there exists

a subset A; and a subset A € p such that [A]?> C A;. Using the Ram-

sey Theorem and the Continuum Hypothesis consruct a Ramsey ultrafilter.

The Continuum Hypothesis can be applied in the following form of a count-

ing principle: every set of the continuum cardinality can be totoally ordered

so that every its initial segment is countable.
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Let (a,) be an infinite sequence of elements of a semigroup 5.
Denote by FP(ay,) the collection of all elements of the semigroup
having the form

OnyQng_y -« 0ny, Wheren; <mng < --- < ng.

A subset A of the semigroup S is called an FP-set provided there
exists an infinite sequence (a,) of distinct elements from A such
that FP(a,) € A. If the semigroup S i1s commutative and the semi-

group operation is denoted by “+7, we use the symbol FS instead
of FP.

6.1. Lemma. If a free ultrafilter p on a semigroup S is an idem-
potent of the semigroup (5, then any subset A € p is an FP-set.

Proof. Put Ag = A. Since pp = p and p € Ag, by continuity of
the multiplication with respect to the second argument, there ex-
ists a subset B € p, B C Ao, such that pB C Ag. Fix an arbitrary
element a; € B. Since pa; € Ag and a; € S, by continuity of mul-
tiplication with respect to the first argument, there exists a subset
Ay € p such that

Aja; C Ay, AL C Ay, ar ¢ A

Consequently,

»mrms C \wog \r m \LwcU ay € \wo / \ww.

Analogously, for the subset A; € p we choose an element ay and
a subset Ay € p such that

Agay C Ay, Ay C Ay, ap € AL\ Ay

Continuing the process we construct a sequence {(a,) and a decreas-
ing chain of subsets

Ay D Ay D-

\,

A, O ...

86. HINDMAN THEOREM

Lo
Ut

such mﬁ@ﬁ
Ay € p, Apa, T An_1, an € Ap—i /\»)iu

for each natural number n. Obviously, all elements of the se-
quence {(a,) are distinct and FPla,) C A. O

6.2. Hindman Theorem for semigroups. Suppose an infinite
semigroup S is either a semigroup without idempotents or a right
cancellative semigroup. Then for every finite partition S = Ay U
< - U A,, at least one of elements of the partition is an F'P-set.

Proof. By Lemma 6.1, it is suficient to prove existence of a free
dtrafilter on S which is an idempotent of the semigroup 35.

First suppose S contains no idempotent. By Theorem 4.1, there
exists an idempotent element p of the semigroup 55. By the con-
dition, the ultrafilter p cannot be principal and, consequently, p €
8BS\ S.

Let S be a right cancellativee semigroup. In §4 we have already
proved that 85\ S is a closed subsemigroup of the semigroup 5.
Applying Theorem 4.1 to the semigroup 35\ S we find an idem-
potent p € 85\ S. O

6.9. Remark. Theorem 6.2 cannot be extended onto arbitrary semi-
groups. Here is a trivial counterexample. Consider an infinite
set X, fix an element a € X and define the multiplication in 5 by
the formula: zy = a for every z,y € X. The required partition is
X = NH U awmwv where Lvm'w = JMQWQ ;N‘m =X / ‘N‘H,

The set of natural numbers considered with the addition {(mul-
tiplication) operation is a cancellative semigroup. It immediately
follows from Theorem 6.2 that for every partition N = A, U- - -UA,,
there exists an FS-set A; and an FP-set A;. The following theorem

shows that the indexes 7, j can be choosed equal.

6.4. Hindman Theorem for natural numbers. For every par-
tition N = A; U---UA,, of the set of natural numbers there exists
a subset A, which is an FS-set as well as an F'P-set.



36 COMBINATORICS OF NUMBERS

Proof. Consider the family I of all ultrafilters on N such that every
their element is an FS-set. By Lemma 6.1, I contains all idempo-
tents of the semigroup G(N,+), in particular, 7 # @. Note also
that 7 is a closed subset in 3N.

Show that [ is a right ideal of the semigroup B(N,-). Let p € I
and g € BN. Fix an arbitrary subset A € pg and choose a subset
Q € q such that p@Q C A. Take an arbitrary element a € ). Since
pa € A, there exists a subset P € p such that P, C A. Since P is
an FS-set, there exists an infinite sequence (a, ) of distinct elements
from P such that FS{a,) C P. Obvious inclusions

PS{ana) C PaC A

imply that A is an FS-set. By arbitrarity of 4 € pq, we conclude
that pg € 1.

Thus, the closed subset I is a right ideal and, in particular,
a subsemigroup of the semigroup B(N,-). By Theorem 4.1, I con-
tains an idempotent p of the semigroup B(N,:). By definition,
the subset I consists of free ultrafilters. It immediately follows
from Lemma 6.1 that every subset A € p is an FP-set. Conse-
quently, every subset A € p is both FP-set and FS-set. Now we
have only to choose a set of the partition N = A; U-:-U 4,, that
is an element of the ultrafilter p. d

Consider an application of the Hindman Theorem to the ring
theory. Let R be an arbitrary (not necessarily associative) ring.
A subset A C R is called algebraic provided there exists a finite
collection fi(z),..., fm(x) of ring polynomials such that

A=|HaeR: fi(a) = 0}.

A point b € R is called algebraically 1solated if R\ {b} is an algebraic
subset of the ring R. Note that if a ring has at least one isolated
point, then all points of this ring are algebraically isolated.

6.5. Arnautov Theorem. No infinite ring has algebraically iso-
lated points.

Tirct wra Farvvmislota fura aivnanla Tamaen aae
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6.6. Lemma. Let R be a ring, f(z) € R[z], deg f(z) = n. There
exists a polynomial g(z) € R[z] such that deg g(x) < n and

fe+a) = flz) + fla) + g(z)

for all elements a € R.
Proof is obtained by removing parentheses.

6.7. Lemma. Let f(z) € R[z|, deg f(z) =n,n €N, and
A= &Mm:f . .QQB.TMW C R.

If f(b) =0 for every b € FS(A), then f(0) = 0.

Proof. Induction by n. If n = 1, then

flayr) = flaz) = flay +az2) = 0.

>

By Lemma 6.6,

flar +a2) = flar) + flaz) + glaz

Consequently, g(az) = 0. Since degg(z) = 0, we have ¢g(0) = 0.
The relationship

(a1) = flar) + f(0) + g(0)

implies f(0) = 0.
Suppose deg f(z) = n. Then for every ¢ € FS{as,..., ans1}
the following relation holds

flayr + ¢ = flar) + fle) + gle).

Since
flay +¢) = flar) = f(c) = 0,

we see that g(c) = 0 for every ¢ € FS{as,..., a4 }. By induction,
f(0) = 0.
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The relationship

flar +¢) = f(a1) + f(0) + ¢(0)
implies f(0) = 0. O

6.8. Proof of Theorem 6.5. Suppose the contrary. Then the zero
of some infinite ring R is an algebraically isolated point. Choose

polynomials fi(z),..., fm(z) such that

R\{0}=A, U - UA,,

where

Ai={a e R: fila) =0}

By the Hindman Theorem applied to the additive group of the ring
R, in one of subsets of the partition, say A;, there exists an infinite
sequence (a,) C A; with FS(a,) € A;. Suppose deg fi(z) = k. Set
A=A{a1,... a1} By Lemma 6.7, f;(0) = 0, a contradiction. O]

b J i

6.9. Remark. A ring R is called topologizable provided there ex-
1sts a nondiscrete Hausdorff topology on R such that the ring op-
erations of addition, multiplication, and distraction are continu-
ous. By the Markov Theorem, any countable ring is topologizable
if and only if the zero is not algebraically izolated point. Thus,
the Markov and Arnautov theorems together imply topologizabili-
ty of every countable ring.

A history of the proof of the Hindman Theorem as well as its
generalizations and an information on the semigroup N are given
in the survey paper [6]. Our exposition of the proof of the Arnautov
Theorem follows the paper [13].

EXERCISES.

1. Prove the following generalization of the Hindman Theorem. Suppose an in-
finite semigroup S either contains no idempotent or is a right-cancellative
semigroup. If every FP-set from P is partioned onto a finite number of
subsets, then at least one of subsets from the partition is an FP-set.

2. An idempotent p of the semigroup £S5, for some semigroup S, is called
a strong idempotent provided p has a base of subsets of the form FP{an},
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where (an) is a sequence of different elements of the semigroup S. Sup-
pose an infinite semigroup S either contains no idempotent or is a right-
cancellative semigroup. Using the Continuum Hypothesis, construct a
strong idempotent of the semigroup 3S.

3. Construct a partition N = A; U As of the set of natural numbers such that
A+ AL A; for every nonempty subset A C A4;.
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Let m be a natural number, S the Tychonov product of m copies
of the semigroup B(N,+). The elements of the space S will be

—

represented as vectors p = (p1,...,pm). Note that the set S
a compact left topological semigroup with respect to coordinate-
wise addition of vectors. Put

@*HAQ@JT&...;@.TASIS&V”@mZ& ZCAB;;
I*={(a,a+d,..., a+(m—1)d):a€NdeN}.

Denote by £ and [ the closures in the semigroup S of the subsets £*
and I*, respectively.

7.1. Lemma. E is a subsemigroup of the semigroup S and [ is
an ideal of the semigroup K

Proof. Let p = (p1,...,Pm), w = (q1,.-.,9m), p,¢ € E. Take
an arbitrary neighborhood Vj x - - - x V,,, of the element p+¢. Using
the continuity of the addition with respect to the second argument
we can choose a neighborhood Uy x - - - x Uy, of the element ¢ such
that ,
P+ (U x- - xUp)TVy x---xVpy
Choose elements a € N, d € NU {0} (d € N if ¢ € [) such that
(a,a+d,...;a+(m—1)d) =&,

cUy X xUp. Sincep+z € Vi x---xV, anda,a+d,....a+
A — 1)d € N, there exists a neighborhood Wy x --- x W, of
the element p such that

(Wyx - X Wp)+2CVy X X Vi,
Choose elements b € N, e € NU {0} (e € Nif pe I) such that
AF@uTmi.;@lT?:iva =7,
yEW X+ X Wy, Theny+z € Vi x -+ X Vi,
@L.TuwﬂAQ+F@+@+&+9..;@+@+?;iC e)).
Hence, y + 7 € E* and, if eitherp & T or g& I ﬁwmbw\ Tel”

D
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7.2. Lemma. Ifp e 0N and p= (p,...,p), thenp € E.

Proof. Let Uy x --- x U,, be an arbitrary neighborhood of the cle-
ment p. Then U = U;N---NU,, is a neighborhood of the element p.
Choose an arbitrary element a € NN U. Then

(a,...,a) € (Uy x--- xUp)NE*. O

7.3. Lemma. If R is a minimal right ideal of 3(N,+), p € R, and
p=(p,...,p), thenp € I.

Proof. By Theorem 4.2, there exists a minimal right ideal ¥ in
the right ideal p + F of the semigroup £. Since F, by Theo-
rem 4.2, 1s a closed mcvmmﬁﬁqaos? Theorem 4.2 mﬁwggmmm exis-
tence of an &mgwoﬁma qe F. Since g€ p+ E, we have §=p+ 7
for some element 7 € E. Let ¢ = (q1,---,qm ), 7 = (T1,...,Tm ).
Then ¢; = p+r; € p+ SN, Since R is a minimal right ideal of
the semigroup B(N,+) and p € R, we have R = p+ SN = ¢; + ON.
Choose an element t; € SN msob that q; +1; . Then g; +q; +t; =
q; +t; = p. Consequently, §+p = pand p & %. :

It remains to prove that 7 C I. Since FI C F and FI C I, we
have FI C FF'nI. Consequently, NI # @. Since [ is an ideal and
Faright ideal, we see that £'N [ is a right 1deal of the semigroup £
and, by minimality of ¥ we obtain F' C [. O

7.4. Theorem. If R is a minimal right ideal of the semigroup
B(N,+), p € R, then every subset A & p contains arbitrarily long
arithmetic progressions.

Proof. Fix a natural number m and consider a neighborhood A x

-+ x A of the element p p = (p,...,p). By Lemma 7.3 there exists
x € I*N(Ax- x A Hrmﬂwﬂ?m d,. @+$;!5&\
a,d € Nwhilea,a+d,...;a+(m —1)d € A. O

7.5. Van der Waerden Theorem (infinite version). If the set
of natural numbers is partitioned into a finite number of subsets,
then at least one of subsets of the partition contains arbitrarily
long arithmetic progressions.

Proof. By Theorem 4.2 the semigroup (N, +) contains minimal
right ideals. Suppose R is one of them. Choose an ultrafilter p € R



42 COMBINATORICS OF NUMBERS

and a subset of the partition being an element of the ultrafilter p.
We have only to apply Theorem 7.4. O

7.6. Van der Waerden Theorem (finite version). For each natu-
ral numbers k, m there exists a number W (k, m) satisfving the con-
dition: if n = W(k,m), {1,....,n} = Ay U--- U A,,, then one of
the subsets A, contains an arithmetic progression of lenght k.

Proof. Consider the family 2 of all k-subsets of N that are arith-
metic progressions (with respect to the natural ordering). By
the infinite version of van der Waerden Theorem the family 2 1s
m-regular with respect to N. By the Compactness Theorem for
partitions, the family 2 is m-regular with respect to some finite
subset ¥ < N. Then the required natural number (k,m) can be
determined by the condition ¥ C {1,...,W(k,m)}. O

N

7.7. Remark. Considering the semigroup (N, -) instead of the semi-
group (N, +) and geometric progressions instead of arithmetic ones
in the above constructions it is easy to prove multiplicative coun-
terparts of Propositions 7.1-7.6. In particular, if E is a mimimal
right ideal of the semigroup B(N, ), p € R, then every subset A € p
contains arbitrarily long geometric progressions. Hence, for every
partition N = Ay U --- U A,, there exist subsets 4; and A; such
that A; contains arbitrarily long arithmetic progressions and A;
contains arbitrarily long geometric progressions. The following the-
orem shows that we may suppose ¢ = ).

7.8. Bergelson-Hindman Theorem. For every partition of the
set of natural numbers N = A, U---U A,, there exists a subset A;
that contains both arbitrarily long arithmetic and arbitrarily long
geometric progressions.

Proof. Consider the family W of all ultrafilters p onto N with
the following property: each subset P € p contains arbitrarily long
arithmetic progressions. By Theorem 7.4, W is nonempty. Show
that W is a right ideal of the semigroup G(N,-). Let p € W, ¢ € SN.
Fix an arbitrary subset A € pg and choose a subset ) € ¢ such that
pQ) C A. Choose an arbitrary element a € Q. Then Pa C A for
some subset P € p. By the definition of W, the subset P contains
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arbitrarily long arithmetic progressions. But then the set Pa also
contains arbitrarily long arithmetic progressions, and consequently,
so does A. By arbitrarity of A € pg, we conclude that pg € W.
Hence, W is a right ideal of the semigroup 3(N,-). By The-
orem 4.2, there exists a minimal right ideal R of the semigroup
B(N, ) contained in W. Consider an arbitrary ultrafilter p € R
and choose a subset A; of the partition such that A, is an element
of the ultrafilter p. Since p € W, the set A; contains arbitrarily
long arithmetic progressions. Since p € W, the set A; contains
arbitrarily long geometric progressions. O

Finally note that our exposition of the results of this section
follows the paper [7].

EXERCISES.

-

1. A filter  on the set of the natural numbersis called additive provided for
every subset A €  there exists a subset B € ¢ such that B+ B C A.
A subset A C N is called additive if A is an element of some additive filter.
Prove that any subset A is additive iff there exists a decreasing sequence of
subsets A D A; D .- D A, D ... such that Ay + -+ A, C A for every

natural number n.

- 2. Let ¢ be an additive filter, 7 = {p € SN : & C P}. Prove the following

statements:

(1) % is a subsemigroup of the semigroup G(N, +);

(2) if R is a minimal right ideal of the semigroup @, p € R, then every subset
A € p contains arbitrarily long arithmetic progresions.

3. Prove that for any partition of an additive subset A = Ay U---U A,, there
exists a subset A; such that A; is both FS-set and FP-set, and contains
arbitrarily long arithmetic and geometric progressions.
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Let m be a natural number, S the free semigroup with genera-
tors ai,...,am. Denote by H the Tychonov product of m copies
of the semigroup 35. The elements of the space H will be denoted
as vectors p = (p1,...,Pm). Note that the space H is a compact
left topological m@ﬁBmHoG@ with respect to coordinatewise multipli-
cation.

Consider an independent variable z and denote by F the set of
all words f(z) in the alphabet {a1,...,am,z}. Denote by £ C F
the subset of all words f(z) containing the element z. Set

N*HA (ar),..., flam)) : flz) € F},
Y= i\?lii?ﬁmivv : f(z) € F'}:
Let X and Y denote the closures in the semigroup H of the sub-

sets X* and Y* respectively. The following statements 8.1-8.5 can
be proved anagously to the statements 7.1-7.5.

8.1. Lemma. X is a subsemigroup of the semigroup H, Y 1is
an ideal of the subsemigroup X.
8.2. Lemma. Ifpc 3S and p=(p,...,p), thenpec X.
8.3. Lemma. If R is a minimal right ideal of the semigroup 35,
pER,andp=(p,...,p), then p € R.

8.4. Theorem. qu is a minimal right ideal of the semigroup 35,
p € R, then for every subset A € p there exists a word flz) € F'
such that \?:u ,flam) € A

8.5. Hales—Jewett Theorem. Suppose the free semigroup with

generators ay, .. ., an is partitioned into a finite number of subsets
=S, U---US,. There exists a semigroup word f(z) in the al-
phabet {a1,...,am,z} containing the element r and a subset S

such that f(ai),..., f(an) € i

‘An original proof of Theorem 8.5 is sketched in Exercises 4-7
at the end of this section. We can derive some corollaries from
the Hales—Jewett Theorem.
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8.6. Theorem (a strengthened version of the van der Waerden
Theorem). Let m be a natural number, (yx) an infinite sequence
of natural numbers. For each partition N = By U --- U-B,, at
least one of Zum subsets from the partition contains an arithmetic
progression b,b +d, ... b+ md, where d € FS{yy).

Prodf. Put 2 = {0,1,...,m} and consider the free semigroup S
with the set of free generators 2. Define the map ©: S — N by
the following manner. Arbitrary element s € S can be written in
the form s;...54, 5; € Q0. Put

Si={s€S:p(s) € B)

By the Hales—Jewett Theorem, there exists a word f(z) in the al-
phabet QU {z} containing the element z and an index j such that
fla) € S; for every a € Q. Suppose f(z) = a; - ... as, where
a; € QU {z} and for at least one ¢ we have a; = z. Consider
the partition of the set {1,...,t} into two subsets F = {i : a;, = z}
and G'={1,...,t} \ F. Note that F # &. Putd = {y; :71 € F},
b=1+3 {aiy; i € G}. Then b+ ad = ¢(f(a)) for every a € Q.
Consequently,

bb+d, ... .b+mde B;, de FSly,). 0

8.7. Gallai Theorem. Let k,m be natural numbers and N* the
set of k-dimensional vectors with positive integer coordinates. For
every partition N* = By U --- U B, there exists an index i and
subsets

Ay = {bi,by +d,. . by +md),. . A = {bx, bk + d, ... bx +md)

such that Ay x --- x Ay € B;.

Proof. For the sake of simplicity we consider only the case k = 2.
Suppose S is the free semigroup with the set of generators

Q={0.7) 1.9 =0..... mt.




46 COMBINATORICS OF NUMBERS

Define the map ¢: S — N? by the following manner. Each element
s € S can be represented in the form sy ...s¢ € () and we put

o(s) = ?SJrMT:;H 1,...,t}

Let S; = {s € §: p(s) € B;}. By the Hales-Jewett Theorem,
there exists a containing « word f(z) in the alphabet QU {z} and
an index j such that f(a) € S; for every a € Q. Suppose f(z) =
aj ...as, where a; € QU {z} and for at least one 7 we have z; = z.
Decompose the set {1,...,%} into two subsets /' = {i : a; = z} and

G =A1,...,t} \ F. Note that /' # @. Set d = |F| and

(b1, by) = (1,1) + » {aizi€ G}
Since ﬁmi@vv € Bj for every a € {2, we have A; x A, C B;, where

Aq Hmmﬁwvu +Dﬂ..§®~ +3&wv
.\wm Hﬁwwummen&,V@mnTs&w

The theorem is proved. , O

8.8. Graham-Leeb-Rothschild Theorem. Ifan infinite-dimen-
sional vector space V over a finite field F' is partitioned into a finite
number of subsets, then at least one of the subsets of this partition
contains affine subspaces of arbitrary finite dimension.

Proof. Consider the case F = Zz = {0,1,2} and find a two-
dimensional affine subspace in one of the subsets of a partition
V =V, U---U Ve Actually, this case demonstrates all essential
features of a general proof. Suppose B is a base of the space V and
(Jn), (Zn) are two disjoint infinite sequences of distinct elements

of B. Put
Q= AAOQCVV Aou wvgﬁovwvv ﬁ“@vu?u S“ vawvu AMVOY mmw wvawgmvw.,

Denote by pr;(a) the ith coordinate of a € £, 1+ = 1,2. Consid-
er the free semigroup S with the set of generators {2 and define
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the map ¢: S — V by the following manner. Any element s € §
can be represented in the form s{...s, s; € Q. Put

wls) = MM@HK&VF +pry(si)Ziti=1,... u&.

Let 5; = {s € §: ¢(s) € Vi}. By the Hales-Jewett Theorem,
there exist an index j and a containing z semigroup word f(z) =
ay...ar in the alphabet Q U {z} such that f(a) € S, for every
a € Q. Consider the partition of the set {1,....t} into two subsets
H=A{1:a; =2} and G ={1,...,t} \ H. Note that H # &. Let

T=) {fi:icH}, 7= {Z:ieH)

Since H # @, by the choice of the sequences (7,) and (Z,) the span
W of the vectors « and ¥ is two-dimensional. Put

—

b= {pr,(ai)gi + pry(ai)Zi 1 i € G}.

Then
b+ W ={¢(f(a)) racQ} TV

and the theorem is proved.

L7

Fix natural numbers &, n and consider the set
Vik,n)={1,... k}"

of n-dimensional vectors with coordinates from the set {1,...,k}.
Suppose I C {1,...,n} is a nonempty subset and for each i
{1,...,n} \ I choose an element a; € {1,....k}. A combinatorical
line is a set of vectors (z1,...,2%) € V(k,n) satisfying the condi-
tions:

(1) 2; = z; for every 4,5 € I;

(2) zs=a;forevery i€ {1,...,n}\ I.

Note that, since I # @, every combinatorical line in Vik,n)
contains exactly n points.
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8.9. Theorem. For every natural numbersk,m there exists a nat-
ural number n(k, m) such that if n > n(k,m), then for every color-
ing of the-set V(k.,n) into m colors there exists a monochromatic
combinatorical line.

Proof. Consider the free semigroup with set of free variables {1 =
{1,...,k}. Consider a coEEBEm an element z word f(a) in the al-
wmww@u QU{z}andlet Ay ={f(a):a € Q}. Denote by A the fam-
ily of all such A;. By the Hales-Jewett Theorem, the family
is m-regular with respect to S. By the compactness theorem for
partitions, the family 2 is m-regular with respect to some finite
subset ¥ C S. Denote by n(k,m) the maximal length of the words
from Y. If n 2 n(k,m), then the subset S, consisting of the words
of length < n from S noamsmm the subset Y. Therefore, the family A
. Construct a map ¢: S, — V(k.n).
S Sn €5, owwmwmﬁmw n
..Sn, Where s, = -+ = s, = L

is m-regular with respect to S
Consider an arbitrary &@5@3 § = 8y
and put ©(s) = $1...8p5p41 .
Suppose V(k,n) = Vi U--- UV, is an arbitrary partition. Since

Sp = (W)U U (Vi)

and the family 2 is m-regular with respect to S,, there exists
an index j and a containing z word f(z) in the alphabet Q U {z}
such that Ay C @71 (V;). It is clear that p(Ay) is a combinatorical
line in V(k,n) and o(Af) C V. O

Consider the following higher-dimensional generalization of the
tic-tac-toe game. The game G(k,n) has the set V(k,n) as its field.
The first player chooses an arbitrary element from V(k,n) and
marks it by the symbol “x7.
the nonmarked elements from V(k,n) and marks it by the symbol

A winner is a player who first marked a combinatorical line in
V (k,n) his/her symbols. It may happen that there is no monochro-
matic combinatorical line although all the elements of V(k, n) are
marked (a drawn game). Standard arguments of the theory of posi-
tional games show that either the first player has a winning strategy
or the second player has a drawn strategy in G(k,n). It immedi-
ately follows from Theorem 8.9 for m = 2 that for every natural

The second player chooses one of
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number k there exists a natural number n such that the first player
always wins in G(k,n).

The Hales-Jewett Theorem is proved in [10].
follows the paper [8].

Our exposition

EXERCISES.

1. Suppose 5 is a finite commutative semigroup. Prove that there exists a nat-
ural number n and an element s € S such that the subset {s"a : s € S} is
a singleton. )

2. The Euclidean plane is divided into unit squares by the lines of the form
z = a, y = b, where a,b are arbitrary integers. Some integer number is
placed in each unit square. Prove that for every natural number k there exist
integers a,b,d, d # 0, such that the sum of numbers placed in the square

{(z,y)a<e<a+db<y<b+d}

is divisible by k.
3. Formulate and prove a finite version of the Graham-Leeb-Rothschild The-
orem.

1SS

. Let n,m be natural numbers, X, Y sets, |X| = m. Suppose a family 2 of
subsets from X is n-regular with respect to X and a family F of subsets
from Y is n™-regular with respect to Y. Prove that the family of subsets

AxF={AxF:AcU FeF}

1s n-regular with respect to X x Y.

5. Suppose a family 2 of finite subsets of a semigroup S is n-regular with
respect to S for every natural number n. Prove that for every natural
numbers &, n the family of subsets

MN?AHM\K. \»w“xf‘mmﬁ

is n-regular with respect to S.

7. Let S be the free semigroup with a countable family of generators (.
For a finite subset A C Q denote by A(A) the family of all subsets of
the form f({A), where f is a containing an = word in the alphabet AU {z}.
Let I(n,k) denote the following statement. For every n-element subset
A < U the family A(A) is k-regular with respect to the semigroup generat-
ed by the subset A. Using induction prove statements I(n, k) for all natural
numbers n, k



§9. RADO THEOREM.

To prove the Rado Theorem, we need the following strengthened
version of the van der Waerden Theorem.

9.1. Theorem. For every natural numbers k,m,s there exists
a natural number M (k,m,s) satisfying the condition:
if

n =z M(k,m,s),

then for every coloring of the set {1,...,m} in m colors there exist
natural numbers k, d such that the numbers d + a,a + kd, sd have
the same color.
Proof. Induction by m. For m = 1, we can take M(k,1,s) =
max{k+1,s}, d = a = 1. For m > 2 fixed, suppose M(k,m —1,s)
exists for each k,s. For natural numbers z,y, denote by W(z,y)
a number determined by the finite version of the van der Waerden
Theorem (Theorem 7.6).

Show that sW (kM (k,m —1,5),m) can be taken as M(k, m,s).

Consider an arbitrary coloring
AL My = {1, m]).

By definition of W{(z,y), there exist natural numbers a,d’ such
that

{a+id  1<i<kMk,m—-1,5} C{1,..., W(k,m—1,s),m)}

and all elements a+1id’ of the progression have the same color, say,

red.
There are two possibilities.

1) The number sd'j is red for some 7 < M(k,m—1,s). Putd = jd".
Then the numbers a + d, ..., a + kd, sd are red.

2) The number sd'j is not red for every 7 < M(k, m —1,s). Hence,
the elements of the progression {sd'j : j = 1,..., M(k,m—1,3)}
are colored in m — 1 colors.
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Forj=1,....,M(k,m —1,s) let x*(j) = x(ed'j). By definition of
M(k,m — 1,s), there exist numbers A + D, ..., A+ kD,sD from
the set {1,...,M(k,m — 1,s)} which have the same color with
respect to x*. Hence, the numbers

sdA+sd'D,...,sd A+ ksDd' s(sd' D)

have the same color with respect to the initial coloring x. O

9.2. Corollary. For every natural numbers k, s, m and arbitrary
coloring of the set of natural numbers into m colors there exists
natural numbers a, d such that the numbers

{a+Ad:A=0,%1,...,+k}

and sd have the same color.

Proof. By Theorem 9.1 there exist numbers

b+d,...;0+(2k+ 1)d, sd

which have the same color. Set a = b+ (k + 1)d. O

Recall that a linear equation ¢iz1 + - -+ cpx, = 0 with nonzero
entire coefficients is called regular provided for every finite coloring
of the set of natural numbers there exists a monochromatic solution
of this equation.

9.3. Rado Theorem. A linear Diophantine equation cyx +-- -+
cntn, = 0 with nonzero entire coefficients is regular if and only if
some nonempty sum of its coefficients is zero.

Proof. Suffictency. Suppose the sum of some coeflicients is zero.
Renumerate the coefficients so that ¢; +--- + ¢x = 0. Let x be
a finite coloring of the set N. If & =n, put z; = --- =2, = 1.
Obviously, this gives a monochromatic solution of the equation.
Thus, in the sequel we suppose that £ < n. Put B = ¢pp1+- - +cn.
If B=0,thenci+---+c, =0, and, once again, zy = -+ - = z,, = 1
is a monochromatic solution. Consequently, we may suppose that

B 40.
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Let
A=G.CD.cy,...,ck), s=A/G.CD.(A B).

There exists an integer ¢ such that At + Bs = 0. Choose integers
A, ..., g such that c; Ay + -+ - +cx Ap = At. We claim now that for
every natural numbers a, d the equation has a parametric solution
of the form ‘

a+Nd, 1=1,...,k;
T =

sd, t=k+1,...,n.
Indeed,

n k 7 k n
M CiT; = MQE + M CiT; = MU cila + Aid) + MU c;ed =
i=1 i=1 i=k+1 i=1 i=k+t1

k k n
H@MS.T&MUE\K{TMQ MU ci =a- -0+ dAt +dsB = 0.
i=1 i=1 i=k+1

Finally, choose kg > max{|\;| : i = 1,...,k} and s as above. Ac-

cording to Corollary 9.2 there exist natural numbers a, d such that
the numbers {a + Ad : A = 0,+1,...,+ko} and sd have the same
color. However, by definition of kg, this set contains a solution of
the equation.
Necessity. Suppose the contrary: there exists no nonempty zero
sum of coefficients of the equation. For prime p, define a coloring x,
of N by the following manner. Each natural number z can be
represented in the form = = p®(pt + k), where 1 <k < p —1; put
Xp(z) = k. Thus, x, is a (p — 1)-coloring of N.

Suppose the equation has a monochromatic solution, say, of col-
or k. Let z; = p®~!(pt; + k) be such a solution. Without loss of
generality, we may suppose that

QMHHQSAQS‘TM/A/MD:H
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(we do not exclude the case m =n). Then
n
D ep®(pti + k) = 0.
=1

Cancelling this relation by p®* and passing to residues mod p we
obtain

M ci(pti + k) = 0(mod p),

=1

k MU ¢i = 0(mod p).
=1

Y
=)
&
&
i
IN

k <p—1and pis prime, we conclude that

n

MU ¢; = 0(mod p).

1=1

. . . . T
However, if p is sufficiently large, then, necessarily, > ", ¢; = 0,
a contradiction. O

i

The above proof of the Rado Theorem is taken from [1].

EXERCISE.

1. Find a finite coloring of the set N such that the equation z +y — 3z = 0
has no monochromatic solution.
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A pair (S, X), where X is a compact Hausdorff space and 5
a semigroup of continuous selfmaps of X, is called a topological
dynamaics.

A nonempty closed subset A C X is called invariant provided
s(A) € A for every map s € 5. An invariant set M is called
manimal if M contains no proper invariant subset.

The set Orb(z) = {s(z) : s € S} is called the orbit of z € X.
The closure Orb(z) of the set Orb(z) is called the topological orbit
of z € X.

10.1. Lemma. For every z € X the topological orbit Orb(z) 1s
an Invariant subset.

Proof. Suppose the contrary and choose a point y € Orb(z) and
a map s € S such that s(y) ¢ Orb(z). Put V = X \ Orb(z).
Since V is a neighborhood of s(y) and s is continuous, there exists
a neighborhood U of y such that s(U) C V. Since y € Orb(z),
there exists a map f € S such that f(z) € U. However, sf(z) € V
and sf(z) € Orb(z), a contradiction with V' N Orb(z) = @.

(]

10.2. Lemma. A subset M C X is minimal if and only if M =
Orb(z) for every z € M.

Proof. Suppose M is a minimal subset and z € M. Then Orb(z) C
M, by invariantness of M. Since M is closed, Orb(z) C M. By
Lemma 10.1, the subset Orb(z) is invariant and minimality of }
implies that M = Orb(z).

To prove the converse implication, suppose M = Orb(z) for
every ¢ € M. Given an invariant subset A € M and y € A, we
have M = Orb(y) € A, hence, M = A, O

10.3. Lemma. Every invariant subset A C X contains a minimal
subset.

Proof. Consider an arbitrary chain 2l of contained in A invariant
subsets. Since X is compact and all the elements of 2 are closed,
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the set F = (|2 is nonempty. Obviously, I is a lower bound of
the chain 2. By the Kuratowski-Zorn Lemma, there exists a min-
imal subset contained in 2L O

A point z € X is called recurrent provided z € Orb(z). In other
words, z is recurrent if for every neighborhood U of z there exists
a map s € S such that s(z) € U.

A point z € X is called uniformly recurrent if z € Orb(z) and
the set Orb(z) is minimal. By Lemma 10.2 and 10.3, for every topo-
logical dynamics (5, X) there exists a uniformly recurrent point
z € X. This statement is known as the Birkhoff Theorem.

To characterize uniformly recurrent points, introduce the fol-
lowing definition. A subset H of a semigroup S is called syndetic
provided there exist elements s1,...,s, € S satisfying the condi-
tion: given any s € S there exists ¢ such that s;s € H. In other
words, a subset H is syndetic if there exists a finite subset /7 C 5
such that Fs N H # @ for every s € S.

10.4. Theorem. Let z € X, M = Orb(z), and z € M. The

point z is uniformly recurrent if and only if for every point y € M
and intersecting M open subset U the subset

H={seS:s(y)elU}

is syndetic.

Proof. Necessity. Put
sHU)={z€X:s(z) €U}, W=|J{s7"(U):s€eS}

Since all maps from S are continuous, the subset W is open and,
consequently, M \ W is closed. Suppose that M \ W # @. Let z €
M\W and f is a fixed element of the semigroup 5. By invariantness
of M, we have f(z) € M. If f(z) € W, then sf(y) € U for some
map s € S. But then z € W, a contradiction with the choice of z.
Therefore, f(z) ¢ W and the subset M \ W is invariant. Since
UNM # @, we have M \ W # M thus contradicting minimality
of M. Consequently, M \ W = &.
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The cover {s™'(U) : s € S} of the compact subset M contains
a finite subcover {s; 1 (U),..., s} (U)}. Consider an arbitrary ele-
ment s € 5. Since s(y) € M, there exists 1 such that s(y) € s~ (U).
Hence, s;3(y) € U and s;5 € H.
Sufficiency. Suppose z is not uniformly recurrent. Then there ex-
ists a proper invariant subset A C M. Put U = X \ 4 and choose
an arbitrary element y € A. Then UN M # @, y € M, and
the subset

H={se5:s(y)eU},
being empty, cannot be syndetic. O

10.5. Corollary. Suppose T is a continuous selfmap of a compact
Hausdorff space X and S = {T™ : n € N}. A point z € X is
uniformly recurrent if and only if for every its neighborhood U there
exists a natural number m such that for every natural number n
at least one of the points T"*1(z),..., T"*™(z) belongs to U.

Proof. Suppose z is a uniformly recurrent point and U is a neigh-
borhood of z. By Lemma 10.4, the subset

H={seS:s(z)eU}

is syndetic. Thus, there exists a finite subset F C S such that
FsNH # @ for every s € S. Without loss of generality we may
suppose that F' = {T,...,7™}. Hence, for s € T there exists
a map T* € F such that T"*(z) € U. .

Conversely, suppose for every neighborhood U of z there exists
a corresponding number m. Suppose that the subset Orb(z) is not
minimal and find a proper invariant subset A C Orb(z). Since z ¢
A, there exist open subsets U,V such that z € U, AC V., and U N
V' # @. Find a natural number m satisfying the property: for every
natural number n at least one of the points 77! (z), ... Tn ™ (z)
isin U. Fix an arbitrary point a € A and choose a neighborhood W
of a such that

TWYCU..... T™(WY C U

X
=1
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Since g € Orb(z), we see that T*(a) € W, for some natural num-
ber k. But then

T Y z)eV,...,T" ™) eV,

a contradiction. U

The following lemma plays the crucial role in the our proof of
the Furstenberg-Weiss Theorem on joint recurrence.

10.6. Lemma. T4,..., T} be pairwise commuting continuous self-
maps of a compact Hausdorff space X and S the generated by maps
Ty,..., Ty semigroup such that (S, X) is a minimal topological dy-
namics (i.e., the space X contains no proper minimal subsets). For
every open subset U there exist an open subset V C U and a nat-
ural number n such that

TMV)C U, TRV)CU.

Proof. Let z € U. Since the point z is uniformly recurrent, by
Theorem 10.4, there exists a finite subset F' C S such that FsNH #
& for every s € S, where

H={se S s(z)eU}.
For every map 7' € F' put
S(Ty = {(n1,...,nx) eNF T . TP € HY.

e~

Since Fs N H + @& for every s € S, we have
N* = | {S(T): T e F}.

By the Gallai Theorem (Theorem 8.7), there exist T € F and
natural numbers a;,...,ak,n such that

a1+ney ar+nep =
TTEtre | Totres o
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1}

. ai mag
Ty = TTH ... TP,

for every eq,.
Put

Then To(z) € U and, by commutativity of the semigroup S, we
have T (To(z)) m U for every i = 1,...,k. Using continuity of
the maps T4,. ..., Tk, choose an open neighborhood V' of the point
T(zp) such that < C U and

T(V)CU,...,.Te(V)CU. O

10.7. Furstenberg-Weiss Theorem. Let T,..., T} be pairwise
commuting continuous selfmaps of a compact metric space X. The-
re exist a point x € X and an increasing sequence (n;) of natural
numbers such that v

Proof. Using Lemma 10.6 and metrizability of the space X, choose
a sequence of open subsets (U;) and a sequence of natural num-
bers (n;) such that

wi.u C q M{.:“.AN\I.MV m @4? .w = w diam Q«w 1

for all natural numbers 1. Here U; denotes the closure of U; and
diam U; the diameter of U;, i.e., the supremum of distances between
pairs of points of I/;. By compactness of X and the choice of
the sequence (U;), we have

(WT::ieN} ={z}.

Obviously, the point z satisfies the statement of the theorem. [
A point z satisfying the statement of Theorem 10.7 is called
a joint recurrent point of the maps T3,..., T%.

10.8. Symbolic dynamics. As usual, N denotes gm set of in-
tegers. Suppose K is a finite set and K7 the Cartesian product
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of 7 copies of K. The elements of the set ¥ will be represented by
the vectors of the form

We endow YV with the metric d defined as follows: d(z,y) = 1

whenever z(0) y(0) and d(z,y) = =5, where k is the least
natural number such that

+1

(k) = y(—k),...,z(0) = y(0) co(k) = y(k),
whenever z(0) = y(0). Note that this metric generates the Ty-

chonov topology on ¥ (the set I{ is considered as a discrete topo-
logical space).

Define the left shift map T:Y — Y by T'(y) = ', where y Qi,
y(k + 1) for every k € Z. Note that T is continuous and put
S = mmw; n e zw

A topological dynamics (S, X), where X is an invariant sub-
space of Y, is called a symbolic dynamacs. Applying a suitable
symbolic dynamics, derive the van der Waerden Theorem from
the Furstenberg-Weiss Theorem. Similarly, the Gallai Theorem
can be derived.

Consider an arbitrary partition Z = A; U--- U Ay and fix a nat-
ural number m. Our aim is to find an arithmetic progression of
length m in one of the subsets of the partition.

Define the characteristic function z(¢) of the partition by the
condition: z(z) = i if and only if if z € A;. The function z(?)
can be naturally identified with an element r € K*, where K =

., k}. Put X = Orb(z). Apply the Furstenberg-Weiss Theo-
rem wo the family 7, 7%, ..., 7™ of @m&éﬁmm commuting continuous
selfmaps of the space X. Suppose y € X is a joint recurrent point
of the maps T,72,...,T™, y(0) = j. Consider the neighborhood

{u € X : u(0) = j} of the point y and choose a natural
number n such that

T (y) e U, T™y)elU,...,T™(y)el.
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Using continuity of the map T find a neighborhood V of the point y
such that

T™VyCU, T*™V)CU,.

LTV C UL

?

Since y € Orb(z) and V' is a neighborhood of the point y, there
exists a natural number a such that 7%(z) € V. Hence

T (T%(2)) € U, T*™(T%*(x)) €U,....,T™"(T%z)) € U.
By the definition of U, we obtain that
zla+n)=z(a+2n)=- - = z(a +mn) = 7.

Thus,

{a+n,a+2n,. .. ,a+mn} C A,

and we are done.

The original topological proof of the Furstenberg-Weiss Theo-
rem is contained in the survey [11]. Our exposition follows the
paper [12].

EXERCISES.

1. Derive the Gallai Theorem from the Furstenberg-Weiss Theorem.

2. Prove the following extension of the Furstenberg-Weiss Theorem: Let {7}, :
m € N} be a countable set of pairwise commuting continuous selfmaps of
a compact metric space X. There exists a point z € X satisfying the con-

dition: for every neighborhood U of z and every natural number m there
exists a natural number n such that

TP (z)yeU,..., Ty (z) € U.

5]

Show that the metrizability of the compact space X in the Furstenberg-
Weiss Theorem is essential. For this, use the following example. Let

Nﬂﬁﬁmwammnwmﬁmywm%w

be an annulus on the complex plane. Define a new topology on X.
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wcv@mvmm z = rel™0 1 <t < 2, the base bmwmv_uodwoom Us, 1 < e <
min{r — 1,2 — r} is:

U ={se®™ .0 < |s —r] < <}

If r = 1, the base neighborhood L., 0 <& < 1 of z 1s:
Le={se""% 1< s <14+elu{se®™P . 1 <5 L2,0<b—p<e}

If r = 2, the base neighborhood R., 0 < e < 1 of z is:
R. Hkﬁ.mmwim“wlmAmAmeﬁmmmim 1< s <€ 2,0 Aﬁ,lmAmw,

The sets U., L., L. form a base of a topology on X.
Yor a fixed irrational o define the map 7: X — X by the formula:

\MJ?.mmu;,mv — %mmﬁim-,va }

Prove the following statements:

1) X is a connected compact space;

2) the maps T, T~ are continuous;

3) for every point z € X there exists a neighborhood U of 2 such that
{T™(z), T~™(z)} € U for every natural number n.
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Let G be an arbitrary group and p an ultrafilter on the group G.
For a subset A C &, the set

cl(A,p) = {z € G: Pz C A for some subset P € p}

is called the closure of A with respect to the ultrafilter p.
11.1. Lemma. We have &T»:dv =P 1A:Pcp}

Proof. If z € cl(A,p), then there exists a subset P € w such that
Pz C A. Consider an arbitrary subset P € p and put P, = PNP;.
Since P, C P;, we have Poz C A. Hence, z € P, 'AC P71A.

On the contrary, suppose z € P~'A for every subset P € p.
Suppose that = ¢ cl(A,p). Then Pz C A for every subset P € p.

Since p is an ultrafilter, there exists a subset Py € p such that
M

Piz N A = @. Therefore, z ¢ P ' A, a contradiction. O

11.2. Theorem. For an ultrafilter p € 3G the subset p(0G) is
a minimal right ideal if and only if for every subset A € p there
exists a finite subset K C (G such that cl(AK,p) =G.

Proof. Let p(BG) be a minimal right ideal and e the unit of the
group G. Since e € 3G, we have p € p(#G). Consider an arbi-
trary ultrafilter € 8G. Since pr(8G) = p(8G) and p € p(BG),
we have p € pr(BG). Hence, there exists an ultrafilter ¢(r) such
that p = prt(r). Since A € prt(r) and the subset G is dense
in AG, there exists an element z(r) € G such that A € pra(r),
Le., b?@;vvsw € pr. Using continuity of the multiplication with
respect to the second argument, choose a subset A, € r such that

A, € A

The open cover A,, r € 3G, of the space 8G contains a finite
subcover A, ,..., A, . Put
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and show that G = cl( AR, p). Consider an arbitrary element z € &
and choose an index ¢ such that z € A,.. Then pz € ﬁﬁﬁbl
i.e.,

Alz(r:))7 ! € pa.
Choose a subset P € p such that Pz C A(z(r;))~!. Consequently,
Pz C AK and z € cl(AK, p).

Suppose that the concluding statement of the theorem holds but
the ideal p(6G) is not minimal. Find an element r € 3G such that
p & pr(8G). Since the subset pr(8G) is closed, there exists a subset
A € p such that ANpr(3G) = @. Consequently, A ¢ prz for every
z € . Choose a finite subset

T o f —1 —13
K =12y ,...,2,

such that cl(AK, p) = G. Since
(AK,p) = l(AzTt, p)uU--- U cl(Az;t p),

there exists an index ¢ such that cl(Az] ", p) € r. However, the lat-
ter relationship is equivalent to Az ~' € pr, a contradiction with

the choice of the subset A. O

11.3. Corollary. Ifp is an ultrafilter from the semigroup G and
p(BG) a minimal right ideal of 3G, then for every subset a € D
there exists a finite subset KX C (G such that G = A~ 1AK .

Proof. By the above theorem, there exists a finite subset K such
that G = cl(AK,p). Since A € p, by Lemma 11.1, cl(AK, p) C
ATTAK, O

11.4. Corollary. If'p is an ultrafilter from GG, A € p, and p(5G)
is a minimal right ideal of the semigroup 8G, then A AA™ A € ¢4
for every idempotent ¢ of the semigroup 3G.

Proof. Using Corollary 11.3, choose a finite subset X C & such
that G = A7'AK. Clearly, G = K141 A. Choose an element
z € W‘L such that z4A7'A € ¢ and put Q = zA™'A4. Since
qq € (), there exists a subset )1 € ¢ such that ¢@, C Q. Hence,
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y € @ﬂ@ C Q7 'Q. By arbitrarity of the choice of element y € @1,
we obtain @; € Q71Q. Since Q1 € g, we have @ 'Q € ¢. This
proves the theorem. O

11.5. Theorem on partitions of groups. If G = 4,U---UA,, 13

a finite partition of an arbitrary group (&, then there exists a subset

A = A; of the partition such that the following statements hold:

1) G = A"'AK for some finite subset K C G;

2) (A~YA)™ is a subgroup of finite index of the group G for some
natural number n;

3) flA)N AT AA™T A # & for every homomorphism f: G — G.

Proof. Choose an idempotent p from some minimal right ideal of
the semigroup 3G. Put A = A;, where A; is an element of the par-
tition that belongs to the ultrafilter p.

By Corollary 11.3, there exists a finite subset K C G such that
G = A1 AK. The first statement of the theorem is proved.

To prove the second statement, put H = A™'A and consider
the semigroup F' generated by the subset . Enumerate the ele-
ments of the subset K = {g1,..., gk} so that

FNHg #0,... FNHg, # @, FNHgey1 #@,...,FNHg, # &.

Since H is symmetric, there exists a minimal natural number m
such that
H"NH¢p #92,...,H"NHg, # @.

/

Then {g1,...,9s} C H™"' and Hg; € H™"? foreveryi =1,...,s.

Put n =m+2. If g € F, then g € Hg,; for some ¢ < s. Hence,
g€ H" and H® = F. Thus, H" is the required subgroup.
To prove the third statement, extend the homomorphism f: G —

Qwoﬁrmooawbcocmgmmwfmﬁhlvmﬁu.@wogﬁrmmmmswﬁg%
the multiplication operation for ultrafilters it immediately follows
that f is a homomorphism. Hence f(p) is an idempotent of the se-
migroup 3G. By Corollary 11.4, A™* AA~' A € f(p) and it remains

to note that f(A) € f(p). O
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11.6, Corollary (B. Neumann Theorem). If a group G is rep-
resented as the union of finite number of cosets by subgroups,

G = g1Gy U --- U g1 Gy, then at least one of the subgroups G,
is of finite index. O

Now we consider partitions of rings. We say that an associative

ring with unit R is of the class ¢, if the following conditions hold:
1) there exists a Banach measure p (see 2.6) on the additive group
of the ring 1 such that u(R*) > 0, where R* denotes the group
of invertible elements of the ring R;
there exists an infinite sequence (a,) of elements of the ring R
such that a; — a; € R* for every 1 # ;.
An associative ring with unit is called a division ring (or a skew
field) provided every its nonzero element is invertible. Note that
every infinite associative division ring is of the class I, because, in
this case, we can choose 4 to be any Banach measure on the additive
group of the ring (see Exercise 2 from §2). In [9] it is proved that
R = G — G for every subgroup G of finite index from R*, where R
is a ring of the class ¢. The following lemma is an extension of this
statement.

Do
N

11.7. Lemma. Let R be a ring of the class U, p an ultrafilter
on R*, and p(BR*) a minimal right ideal of the semigroup 3R*.
Then for every subset A € p the equality

R=ATAA A - A7 44714
holds,

Proof. By Theorem 11.5, there exists a finite subset & C R* such
that R* = A7'AK. Using the Ramsey Theorem and passing to
subsequences (see Exercise 2 from §5), we may suppose that a; —
a; € A7t Ag for every i > 7, where ¢ is a fixed element of K. Since
p(R*) > 0, there exists an element h € K such that u( A~ Ah) > 0.
Consider an arbitrary nonzero element = € R. Since u(4A~1AR) >
0, by translation invariantness of 4, there exist indexes 1,7, 1 > 7,
such that

AQ&& —+ \#}H\Q\L N Aau‘& —+ \mwlw.\wmwv # .
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Then
(a; —aj)z m\T&ifw — blﬁﬁm.

Since a; — a; € A™tAg, we see that
gzh ™ € ATVAAT A~ AT AAT A

Since gRh™* = R, we have ,
R=ATAATIA - A"TAATT A U

11.8. Theorem on partitions of rings. If R = A, U - UA, is
a finite partition of an associative division ring I, that there exists
an index m such that for the subset A = A, \ {0} we have

ReA7A— AT AL AT A— AT A= AT AAT A - AT AAT A,

Proof. Consider the subset E of idempotents of the semigroup
B(R,+) generating minimal right ideals of this semigroup. Since
the right multiplication by any element z € R* is an isomorphism
of the semigroup (R, +), we have Ex = F. Therefore, the clo-
sure J of the subset E in the Cech-Stone topology is a right ideal
of the semigroup SR*. Consider an arbitrary ultrafilter ¢ € J
generating a minimal right ideal of the semigroup SR*. Choose
an index m so that the subset A = Ap, \ {0} is an element of
the ultrafilter ¢. By Lemma 11.7,

R=A'AA" 1A A1 A4 A

Since g € J and A € g, there exists an idempotent p € E such that
A € p. The third statement of Theorem 11.5 implies Az N (A —
A+ A — A) # @ for every z € R. Consequently,

R=ATA—-ATTAL+ A TA- ATTA , O

" The exposition of this section follows the article [14].

EXERCISES.

1. Prove the following extension of Theorem 11.5 for amenable groups. If
G =AU --UAy is a partition of an amenable group G into & nonempty
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.subsets, then there exists an index 7 and a k-element subset K C & such
that G = A7 A K. N

2. A topological group is a group endowed with a topology such that the group
operations are continuous. Prove the following extension of Theorem 11.5
onto topological groups. If U = A1 U ---U Ag is a partition of an arbitrary
nieghborhood U of the identity in a topological group &, then there exist
an index ¢ and a finite subset X such that by.lw\»;.?\ is a neighborhood of
the identity. The subset A can be chosen from any pregiven neighborhood
of the identity.
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10.

11.

12.

13.

14.
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