
ar
X

iv
:1

31
0.

10
56

v2
  [

m
at

h.
D

S]
  1

6 
O

ct
 2

01
3

Vrije Universiteit Amsterdam

Jagiellonian University

Master Thesis

Applications of Ultrafilters in Ergodic
Theory and Combinatorial Number Theory

Author:

Jakub Konieczny

Supervisors:

Dr. Tanja Eisner

Prof. Dr. Ale Jan Homburg

Dr Piotr Niemiec

A thesis submitted in fulfilment of the requirements

for the degree of Master of Mathematics

in the

Department of Mathematics, Vrije Universiteit Amsterdam

Instytut Matematyki, Jagiellonian University

October 2013

http://arxiv.org/abs/1310.1056v2
http://www.uj.edu.pl/en_GB/
http://www.uj.edu.pl/en_GB/
http://www.science.uva.nl/math/People/show_person.php?Person_id=Eisner-Lobova+T.
http://staff.science.uva.nl/~alejan/
http://www.im.uj.edu.pl/instytut/pracownik?id=219
http://www.im.uj.edu.pl/en_GB/
http://www.uj.edu.pl/en_GB/
http://www.im.uj.edu.pl/en_GB/
http://www.uj.edu.pl/en_GB/


Declaration of Authorship

I, Jakub Konieczny, declare that this thesis titled “Applications of Ultrafilters in Ergodic

Theory and Combinatorial Number Theory” is my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at

these Universities.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

Signed:

Date:

i



“Thanks to my solid academic training, today I can write hundreds of words on virtually

any topic without possessing a shred of information, which is how I got a good job in

journalism."

Dave Barry



VRIJE UNIVERSITEIT AMSTERDAM

JAGIELLONIAN UNIVERSITY

Abstract

Faculty of Sciences, Department of Mathematics

Wydział Matematyki i Informatyki, Instytut Matematyki

Master of Mathematics

Applications of Ultrafilters in Ergodic Theory and Combinatorial Number

Theory

by Jakub Konieczny

Ultrafilters are very useful and versatile objects with applications throughout mathemat-
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Proofs based on ultrafilters tend to be shorter and more elegant than their classical coun-

terparts. In this thesis, we survey some of the most striking ways in which ultrafilters can

be exploited in combinatorics and ergodic theory, with a brief mention of model theory.

In the initial sections, we establish the basics of the theory of ultrafilters in the hope

of keeping our exposition possibly self-contained, and then proceed to specific applica-

tions. Important combinatorial results we discuss are the theorems of Hindman, van der

Waerden and Hales-Jewett. Each of them asserts essentially that in a finite partition of,

respectively, the natural numbers or words over a finite alphabet, one cell much of the

combinatorial structure. We next turn to results in ergodic theory, which rely strongly on

combinatorial preliminaries. They assert essentially that certain sets of return times are

combinatorially rich. We finish by presenting the ultrafilter proof of the famous Arrow’s

Impossibility Theorem and the construction of the ultraproduct in model theory.
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Introduction

Ultrafilters are one of the most mysterious and surprising objects in mathematics. On the

one hand, there is no explicit construction of an ultrafilter and even proof of their exis-

tence involves the axiom of choice. On the other hand, they turn out to have remarkable

applications in a wide variety of branches of mathematics. In topology they are closely

tied to Stone-Čech compactification. In analysis, they provide a notion of a generalised

limit, which is in many ways the best possible generalised limit that exists. In model

theory, they make construction of ultraproducts and saturated models possible, leading

to worthwhile applications in non-standard analysis. Even the theory of social choice

can benefit from application of ultrafilters. What is even more, the space of ultrafilters is

a highly non-trivial object with rich algebraic and topological structure, well worth the

study in its own right. With a shade of national pride, we also mention that ultrafilters

were first discovered by the Polish mathematician Tarski in 1930s, cf. [BK12].

The application of ultrafilters that interests us the most lies in ergodic theory. Running

a little ahead of the exposition, we informally present the basic idea behind these appli-

cations. In ergodic theory, one classically considers Cesáro averages, which in a simplest

instance take the form

lim
N→∞

1

N

N
∑

n=1

f (T nx) ,

where T is a measure preserving transformation of a compact probability space X, and

f : X → R is a measurable function. Ultrafilters allow one to replace the Cesáro averages

by generalised limits along an idempotent ultrafilter p

p–lim
n

f (T nx) .

While typical results in ergodic theory would imply that certain sets of recurrence times

are non-empty, or at best syndetic, ultrafilter methods show additional algebraic struc-

ture of these sets, such as IP
∗ or C∗.

Behaviour of the mentioned averages depends on the algebraic properties of p, hence

it becomes necessary to study the algebraic structure of ultrafilters. We also need to

1



Chapter 3. Introduction 2

establish a connection with combinatoric to recover a concrete notion of largeness from

considerations about ultrafilters. However, we dispose of the need to study Cesáro aver-

ages, which frees us of much of the ε/δ management. On the whole, we are able to shift

much of the burden from analysis to algebra, which often simplifies the reasonings and

strengthens the conclusions, as well as provides a different point of view.

Many important contributions to the area of our investigation were made by Bergelson,

Blass, Hindman, Knutson, Kra, Leibman, McCutcheon, and others. The highly illumi-

nating papers by these authors were the basis of our research. Very accessible expository

papers by Bergelson were especially helpful and motivating. Of importance to our con-

siderations was also the sole paper by Schnell [Sch07] on ergodic theory. A comprehensive

reference for algebraic structure is due to Hindman and Strauss [HS12]. Topological and

set-theoretic issues are thoroughly discussed by Comfort and Negrepontis [CN74]. Great

expository material can be found in the thesis by Zirnstein [Zir12]. Most of the discussed

results come from these sources, with some minor extensions and simplifications due to

the author.

The aim of this thesis is to provide a possibly self-contained introduction to the many

ways in which ultrafilters are applicable to ergodic theory and combinatorial number

theory, and provide a glimpse of their applications in other areas. We hope to convince

the reader that ultrafilters are a versatile and powerful tool for dealing with problems

in these fields. We do not assume previous knowledge of ultrafilters, and take care to

keep the treatment self-contained. A degree of familiarity with abstract topology and

functional analysis is necessary for the dynamical applications. A nodding acquaintance

with ergodic theory and with combinatorics is useful, but not strictly indispensable.

The thesis structure is as follows.

In Chapter 1 we introduce the preliminary material. We begin by defining filters and

ultrafilters on arbitrary spaces. Subsequently, we introduce the natural topological struc-

ture on the space of ultrafilters, as well as the semigroup structure, if the underlying space

is a semigroup. We close with some remarks on general left-topological semigroups.

In Chapter 2 we discuss applications in combinatorics, especially combinatorial number

theory. Notions introduced there include IP/IP∗ sets and C/C∗ (central) sets, which will

be important for dynamical applications. We provide the ultrafilter proof of Hindman’s

theorem, which is arguably one of the most elegant application of ultrafilters, as well as

some immediate generalisations. Other discussed results include van der Waerden The-

orem and Hales-Jewett Theorem, which have effectively the same proof in the ultrafilter

approach.
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In Chapter 3 we discuss applications in ergodic theory. We first discuss the easy example

of maps on the torus, where we derive recurrence results along polynomials and more

general functions. A significant amount of work goes into establishing the correct gen-

eralisation of polynomial maps. Next, we proceed to applications in general dynamical

systems, where we prove that certain set of return times are IP
∗ or C∗.

In Chapter 4 we present some applications of ultrafilters in apparently unrelated areas

of mathematics: social choice theory and model theory. Our main purpose there is

to show how multifarious applications of ultrafilters are; the reader interested solely in

ergodic theory may disregard this chapter. We start by considering Arrow’s theorem on

voting procedures. Next, we develop ideas already present in this simple application to

construct ultraproducts, which are an important object in model theory, important for

the introduction of non-standard analysis.



Chapter 1

Preliminaries

In this chapter, we build up the basics of the theory, necessary for later applications. To

begin with, we define ultrafilters on arbitrary sets, and then proceed to introduce the

additional structure that the space of ultrafilters carries. In particular, we show that the

space of the ultrafilters on a discrete semigroup has a natural structure of a compact left-

topological semigroup, and can be identified with the Stone-Čech compactification. We

develop some basic theory of Stone-Čech compactifications and compact left-topological

semigroups in an abstract way, avoiding reference to the concrete example of the ultra-

filter space, partly for elegance, partly because we will require a pinch more generality

in the applications to come. The notion of a generalised limit, defined here, will play an

the most essential role in the following chapters.

For most of the applications, it suffices to restrict one’s attention to ultrafilters on simple

spaces. The single most useful example is the natural numbers N = {1, 2, 3, · · · }. Slightly

more general ones are the integers Z, the finite sets of natural numbers Pfin(N), and

Cartesian products thereof. The reader may always assume that the space X is one of

these special cases.

All of the presented results are widely known by now. The basic definitions can be

found in any introductory text, and are provided in many of the cited papers. For

aspects connected to topology and pure set theory, we refer to [CN74]. Also, many

purely topological texts treat Stone-Čech compactification, possibly without identifying

it with the ultrafilters; see for example [Eng89]. For a detailed discussion of the algebraic

structure, we refer to [HS12].

4



Chapter 1. Preliminaries 5

1.1 Set theory: filters and ultrafilters

Throughout this section, let X denote for an arbitrary set. We will later require the

space X to additionally have the structure of a discrete semigroup, but just yet we work

in a fully general context. The main goal in this section is to introduce and analyse the

notion of ultrafilters on X, but it will be useful to also define the related weaker notions

of filters and families with the finite intersection properties.

Definition 1.1 (Finite intersection property). Let X be a set. A family A ⊂ P(X) is

said to have finite intersection property if and only if for any finite subset A0 ⊂ A it

holds the intersection
⋂

A0 is non-empty.

Definition 1.2 (Filter). Let X be a set. A family F ⊂ P(X) is said to be a filter if and

only if the following conditions are satisfied:

(i) ∅ 6∈ F , X ∈ F .

(ii) If A ∈ F and A ⊂ B then B ∈ F .

(iii) If A,B ∈ F then A ∩B ∈ F .

We denote the family of all ultrafilters on the set X by Filt (X).

Definition 1.3 (Ultrafilter). Let X be a set. A family U ⊂ P(X) is said to be an

ultrafilter if and only if U is a filter and the following additional condition is satisfied:

(iv) If A ∪B ∈ U then A ∈ U or B ∈ U .

We denote the family of all ultrafilters on the set X by Ult (X).

We acknowledge that this notation is slightly non-standard. It is more frequent to denote

the set of ultrafilters by βX, which has its roots in topology. This issue will be discussed

in more detail.

Observation 1.4. If U ∈ Filt (X) is a filter the property (iv) in definition 1.3 is equivalent

to either of the following conditions:

(v) If A ∪B = X then A ∈ U or B ∈ U .

(vi) If
⋃n
i=1Ai ∈ U then Ai ∈ U for some i.

(vii) If C,D ∈ P(X) \ A, then C ∪D ∈ P(X) \ A

(viii) If C 6∈ U then Cc ∈ U .
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Proof. (iv) ⇐⇒ (v) Since X ∈ U by property (i), the implication (iv) =⇒ (v) is

clear. Conversely, if A ∪ B =: C ∈ U , then A ∪ B ∪ Cc = X, so either A ∈ U or

B ∪ Cc ∈ U by property (v). If A ∈ U then we are done. If B ∪ Cc ∈ U , then

B = (B ∪ Cc) ∩C ∈ U , so we are done as well.

(v) ⇐⇒ (viii) Since C ∪Cc = X, the implication (v) =⇒ (viii) is clear. Conversely,

if A ∪ B = X, then setting C := A \ B we find Cc = B \ A. By (viii) we have

C ∈ U or Cc ∈ U . Since A ⊃ C and B ⊃ Cc, the property (ii) implies A ∈ U or

B ∈ U .

(iv) ⇐⇒ (vi) Condition (iv) is a special case of (vi), where n = 2, so the implication

(vi) =⇒ (iv) is clear. On the other hand, (vi) follows from (iv) by induction. The

case n = 2 is clear. Suppose (v) holds for all n < n0 where n0 ≥ 3. If we then

have
⋃n0
i=1Ai ∈ U , then either An0 ∈ U or

⋃n0−1
i=1 Ai ∈ U by the case n = 2. If

bigcupn0−1
i=1 Ai ∈ U , then case n = n0 − 1 implies that Ai ∈ U for some 1 ≤ i < n0.

Thus, either way, Ai ∈ U for some i, so the claim for n = n0 follows. By induction,

(vi) holds for all n.

(iv) ⇐⇒ (vii) Putting C := Ac and D := Bc we see that the two conditions are

equivalent.

Remark 1.5. The family of ultrafilters can be more concisely defined, using the following

characterisation. A family U ⊂ P(X) is an ultrafilter if and only if for any partition

X = A1 ∪ A2 ∪ A3, exactly one of Ai belongs to U . We prefer the more elaborate

definition because it is more intuitive and easier to motivate.

Having defined the objects of our interest in this section, let us provide some basic

examples. It is clear from the above definitions that ultrafilters are filters, and that filters

have the finite intersection property, so examples of some of these classes automatically

also give examples of other classes.

Because the finite intersection property does not impose any additional structure, a

simple way to give an example of a set with the finite intersection property is to consider

an arbitrary subset of a given filter. We will shortly see that these are essentially the

only examples.

Example 1.6 (Cofinite sets). Define Fcofin consist of all sets A ∈ P(X) such that

#Ac < ℵ0, assuming additionally that #X ≥ ℵ0. It is clear by direct verification that

Fcofin is closed under the operation of taking supersets and under finite intersections, so

Fcofin is a filter.
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More generally, if ℵ0 ≤ κ ≤ #X is a cardinal number, then the family Fκ consisting of all

sets A ∈ P(X) such that #Ac < κ is a filter. Thus defined filters are never ultrafilters,

because X can be partitioned into two sets of equal cardinality.

Example 1.7 (Density 1 sets). Suppose that δ : P(X) → [0, 1] is a subadditive density1,

for example δ = d∗, the upper Banach density on X = N. Then the family Fδ of sets

A ∈ P(X) such that δ(Ac) = 0 forms a filter. Indeed, it clear that ∅ ∈ Fδ , that X ∈ Fδ,

and that if A ⊂ B, A ∈ Fδ, then also B ∈ Fδ. Finally, if A,B ∈ Fδ , then

δ((A ∩B)c) = δ(Ac ∪Bc) ≤ δ(Ac) + δ(Bc) = 0,

so also (A ∩B) ∈ Fδ. Hence, Fδ satisfies the definition of a filter.

Example 1.8 (Neighbourhoods). Suppose that T ⊂ P(X) is a topology. Let x ∈ X be

an arbitrary point. Then the set Fx of open neighbourhoods of x, i.e. of A ∈ T such that

x ∈ A, is a filter. The filter properties are an immediate consequence of the topological

axioms.

One can extend this example to allow non-open neighbourhoods, or neighbourhoods of

more general sets than singletons.

Example 1.9 (Restrictions and extensions). Suppose that F ∈ Filt (X) is a filter on X,

and Y ⊂ X is a subset. Consider the family F|Y = {A ∩ Y : A ∈ F}. It is clear that

F|Y satisfies all the defining properties of a filter, except possibly for the requirement

∅ 6∈ F|Y . Hence, F|Y is a filter on Y , provided that Y c 6∈ F . If F is an ultrafilter, then

an easy argument shows that so is F|Y .

Conversely, if Z ⊃ X is a superset, then we extend F ∈ Filt (X) to G ∈ Filt (Z) by

declaring for C ∈ P(Z) that C ∈ G if and only if C ∩X ∈ F . If F is an ultrafilter, then

so is G.

Note that the above examples are, in general, not ultrafilters but merely filters. We now

introduce the simplest examples of ultrafilters. As it shall will shortly turn out, these

are the only ultrafilters that can be explicitly described.

Definition 1.10 (Principal ultrafilters.). For x ∈ X, the family {A ∈ P(X) : x ∈ A}

is an ultrafilter. We denote this ultrafilter by Fx. Ultrafilters of this form are said to

be principal, and accordingly ultrafilters that are not of this form are said to be non-

principal.

Remark 1.11. Principal ultrafilters can be characterised as the ultrafilters that include

singletons. Alternatively, from property (vi) it follows that an ultrafilter is principal if

and only if it contains a finite set.
1 We require that δ satisfies δ(X) = 1, δ(∅) = 0 and δ(A ∪B) ≤ δ(A) + δ(B) for A,B ∈ P(X).
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The principal ultrafilter can be construed as the set of neighbourhoods of a given point

in the discrete topology. This is essentially the only case when the set of neighbourhoods

is an ultrafilter.

Although we are not able to exhibit concrete examples of ultrafilters, we will prove an

existence statement which will provide us with all the ultrafilters we need. As a first

step, we show how a family with the finite intersection property can be extended to a

filter. Among other applications, this allows one to specify a filter by providing less data:

a generating family with the finite intersection property, instead of all the elements of

the filter.

Lemma 1.12 (Constructing filters). Let A ⊂ P(X) be a family with the finite inter-

section property. Then there exists a unique filter F ⊂ P(X) which contains A and is

minimal with respect to this property among filters. Moreover F can be explicitly described

as:

F =
{

A : ∃A0 ⊂ A : #A0 < ℵ0 ∧
⋂

A0 ⊂ A
}

Proof. Let F be defined as above. We shall prove that F is indeed a filter, and that it

satisfies the required uniqueness property.

We begin by the showing that, assuming that F is a filter, it is the unique minimal filter

containing A. Indeed, let G ⊂ P(X) be a filter and suppose that A ⊂ G, and let us

consider a set A ∈ F with A ⊃
⋂

A0. Since G is closed under finite intersections, we

have
⋂

A0 ∈ G. Since G is closed under taking supsets, A ∈ G. Since A was chosen

arbitrarily, it follows that F ⊂ G. Thus, F is minimal, and it remains to show that it is

a filter.

By definition of the finite intersection property, all the intersections of the form
⋂

A0

where A0 ⊂ A and #A0 < ℵ0 are non-empty. Thus, if A ⊃
⋂

A0, then A 6= ∅, and thus

∅ 6∈ F . Taking arbitrary A0, we also find that X ∈ F .

Let A ∈ F and B ⊃ A. Then, we have:

B ⊃ A ⊃
⋂

A0

for some finite A0 ⊂ A. It follows immediately that B ∈ F , and thus F is closed under

taking supersets.

Suppose that A,B ∈ F . Then, there exist finite subsets A0,B0 ⊂ A such that A ⊃
⋂

A0

and B ⊃
⋂

B0. Then the family A0 ∪ B0 is a again a finite subset of A, and we have by
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de Morgane’s rules:

A ∩B ⊃
(

⋂

A0

)

∩
(

⋂

B0

)

=
⋂

(A0 ∪ B0) ∈ F .

Thus, F is closed under taking finite intersections.

It follows that F satisfies all the defining properties of a filter.

We next give a convenient characterisation of ultrafilters in terms of maximality. It

will lead directly to the existence result alluded to earlier. Moreover, it provides some

intuition concerning the structure of ultrafilters.

Proposition 1.13 (Characterisation of ultrafilters). Let A ⊂ P(X) be an arbitrary

family of subsets. Then the following conditions are equivalent:

(1) The set A is a maximal family with finite intersection property, i.e. A has finite

intersection property and if A′ ⊃ A also has this property then A′ = A.

(2) The set A is an ultrafilter.

Proof.

(1 ) =⇒ (2 ) Suppose A has finite intersection property, and there is no proper supset of A with

this property. Since all fiters clearly have the finite intersection property, it follows

from lemma 1.12 that A is in fact a filter. Thus, it remains to verify the defining

property of an ultrafilter. Let us now consider an arbitrary set C ⊂ X which does

not belong to A. Since A ∪ {C} is then a proper supset of A, it cannot have the

finite intersection property. Taking into account that A is already closed under

finite intersections, this means that there exists a set A ∈ A such that C ∩A = ∅.

This can be rewritten as Cc ⊃ A, so from A ∈ A we conclude that Cc ∈ A. Thus,

C 6∈ A implies Cc ∈ A, and hence A satisfies all the defining properties of an

ultrafilter.

(2 ) =⇒ (1 ) Suppose that A is an ultrafilter. Since ultrafilters are closed under finite inter-

sections, A has finite intersection property, so it remains to show that no proper

supset of A has this property. Suppose that A ( B where B ⊂ P(X) is an arbitrary

family, and let B ∈ B \ A. Since B 6∈ A, by the ultrafilter property, Bc ∈ A ⊂ B.

Thus, B,Bc ∈ B, so evidently B does not have the finite intersection property.

Since B was taken arbitrarily, the maximality of A follows.
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Corollary 1.14. If A ⊂ P(X) is a family with finite intersection property, then there

exists an ultrafilter U which contains A.

Proof. Let us fix A consider the class α ⊂ P(P(X)) of all families B ⊂ P(X) that contain

A and have the finite intersection property. We can consider α as a partially ordered

set, with the natural order given by the inclusion. We claim that each chain γ ⊂ α has

an upper bound. In fact, an upper bound can be explicitly described as C :=
⋃

γ. It is

clear that this family satisfies C ⊇ B for any B ∈ γ. That C is a filter follows immediately

from the fact that the defining conditions are of the inductive type. Thus, the partially

ordered set (α,⊆) satisfies the assumptions of Kuratowski-Zorn Lemma. It follows that

there exists a maximal element in α, say U . As a consequence of the definition of α, U

is maximal with respect to the finite intersection property. By Proposition 1.13, U is an

ultrafilter, and by definition of α, U contains A, so we are done.

Corollary 1.15. There exist non-principal ultrafilters on any infinite space X.

Proof. Let A be the family of all sets A of the form A = X \{x}. Then clearly A has the

finite intersection property. In fact, the minimal filter F corresponding to A consists of

all sets with finite complement, which has already been discussed. By the above corollary,

there exists an ultrafilter U which contains A. This ultrafilter contains no singletons,

because it contains all their complements. Thus, it is a non-principal ultrafilter.

Remark 1.16. The proof of Corollary 1.15 depends ostensibly on the Axiom of Choice,

embedded in Kuratowski-Zorn Lemma. One can show that the Axiom of Choice is really

necessary. In fact, it is consistent with Zermelo-Fraeknel Axioms that no non-principal

ultrafilters exist. We assume the Axiom of Choice throughout.

There is a more constructive way of proving existence of ultrafilters, which offers addi-

tional insight into their structure. We are not able to provide and explicit construction,

and Axiom of Choice will have to be used at some stage. However, we can describe an

ultrafilter by transfinite induction, where each step contains a binary choice. The pic-

ture that emerges is that of a limit object, obtained after a transfinite number of #P(X)

steps, where each step can readily be comprehended. To avoid trivialities, we assume

#X ≥ ℵ0.

Intuitively speaking, the presented construction considers each subset of X in some

preassigned order, and decides whether or not to include a given set in the ultrafilter

being constructed — assuming this decision is not yet determined by the choices made

previously. We keep track of the choices made at each step, because we will use this

construction to find cardinalities of certain sets of ultrafilters.
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Construction 1.17. Let α := #P(X) = 2#X be the cardinality of the family of all

subsets of X. We can enumerate all sets these subsets by ordinals less then α: P(X) =

{Aι}ι<α. We stress that the enumeration of the sets in P(X) is done in advance of any

subsequent choices.

Let F0 be a filter. We shall construct an ascending family of filters {Fι}ι≤α such that

Fα will turn out to be an ultrafilter. Because the construction will involve a choice at

each stage, and we want to keep track of these choices, let χ ∈ {⊤,⊥}α be an arbitrary

sequence.

The filter F0 is already given, which constitutes the base for the transfinite induction

that we are about to perform. We need to show how to construct Fβ+1 given {Fι}ι≤β

and how to construct Fζ given {Fι}ι<ζ for limit ordinal ζ. At the step Fγ is defined, the

following invariant shall be satisfied:

ι < γ =⇒ Aι ∈ Fγ ∨A
c
ι ∈ Fγ . (∗)

Additionally, we keep track of a sequence of ordinals {τ(β)}β<α.

Let us consider a ordinal of the form β + 1, and assume that {Fι}ι<β are already con-

structed. We define the family I := {ι < α : Aι, A
c
ι 6∈ Fβ}, and ordinal τ(β) := min I,

with the convention that if I = ∅ then τ(β) = α. If I = ∅, then the filter Fβ already sat-

isfies the defining property of ultrafilters. Hence we may set Fβ+1 := Fβ, and certainly

the property (∗) holds for β + 1.

Let us suppose that I 6= ∅, so τ(β) < α and Fβ is not yet an ultrafilter. Let us put

B := Aτ(β) if χβ = ⊤ and B := Acτ(β) if χβ = ⊥. By construction, it is clear that

Bc 6∈ Fβ , and hence the family B := Fβ ∪ {B} has finite intersection property. By

Lemma 1.12, there exists the smallest filter that contains B; let Fβ+1 be this filter.

It remains to check that (∗) is satisfied for β + 1. Because of the construction of τ , it

suffices to show that if ι ≤ β, then ι ≤ τ(β), which amounts to the proving that τ(β) ≥ β.

To prove this, we first note that the function τ : β+1 → α is strictly increasing. Indeed,

it is weakly increasing because the family Fι is ascending, and we have τ(ι + 1) 6= τ(ι)

unless τ(ι) = α. Because of the monotonicity of τ and the construction of the order on

the ordinals, it follows that τ(β) ≥ β, which finishes the inductive step.

Suppose now that ζ is a limit ordinal. Then we set Fζ :=
⋃

ι<ζ Fβ . It is clear that Fζ

is a filter because each term Fι in the union is a filter, and the family is ascending. It

is also immediate that the condition (∗) holds for ζ, and that Fζ ⊃ Fι for ι < ζ. This

finishes the inductive step, and hence also the construction.
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We claim that that Fα is an ultrafilter. Indeed, because of the condition (∗), for any

γ < α it holds that Aγ ∈ Fγ+1 ⊂ Fα or Acγ ∈ Fγ+1 ⊂ Fα . Because we already know that

Fα is already known to be a filter, this concludes the proof. We denote this ultrafilter

by Uχ.

In the above construction, an ultrafilter was specified by making #P(X) binary choices,

or choosing χ ∈ {⊤,⊥}#P(X). This suggests that the cardinality of the ultrafilters that

can be constructed should be 2#P(X). Note that this is the cardinality of P(P(X)), which

contains Ult (()X), so certainly we can never construct more ultrafilters than this. It is

not clear, however, that the construction does not terminate at an earlier step, leading

to a smaller number of constructed objects. The following Proposition shows that this

is not the case.

Proposition 1.18. The cardinality of the space of all ultrafilters on X is #Ult (X) =

22
#X

. Moreover, if A is a family with finite intersection property and #A < #P(X),

then the family of ultrafilters U ∈ Ult (X) such that U ⊃ A has cardinality 22
#X

Proof. We will only prove the second claim, since the first follows by taking A := ∅. We

take F0 to be the smallest filter containing A, and we retain the notation from the above

Construction 1.17. We also let δ := #X.

First, we show that if β < α then τ(β) < α. Suppose otherwise, and for a proof by

contradiction let β < α be such that τ(β) = α. Then, Fβ = U is already an ultrafilter.

Let B := {A
χ(ι)
τ(ι)}ι<β , and choose an ordinal γ with #B,#A ≤ γ < α. It follows from the

construction that Fβ is the smallest filter that contains A∪B. From the characterisation

in Lemma 1.12, it follows that Fβ consists of the intersections of finite subsets of A∪B,

of which there are γ. On the other hand, #Fβ = α, because there is a bijection between

Fβ × 2 and P(X). This is the sought contradiction.

We next show that the map χ 7→ Uχ is injective. For a proof by contradiction, suppose

that Uχ = Uψ for some χ 6= ψ. Let β := min{ι < α : χ(ι) 6= ψ(ι)}. We may assume

that χ(β) = ⊤ and ψ(β) = ⊥, and by the choice of β we have χ|β = ψ|β . Hence,

τχ(ι) = τψ(ι) for ι ≤ β, because the part of the construction that defines these ordinals

depends only on the first β choices. If we denote by τ(β) the common value of τχ(β)

and τψ(β), it becomes clear that Aτ(β) ∈ Uχ, while Acτ(β) ∈ Uψ. Consequently, Uχ 6= Uψ.
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1.2 Topology: ultrafilters as a topological space

Our next goal is to establish the link between the ultrafilters and topology. There two

main objectives that we will accomplish in this section.

Firstly, we will show that given an ultrafilter on the space X, it is possible to construct a

notion of generalised limit for sequences indexed by X. This generalisation has number

of desirable properties, most notable of which is that the limits along ultrafilters exist

for all sequences with terms in a compact Hausdorff space.

Secondly, we define and study a natural topology on the space of ultrafilters Ult (X). We

show that this topology is compact Hausdorff, which makes it remarkably well behaved.

The generalised limits and limits in the sense of topology are closely related to the limits

in the topological sense. In fact, they can be considered to be the same notion, modulo a

number of innocuous identifications. This leads us to the conclusion that Ult (X) can be

identified with the Stone-Čech compactification of X, usually denoted by βX, assuming

that we take X to be a discrete topological space.

Throughout this section, X denotes a topological space. WhenX comes with no standard

topology, as is arguably the case for N, we assume the topology of X to be discrete. At

some point we will entirely restrict to discrete topological spaces, but we do not do it

just yet, in the hope of providing some motivating examples.

As has already been mentioned earlier, one of the main motivations behind the notion

of a filter is that it can be used to construct generalised limits in a natural way. This is

done in the following definition.

Definition 1.19 (Generalised limits). Let Z be a topological Hausdorff space, let f :

X → Z be any map, and let F be a filter. If there exists z ∈ Z such that

(∀U ∈ Top(Z)) : (z ∈ U) =⇒ (f−1(U) ∈ F)

then we define z to be the limit of f along F . Symbolically, we denote this by:

F–lim
x

f(x) = z.

If no such z exists, we leave the symbol F–lim
x

f(x) undefined.

The above definition does not guarantee that the limit, if exists, is unique. In particular,

if Z is equipped with the trivial topology: Top(Z) = {∅, Z}, then for any z ∈ Z it holds

that F–lim
x

f(x) = z. However, this situation is not worse than for the classical notion
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of a limit. We will now show that for most interesting spaces, the limit is in fact unique,

hence the notation will not lead to confusion.

Proposition 1.20. If Z is Hausdorff, and there exists z ∈ Z such that F–lim
x

f(x) = z,

then this z is unique.

Proof. For a proof by contradiction, suppose that z, z′ ∈ Z are two distinct points such

that F–lim
x

f(x) = z, z′. Since Z is T2, there exist two open neighbourhoods U and U ′

of z and z′ respectively, such that U ∩ U ′ = ∅. Let A := f−1(U) and A′ := f−1(U ′). By

the definition of the limit we have A ∈ F and A′ ∈ F , so on one hand A ∩ A′ ∈ F , and

on the other hand A ∩ A′ = f−1(U ∩ U ′) = ∅. This is a contradiction, since ∅ 6∈ F by

definition. Thus, no two distinct limits can exist.

Let us now see how the above notion corresponds to some of the usual limits. We begin

with limits of conventional sequences indexed by natural numbers.

Example 1.21. Take X = N, arbitrary Hausdorff Z, and define Fcofin = {A ∈ P(N) :

#Ac < ℵ0} to be the filter of cofinite sets. Then

Fcofin–lim
n

f(n) = lim
n→∞

f(n).

In particular, the limit may or may not exist.

Moreover, let L ⊂ N be an infinite set, and FL := {A ∩ L : A ∈ Fcofin}. Then

FL–lim
n

f(n) = lim
n→∞
n∈L

f(n).

On the topological space X we already have the topological notion of a limit. In the

following example, we show how to recover this limit as a special case of the generalised

limit.

Example 1.22. Let y ∈ X, and let Fy consist of all the open neighbourhoods of y. Then

the generalised limit coincides with the classical limit as defined in general topology:

Fy–lim
x

f(x) = lim
x→y

f(y).

As a special case of the above definition, we can compute limits along principal ultrafil-

ters, which correspond to taking limits in the discrete topology.



Chapter 1. Preliminaries 15

Example 1.23. Let y ∈ X and let Uy be the principal ultrafilter associated to the point.

Then

Uy–lim
x

f(x) = f(y).

In particular, this limit always exists.

The following property of ultrafilters is extremely useful in applications. It is the principal

reason why we will restrict to ultrafilters in most of the subsequent discussion.

Proposition 1.24 (Existence of limits). If U is an ultrafilter, then U–lim
x

f(x) exists

any map f : X → Z into a compact Hausdorff space Z.

Proof. For a proof by contradiction, suppose that U–lim
x

f(x) does not exist, meaning

that for no z ∈ Z is it true that U–lim
x

f(x) = z. Then, there exist open neighbourhoods

Uz of z, such that f−1(Uz) 6∈ U . Since Z is compact, and {Uz : z ∈ Z} is an open cover,

there exists a finite subcover, which is by necessity of the form {Uz : z ∈ Z0} for some

finite Z0 ⊂ Z. Let Az := f−1(Uz). We have Az 6∈ U , and

⋃

z∈Z0

Az = f−1





⋃

z∈Z0

Uz



 = f−1(Z) = X.

But since the set Z0 is finite, this is a contradiction with the defining property of ultra-

filters (iv).

It will be convenient to have the following description of the limit along an ultrafilter. It

is more concrete, and easier to work with, than the one derived by using the definition

verbatim.

Proposition 1.25 (Characterisation of limits). If U is an ultrafilter, then

{U–lim
x

f(x)} =
⋂

A∈U

cl f(A).

Proof. We will first show that z := U–lim
x

f(x) lies in cl f(A) for any A ∈ U . It will

suffice to show that if U ∈ TopZ is a neighbourhood of z then U ∩ f(A) 6= ∅. But we

know that f−1(U) ∈ U , so f−1(U ∩ f(A)) ⊃ f−1(U)∩A ∈ U and in particular U ∩ f(A)

cannot be empty.

Let us now show that if w ∈
⋂

A∈U cl f(A), then U–lim
x

f(x) = w. Let w ∈ Z be any

such point, and let U ∈ TopZ be any open neighbourhood of w. For any A ∈ U we have

that U ∩ f(A) 6= ∅, so f−1(U) ∩ A 6= ∅. Since A was taken arbitrarily, it follows that

f−1(U) ∈ U . Thus, directly from the definition z = U–lim
x

f(x).
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It is natural to inquire into the connection between the generalised limits we just defined,

and the more classical notion of a limit in a topological space. It turns out that this

relation is rather close, and generalised limits can be realised as the classical limits for

the properly chosen topology on Ult (X). The Definition 1.19 suggests that the following

sets should be open in the topology we are about to construct.

Definition 1.26 (Base clopen sets). For a set A ∈ P(X), define A ∈ P(Ult (X)) to be

the set:

A = {U ∈ Ult (X) : A ∈ U}

We stress that right now the symbol A is not meant to denote closure, but merely

the construction in the definition above. It so happens that these sets will be closures

in the topological sense (up to the natural identification of elements of X with the

related principal ultrafilters), but they will also be open sets, and indeed a basis for a

topology. A reader accustomed to working with connected topological spaces may find

this worrying at first, but a closer inspection shows that this situation merely indicates

that the constructed topology will be highly disconnected.

Before we pass on to using these sets to introduce a topology, let us note some of the

convenient properties they satisfy.

Proposition 1.27 (Properties of closure). The operation A 7→ A defined above has the

following properties.

(1) If A ∈ P(X) then Ac = A
c
.

(2) If A,B ∈ P(X) then A ∩B = A ∩B.

(3) If A,B ∈ P(X) then A ∪B = A ∪B.

Proof. (1 ) We need to show that an ultrafilter U contains A if and only if it does

not contain Ac. One direction is clear: U cannot contain both A and Ac, since

otherwise it would have to contain A∩Ac = ∅ by property (iii), which contradicts

property (i). Conversely, since A∪Ac = X, by property (iv), the ultrafilter U has

to contain either A or Ac.

(2 ) We need to show that an ultrafilter U contains A ∩ B if and only if p contains

both A and B. For one direction, note that if U contains A ∩ B then U contains

all supersets of A ∩ B as well by the property (ii), so it contains both A and B.

Conversely, if U contains A and B, then it contains A ∩B by the property (iii).
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(3 ) Using the previous points, we find that:

A ∪B = (Ac ∩Bc)c = (Ac ∩Bc)
c
= Ac ∩Bcc = (A

c
∩B

c
)c = A ∪B.

We recall a classical result characterising families of sets that can be used to define a

topology. Together with the above observations, it will immediately allows us to describe

a topology on Ult (X).

Theorem 1.28. Suppose that X is a set and B ⊂ P(X) is a family of sets such that the

following conditions are satisfied:

1.
⋃

B = X,

2. (∀A,B ∈ B)(∀x ∈ A ∩B)(∃C ∈ B) : x ∈ C ⊂ A ∩B

Then there exists a unique topology T on X for which B is a base. This is the coarsest

topology for which all sets B ∈ B are open. The open sets in this topology are precisely

the sets of the form
⋃

B0 for B0 ⊂ B.

Definition 1.29. We turn Ult (X) into topological space by declaring the family {A :

A ∈ P(X)} to be the base of the topology. By Theorem 1.28 and Proposition 1.27, this

indeed defines a topology.

We shall now proceed to the study of the topology of Ult (X). This topology turns out

to have many desirable properties. Because the topology on Ult (X) does not carry any

connection to the topology on X, we will be assuming from now on that the topology

on X is discrete. Under this assumption, Ult (X) can be shown to be the maximal

compactification of the discrete space X, in a sense that will be made precise soon.

Proposition 1.30. The topological space Ult (X) is Hausdorff.

Proof. Let U and V be any distinct ultrafilters. By the characterisation of ultrafilters as

the maximal families with finite intersection property in 1.13, we see that neither of U

and V is contained in the other. Thus, there exists sets A,B ∈ P(X) such that A ∈ U \V

and B ∈ V \ U . Now the ultrafilter property (viii) ensures that Ac ∈ V and Bc ∈ U . If

we now denote A1 := A \ B and B1 := B \ A then it follows that A1 ∈ U and B1 ∈ V

and A1 ∩B1 = ∅. Thus, U ∈ A1 and V ∈ B1. Finally,

A1 ∩B1 = A1 ∩B1 = ∅ = ∅,

by Lemma 1.27. Thus, A1 and B1 are separating neighbourhoods for U and V.
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Proposition 1.31. The topological space Ult (X) is compact.

Proof. Let C ⊂ Top(Ult (X)X) be an open cover of Ult (X). Replacing C by a finer cover

if necessary, we can assume C consists only of base sets of the form A with A ∈ P(X).

Thus, we can find a family A ⊂ P(X) such that C = {A : A ∈ A}. For any x ∈ X

and the related principal ultrafilter Fx based at x, we know that Fx ∈ A if and only if

x ∈ A. Thus, A is a cover of X.

I claim that one can find a finite subcover of A. For a proof by contradiction, suppose the

sum
⋃

A0 of any finite family A0 ⊂ A is not the full space X. Let B := {Ac : A ∈ A}

denote the family of complements of sets in A. We can rephrase the above assumption

by saying that for any finite family B0 ⊂ B we have
⋂

B0 6= ∅. Thus, B has the finite

intersection property. By corollary 1.14, there exists an ultrafilter U that contains B. By

construction, for any A ∈ A we have Ac ∈ U , so U ∈ A
c. But this means that U does

not belong to any of the sets Ac in the cover C, which is a contradiction with C being a

cover.

Let A0 be the finite cover of A, whose existence we have just proved, and let C0 :=

{A : A ∈ A0} be the corresponding part of C. I claim that C is then a cover of Ult (X).

Indeed, let U be any ultrafilter. Then
⋃

A0 = X ∈ U , so by the ultrafilter property (vi)

there exists A ∈ A0 such that A ∈ A. Thus, U ∈ A ∈ C0, as desired.

Corollary 1.32. The topological space Ult (X) is normal.

Proof. It is well known that compact Hausdorff spaces are normal. [Eng89]

As the above results show, the space of all ultrafilters Ult (X) is well-behaved from the

topological point of view. However, it should be noted that this space is also large, as

the following corollary shows.

Corollary 1.33. The topological space Ult (X) is not first countable, and in particular

not metrizable.

Proof. The set X is dense in Ult (X). If Ult (X) was first countable, then all point in

clX could be described as limits of sequences (indexed by ω) with elements in X. The

cardinality of such sequences is at most (#X)ℵ0 ≤ 2#X . On the other hand, we have

seen that Ult (X) = 22
#X

> 2#X , hence Ult (X) cannot be first countable. It is known

that metrizable spaces are first countable, so Ult (X) is in particular not metrizable.
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So far, we have studied the basic topological properties of Ult (X). Note that there is a

natural injective map i : X → Ult (X) given by i(x) = Fx, the principal ultrafilter. We

will now study the inclusion map in more detail, and show that X can be considered as

a subspace of Ult (X).

Proposition 1.34. If A ∈ P(X) and i : X → Ult (X) is the natural inclusion, then

A = cl i(A).

Proof. For any x ∈ A we have A ∈ Fx, so Fx ∈ A and consequently i(A) ⊂ A. Since A

is closed by the definition of topology on Ult (X), it follows that cl i(A) ⊂ A.

Conversely, suppose that U ∈ A, and let us consider any base neighbourhood of U of

the form B with B ∈ P(X). Then, A ∈ U and B ∈ U , so A ∩ B ∈ U . Thus, for any

x ∈ A ∩B we have Fx ∈ i(A) ∩B, so in particular i(A) ∩B is not empty. Since B was

chosen arbitrarily, it follows that U ∈ cl i(A). Thus, A ⊂ cl i(A).

Since we have inclusions cl i(A) ⊂ A ⊂ cl i(A), the sets A and cl i(A) are equal.

Corollary 1.35. If X is discrete, then the inclusion i : X → Ult (X) is a homeomor-

phism onto its image.

Proof. It is clear that i is injective, and continuous. By the above Proposition 1.34, if

{Fx}x∈A = i(A) is an arbitrary set of principal ultrafilters, then:

(

cl {Fx}x∈A
)

∩ i(X) = A ∩ i(X) = {Fx}x∈A.

Hence, arbitrary subset of i(X) is closed in the induced topology, and the topology of

i(X) is discrete, which finishes the proof.

Corollary 1.36. The image i(X) of the standard inclusion i : X → Ult (X) is dense.

Proof. It suffices to apply the previous Proposition 1.34 to the full space X to find that:

cl i(X) = X = Ult (X) .

Our next step is to study the generalised limits from the topological perspective. The

following proposition shows that the generalised limits can be though of essentially as

ordinary limits in the space Ult (X).

Proposition 1.37. For a fixed map f : X → Z into a compact Hausdorff space, the

map U 7→ U–lim
x

f(x) is continuous.
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Proof. For ease of notation, define l(U) := U–lim
x

f(x). We need to prove that l is a

continuous map, i.e. that for any open set W ∈ TopZ, the pre-image l−1(W ) is open.

For general topological reasons, it will suffice to show that for any U ∈ l−1(W ) there

exists a set A ∈ P(X) such that U ∈ A and l(A) ⊂W . For any A and ultrafilter V ∈ A

we have by Proposition 1.25 that l(V) ∈ f(A), and hence l(A) ⊂ cl f(A). Since Z is

normal, we can find V ∈ TopZ such that clV ⊂ W . Let A := f−1(V ). By definition of

the limit, U ∈ A. By the above observation:

l(A) ⊂ cl f(A) ⊂ clV ⊂W

The above considerations show that the space Ult (X) is a compactification of X with

the rather special property that many maps defined on X can be naturally prolonged

to Ult (X). This situation has been studied in much depth by topologists in the more

general context of locally compact topological spaces.

Definition 1.38 (Čech-Stone compactification). Let X be a locally compact Hausdorff

topological space. Let Y be a compact Hausdorff topological space, and i : X → Y a

continuous, injective map. Then the pair (Y, i) is said to the Čech-Stone compactification

of X if and only if for any compact Hausdorff topological space Z and continuous map

f : X → Z, there exists a unique continuous map g : Y → Z such that f = g ◦ i.

Proposition 1.39. If the Čech-Stone compactification of X exists, then it is unique up

to unique isomorphism. More precisely, if (Y, i) an (Y ′, i′) are two Stone-Čech compact-

ifications, then there exists a unique isomorphism of topological spaces u : Y → Y ′ such

that u ◦ i = i′.

Proof. Suppose that (Y, i) and (Y ′, i′) are two Čech-Stone compactifications of X. Then,

applying the definition of Čech-Stone compactification for (Y, i) to the map i′ : X → Y ′,

we find that there exists a unique map g : Y → Y ′ such that g ◦ i = i′. Similarly, there

exists unique g′ : Y ′ → Y such that g′ ◦ i′ = i. Then g′ ◦ g : Y → Y is such that

g′ ◦ g ◦ i = g′ ◦ i′ = i. Applying the definition of compactification once more, this time

to (Y, i) and the map i : X → Y we conclude that g′ ◦ g = idY . Likewise, we show that

g ◦ g′ = idY ′ . Thus, g is an isomorphism between (Y, i) and (Y ′, i′), in the sense that it

is an isomorphism between Y and Y ′ and intertwines between i and i′. Uniqueness of g

follows from uniqueness in the definition the compactification.

The following theorem affirms existence Čech-Stone compactification in a situation much

more general than we need in our applications.
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Theorem 1.40. If X is a locally compact Hausdorff topological space, then there exists

a Čech-Stone compactification of X.

Proof. See [Eng89].

Definition 1.41. If X is a locally compact Hausorff topological space, then we denote

its Čech-Stone compactification by (βX, i), with the understanding that βX is defined

only up to the unique isomorphism. If f : X → Z is a map to an arbitrary compact

Hausdorff space, then we denote by βf : βX → Z the unique continuous extension such

that βf ◦ i = f .

With this more general language, we can summarise many of the previous results on the

topology of Ult (X) is a much more succinct form.

Theorem 1.42. Let X be a discrete topological space. Then the space Ult (X) together

with the natural inclusion map i : X → Ult (X), is the Čech-Stone compactification of

X.

Proof. Let f : X → Z be any continuous map from X to a compact space Z. Define

g : Ult (X) → Z by the formula g(U) := U–lim
x

f(x). Then g is continuous by proposition

1.35. By Example 1.23 we have that g ◦ i = f .

For uniqueness, suppose that h : βX → Z is another continuous function such that

h ◦ i = f . By the choice of g and h, we have h
∣

∣

i(X)
= g

∣

∣

i(X)
. But i(X) is dense in βX

by Proposition 1.36, so h = g, as desired.

Remark 1.43. We now have two different notations for the space of ultrafilters on X,

namely βX and Ult (X). They are equivalent, but seem to carry slightly different in-

tuitions. We will use the notation Ult (X) when topological structure is irrelevant, and

consequently denote ultrafilters by U ,V,W, . . . . This will be done when an ultrafilter is

thought of as a family of sets with particular properties. When topological properties

become important, especially when considering limits, we will prefer the notation βX

for the space of ultrafilters on X, and use p, q, r, . . . to denote ultrafilters. It will usually

be more helpful to think of ultrafilters as limit objects in this case. We keep in mind

that an ultrafilter corresponds to a family of sets, but avoid notations like “set A ∈ p”

for aesthetic reasons.

Below, we list some of the properties of the extensions of maps provided by the Čech-

Stone compactification. They are very useful when one is faced with the need to compute

generalised limits, and mimic the analogous rules for classical limits.
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Proposition 1.44. 1. For any map f : X → Z to a compact Hausdorff space Z we

have U–lim
x

f(x) = βf(U)

2. For any maps f : X → Z and g : Z → T to compact Hausdorff spaces Z, T , we

have β(g ◦ f) = g ◦ βf . In particular, U–lim
x

g ◦ f(x) = g(U–lim
x

f(x)).

3. For any maps f : X → Y and g : Y → Z where X and Y are discrete and Z is

compact Hausdorff, we have β(g ◦ f) = βg ◦ β(iY ◦ f), where iY : Y → βY is the

inclusion.

4. For any maps f : X → Z and g : X → W where X is discrete and Z,W are

compact Hausdorff, we have β(f × g) = (βf)× (βg).

5. For any maps f : X → Z, g : X → W and h : Z ×W → T , consider the map

c : X → T given by c(x) = h(f(x), g(x)). Then βc(x) = h(βf(x), βg(x)).

Proof. 1. It follows directly from how the limit was defined.

2. It suffices to check that g ◦ βf satisfies the universal property: (g ◦ βf) ◦ i = g ◦ f .

But this is clear, since βf ◦ i = f , and composition is associative.

The statement about the limits follows directly from relation of U–lim
x

to βf from

the previous point.

3. It suffices to check that βg ◦ β(iY ◦ f) satisfies the universal property: βg ◦ β(iY ◦

f) ◦ iX = g ◦ f . This can be done as follows:

βg ◦ β(iY ◦ f) ◦ iX = βg ◦ iY ◦ f = g ◦ f

4. Let p : Z ×W → Z and q : Z ×W → W be the standard projection maps. To

verify that β(f × g) = βf × βg, it sufices to prove that p ◦ β(f × g) = βf and

q ◦ β(f × g) = βg. From the previous points, we already know that:

p ◦ β(f × g) = β(p ◦ (f × g)) = βf

and likewise p ◦ β(f × g) = βg, hence the claim follows.

5. Follows immediately from the previous observations.

The following special case of the above theorem shows that generalised limits have many

of the properties the classical limits have.
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Corollary 1.45. Let f, g : N → R̂ be any maps, where R̂ = R ∪ {+∞,−∞}. Then we

have:

U–lim
x

(f(x) + g(x)) = U–lim
x

f(x) + U–lim
x

g(x),

U–lim
x

(f(x) · g(x)) = U–lim
x

f(x) · U–lim
x

g(x),

provided that the application of the operations + and · does not lead to indeterminate

symbols ∞−∞, 0 · (±∞). Likewise, we have:

U–lim
x

(f(x)− g(x)) = U–lim
x

f(x)− U–lim
x

g(x),

U–lim
x

(f(x)/g(x)) = U–lim
x

f(x)/U–lim
x

g(x),

provided that the operations can be carried out.

1.3 Algebraic structure of filters and ultrafilters

We will presently show how to give Ult (X) the structure of a semigroup, assuming that

X is a semigroup. The derived structure will be natural, but not the only possible. There

are in fact two competing and equally natural notions of semigroup structure, so one has

to be careful when consulting the literature.

Throughout this section, we assume that X is a semigroup. We also make X into a

topological space by declaring that the topology on X is discrete. We have seen how to

endow Ult (X) with a natural topological structure.

We begin by giving some algebraic definitions, needed to define the algebraic structure

on Ult (X).

Definition 1.46. For a set A ⊂ X and x ∈ X, we define x\A to be the set {y ∈ X :

xy ∈ A}, and A/x to be the set {y ∈ X : yx ∈ A}.

Likewise, for a filter F we define F\A to be the set {x ∈ X : A/x ∈ F}, and F we

define A/F to be the set {x ∈ X : x\A ∈ F}.

Remark 1.47. Note that for Fx\A we use A/x rather than x\A. This makes sense, since

this way we have Fx\A = x\A. The analogous remark applies to A/Fx.
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Observation 1.48. Let A,B ∈ P(X), x ∈ X and F ∈ Filt (X). Then x\A ∩ x\B =

x\(A ∩ B) and A/F ∩ B/F = (A ∩ B)/F . Analogously, A/x ∩ B/x = A ∩ B/x and

F\A ∩ F\A = F\A ∩B.

Proof. The conditions y ∈ x\A∩x\B and y ∈ x\A∩B are both equivalent to xy ∈ A∩B.

Likewise, the condition y ∈ A/F ∩B/F is equivalent to y\A ∈ F and y\B ∈ F . This in

turn is equivalent to y\A ∩ y\B = y\A ∩B ∈ F .

The remaining part of the claim follows by exactly symmetric reasoning.

Observation 1.49. If A ∈ P(X), x ∈ X and U ∈ Ult (X), then (x\A)c = x\(Ac) and

(A/U)c = (Ac)/U . Analogously, (U\A)c = U\(Ac).

Proof. The condition y ∈ (x\A)c is equivalent to xy 6∈ A, which is equivalent to y ∈

x\(Ac). Likewise, the condition y ∈ (A/U)c is equvalent to y\A 6∈ U . Because U is an

ultrafilter, this says that (y\A)c = y\(Ac) ∈ U , which is equivalent to y ∈ (Ac)/U .

The remaining part of the claim follows by exactly symmetric reasoning.

We are now ready to define the semigroup structure on Ult (X). Hopefully, the definition

appears natural, at least on the formal level. It is also noticable that we could have

formulated the definition differently, applying the semigroup operation on the reverse

side. This choice is far from inconsequential, as shall be seen when we discuss the

relation with topology.

Definition 1.50 (Semigroup structure of Ult (X)). For filters F ,G we define F ·G to be

the family of those sets A ∈ P(X) for which the set A/G belongs to F :

F · G = {A ∈ P(X) : A/G ∈ F}.

As always, we see how the definition applies in case of principal ultrafilters.

Example 1.51. For principal ultrafilters we have Fx · Fy = Fx·y. This follows by

expanding the definitions:

′Fx · Fy = {A ∈ P(X) : {z ∈ X : {w ∈ X : z · w ∈ A} ∈ Fy} ∈ Fx}

= {A ∈ P(X) : x ∈ {z ∈ X : y ∈ {w ∈ X : z · w ∈ A}}}

= {A ∈ P(X) : x · y ∈ A} = Fx·y

So far, we have defined the operation (F ,G) 7→ F ·G only as a map Filt (X)×Filt (X) →

P(P(X)). Before we make Filt (X) and Ult (X) into semigroups, we need to check that
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the constructed operation satisfies a number of additional conditions. We begin by

verifying that necessary closure properties. Afterwards, we check associativity.

Proposition 1.52. If F ,G ∈ Filt (X), then F ·G ∈ Filt (X). Moreover, if U ,V ∈ Ult (X)

then U · V ∈ Ult (X).

Proof. We need to check a number of defining properties of filters.

We clearly have ∅ 6∈ F ·G and X ∈ F ·G. Moreover, if A ∈ F ·G and B ⊃ A then B/G ⊃

A/G and consequently B ∈ F · G. Finally, if A,B ∈ G then A ∩B/G = A/G ∩B/G ∈ F

and hence A ∩B ∈ F · G.

For the additional part, consider we already know that U · V ∈ Filt (X), so it remains

to check that ultrafilter property. Let A ∈ P(X). Then either A/V ∈ U or (Ac)/V =

(A/V)c ∈ U , hence either A ∈ U · V or Ac ∈ U · V, which finishes the proof.

Proposition 1.53. If F ,G,H ∈ Filt (X), then (F · G) · H = F · (G · H).

Proof. Let A ∈ P(X). We show that A ∈ (F · G) · H if and only if A ∈ F · (G ·H), using

the following transformations.

A ∈ (F · G) · H ⇐⇒ {x ∈ X : x\A ∈ H} ∈ F · G

⇐⇒ {y ∈ X : y\{x ∈ X : x\A ∈ H} ∈ G} ∈ F

⇐⇒ {y ∈ X : {x ∈ X : yx\A ∈ H} ∈ G} ∈ F

⇐⇒ {y ∈ X : {x ∈ X : x\y\A ∈ H} ∈ G} ∈ F

⇐⇒ {y ∈ X : y\A/H ∈ G} ∈ F

⇐⇒ {y ∈ X : y\A ∈ G · H} ∈ F

⇐⇒ A ∈ F · (G · H)

Corollary 1.54. The sets Filt (X) and Ult (X) with the action defined by 1.50 are semi-

groups.

Having verified the semigroup structure of Ult (X), we proceed to describe the semigroup

operation in more detail. Our main objective here is to find the connection between

algebraic and topological structure.

Lemma 1.55 (Semigroup structure of Ult (X) — alternative description). For ultrafilters

U ,V the set U · V coincides with the ultrafilter U–lim
x

V–lim
y

i(x · y).
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Proof. Let us take any C ∈ U ·V. By the definition, we have C/V ∈ U . For any x ∈ C/V,

which we fix for the time being, we have x\C ∈ V. For y ∈ x\C we have x · y ∈ C,

and hence i(x · y) ∈ C. Because x\C ∈ V and C is closed, we have V–lim
y

i(x · y) ∈ C.

Likewise, because C/V ∈ U and the choice of x was arbitrary, another limit transition

yields: U–lim
x

V–lim
y

i(x · y) ∈ C. Because C was arbitrary and the space Ult (X) is

Hausdorff, we have U · V = U–lim
x

V–lim
y

i(x · y)

Proposition 1.56. For any function f : X → Z into a compact Hausdorff space,

U–lim
x

V–lim
y

f(x · y) = (U · V)–lim
z

f(z).

Proof. Using Proposition 1.44, we can perform the following transformations (we denote

the map X ∋ y 7→ x · y ∈ X by µx):

U–lim
x

V–lim
y

f(x · y) = U–lim
x

V–lim
y

(f ◦ µx)(y) = U–lim
x

βf ◦ β(i ◦ µx)(V)

= βf(U–lim
x

β(i ◦ µx)(V)) = βf(U–lim
x

V–lim
y

i(x · y))

= βf(U · V) = (U · V)–lim
z

f(z)

Remark 1.57. Even if X is a commutative group, Ult (X) is not in general neither com-

mutative, nor is it a group. In fact, even in Ult (Z), all elements except for the principal

ultrafilter are non-invertible and do not commute with the remainder of Ult (Z). Non-

invertibility is straightforward to prove: it suffices to notive that if U is non-principal,

then so is U · V for any V. One needs a considerable amount of work to prove non-

commutativity, so we refrain from further discussion on this purely negative result.

Corollary 1.58. The map µ : Ult (X) × Ult (X) → Ult (X) given by (U ,V) → U · V is

continuous in the left argument.

Proof. It suffices to show that if U · V ∈ A for some A ∈ P(X), then U ′ · V ∈ A for

U ′ in some open neighbourhood of U . According to definition 1.50 that the condition

U ′ · V ∈ A is equivalent to: A/V ∈ U ′. But this is equivalent to U ′ ∈ A/V , so we have

just exhibited the desired open neighbourhood and we are done.

Remark 1.59. In general, the map µ in the above corollary is not continuous in the right

argument. In fact, if it was, a simple argument would prove commutativity of Ult (X).
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If we had chosen the definition of the semigroup structure differently, the map µ would

have been continuous in the right argument. If Xopp denotes the semigroup with ac-

tion x ·opp y := y · x, then Ult (Xopp)opp is a compactification of X with multiplication

continuous in the right argument instead of the left argument.

Because Ult (X) will now have both topological and algebraic structure, we introduce the

relevant definition.

Definition 1.60 (Topological semigroup). Let X be a set, (X, ·) a semigroup and (X,T )

a topological space. Then the triple (X, ·,T ) is said to be a topological semigroup (resp.

right/left topological semigroup) if and only if the multiplication map µ : X × X ∋

(g, h) 7→ g · h is continuous (resp. continuous in the right/left argument).

Corollary 1.61. The space Ult (X) is a compact Hausdorff left-topological semigroup.

Proof. This follows directly from combining the results obtained previously.

Having established that Ult (X) is a compact left-topological semigroup, we now turn to

study compact left-topological semigroups in more generality. Although our key object

of interest will be Čech-Stone compactifications of discrete groups, we keep the discussion

general because we need to apply our results to slightly more involved semigroups, such

as (Ult (N))k. Until the end of this section, S stands for a compact left-topological

semigroup, except some initial definitions.

We note in the passing that all proved statements have their analogues in right-topological

semigroups. In fact, if S is a right-topological semigroup, then one can form the semi-

group Sopp on the same set with the same topology by declaring x ·opp y = y · x. A

moment’s thought will convince the reader that Sopp is then a left-topological semigroup,

to which our results apply.

Study of ideals, especially the minimal ones, turns out to be essential for understanding

the structure of general semigroup. We note that the concept becomes trivial in groups,

where the only ideals are the trivial ones — much as ring ideals make little sense in fields.

Definition 1.62 (Ideal). Let S be a semigroup. Then a non-empty set I ⊂ S is defined

to be a left (resp. right) ideal, if and only if S · I ⊂ I (resp. I · S ⊂ I)2. If I is both left

and right ideal, we refer to it as a two-sided ideal. By principal left ideal (resp. principal

right ideal) we mean the ideal S ·x (resp. x ·S). The ideal is said to be minimal, if there

is no ideal properly contained in it.
2The operation is taken elementwise, so A ·B = {a · b : a ∈ A, b ∈ B} for A,B ⊂ S
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We will mostly pay attention to left ideals, because they are well-behaved from the

topological point of view, as shown in the following lemma. Note that we would not be

able to prove the analogous statement for right ideals.

Lemma 1.63. Let S be a compact left-topological semigroup. If L = S · x is a principal

left ideal in S, then L is closed.

Proof. Note that L is the image of a compact space S by the continuous map µ(·, x).

Thus, L is compact, as the image of a compact space by a continuous map. Since S is

assumed to be Hausdorff, L is hence closed.

The following lemma is useful for finding left ideals contained in chains of left ideals.

The result does not depend on topology. The analogous statement is true for right and

two-sided ideals, but we won’t need those results.

Lemma 1.64. If L is any family of left ideals in a semigroup S, then
⋂

L is either the

empty set or a left ideal.

Proof. It follows from direct transformations that:

S ·
⋂

L∈L

L ⊂
⋂

L∈L

S · L ⊂
⋂

L∈L

L

Thus, the set
⋂

L is closed under multiplication on the right. Hence, as long as it is

non-empty, it is a left ideal.

We are now able to characterise minimal left ideals. Again, the result is independent of

topology, and holds also for right ideals.

Proposition 1.65. If L is a left ideal in a semigroup S, then L is minimal if and only

if for any x ∈ L we have L = G · x.

Proof. If L is minimal, then it does not properly contain any left ideal (principal or

otherwise), so we only need to prove the other implication. Let us thus take L as

described, and for an arbitrary x ∈ L consider the left principal ideal L′ := S · x. Then

L′ ⊂ L, by minimality the assumption on L we have L′ = L. Thus, L = S · x for any

x ∈ L, and all remaining claims follow readily.

We are finally able to prove an existence statement about minimal left ideals. The result

depends heavily on the topology, even though the formulation contains no topological

notions. The reader will easily convince himself that simple non-compact semigroups,

such as Nk or Pfin(N) contain no minimal ideals.
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Proposition 1.66. If L is a left ideal in a compact left-topological semigroup S, then L

contains a minimal left ideal.

Proof. Let L be the set of closed left ideals in S that are contained in L. Then L is

non-empty, because it contains all principal ideals corresponding to elements of L. Let

us consider the natural order induced by the inclusion on L.

We claim that each chain C ⊂ L has a lower bound M . In fact, we can just take

M :=
⋂

C. With such definition, it is immediately clear that M ⊂ C for any C ∈ C.

What is more, M is the intersection of a descending family of non-empty compact sets,

hence it is non-empty and compact. Thus, by Lemma 1.64, M is a left ideal, and hence

an element of L.

It now follows from Kuratowski-Zorn Lemma that C contains a minimal element, say

L′. By construction, L′ contains no proper closed left ideal, so by Lemma 1.65, L′ is a

minimal left ideal. By definition, L′ ⊂ L. Thus, L′ is the sought minimal ideal.

We shall now introduce the notion of idempotence, which is useful in study of semigroups.

Definition 1.67 (Idempotent). Let S be a semigroup. An element x ∈ S is said to be

idempotent if and only if x · x = x.

Example 1.68. If G is a group, on at least a cancellative monoid, the the only idem-

potent is the unit, e. Indeed, from x · x = x · e it follows after cancelling x that x = e.

If E is a Banach space, then the idempotent elements in the semigroup of bounded

operators B(E) are the projections onto closed subspaces of E .

It is not clear at all that idempotents should exists. For example, (N,+) contains no

idempotents, and the only idempotent in (N, ·) is 1. Generally, if S is a cancellative

monoid and I is a proper ideal, then I contains no idempotent. Hence, the following

theorem, due to Ellis [Ell58] might come as a welcome surprise.

Theorem 1.69 (Existence of idempotents, Ellis). Let S be a compact left-topological

semigroup. Then S contains an idempotent element.

Proof. We divide the proof in two steps.

Step 1. Among the compact sub-semigroups of S, there exists a minimal one S′.

Proof. Consider the family of S of all compact sub-semigroups of S, including S itself.

To show that there is the minimal in S with respect to the order induced by inclusion,
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we use Kuratowski-Zorn Lemma. We need to verify that any chain C ⊂ S has a lower

bound M . We just take M :=
⋂

C, which is a subset of any T ∈ C by definition. Since

M is the intersection of a descending family of compact non-empty sets, it is non-empty

and compact. It is closed under the semigroup operation, since all T ∈ C are such, and

this is an inductive condition. Thus, M belongs to S, as desired. Now, Kuratowski-Zorn

Lemma ensures the existence of the announced minimal element.

Step 2. Any minimal compact sub-semigroup S′ contains exactly one element.

Proof. Let L ⊂ S′ be a minimal left ideal. We know that for any x ∈ L, we can write

L in the form L = S′ · x. Consider the set T := {y ∈ S′ : x = y · x}. Note that since

x ∈ L = S′ · x, we have x = y · x for some y ∈ S′, and hence T is non-empty. Since the

map y 7→ y · x is continuous, and T is the preimage of {x}, T is compact. Moreover, if

y, y′ ∈ T then y′yx = y′x = x, so y, y′ ∈ T . Thus, T is a compact sub-semigroup of S′.

We have assumed that S′ is a minimal compact sub-semigroup of S. Hence, the above

considerations show that T = S′. In particular, we have x ∈ T , which means precisely

that x · x = x. Thus, {x} is a compact sub-semigroup of S. Using minimality again, we

conclude that S′ = {x} consists of precisely one idempotent element.

We have established that S has a one-element sub-semigroup {x}. In particular, we have

x · x = x, and consequently x is the sought idempotent.

Corollary 1.70. If T ⊂ S is a closed sub-semigroup of S, then T contains an idempotent.

Proof. It suffices to note that T is a compact Hausdorff left topological semigroup in

its own right, and apply Lemma 2.12. Of course, the property of being idempotent is

independent of the semigroup in which we consider the element.

Corollary 1.71. There exists idempotent ultrafilters in Ult (X) for any discrete semi-

group X. Moreover, if T ⊂ Ult (X) is a closed sub-semigroup, then T contains and

idempotent.

Proof. We know that Ult (X) is a compact Hausdorff topological semigroup. Thus, the

above Theorem 1.69 applies.

The next object of our study are the two-sided ideals. More precisely, we prove the

existence of a unique two-sided ideal. Given that there generally exists a multitude of

minimal left ideals and we were not able to guarantee existence of minimal right ideals
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at all, this may be a surprising fact. Moreover, this unique ideal has useful functional

properties, as we will shortly see.

Proposition 1.72. There exists a unique minimal two-sided ideal in S.

Proof. Let L denote the family of all minimal left ideals if S, and define K :=
⋃

L. We

claim that K is the sought ideal.

We first show that if I is a two sided ideal, then K ⊂ I. If L ∈ L is a minimal ideal,

then I ∩ L 6= ∅, because I · L ⊂ I ∩ L. Because L ∩ I is non-empty, it is a left ideal.

Because L is minimal we have L = L ∩ I, or simply L ⊂ I. Taking the union over all

choices of L, we find that K ⊂ I.

Because each L ∈ L is itself a left ideal, K is also a left ideal. It remains to see that K is

also a right ideal. We will in fact show more, namely that if L ∈ L and x ∈ S, then we

have L · x ∈ L. Because L · x is clearly a left ideal, it remains to see that it is minimal.

For this, let us take any element of L ·x, which is necessarily of the form y ·x with y ∈ L,

and notice that G · y · x = L · x because G · y = L.

Definition 1.73. We denote be K(S) the unique minimal two sided ideal of S. If

x ∈ K(S), then we refer to x as minimal element of S. Likewise, x is called a minimal

idempotent if x ∈ K(S) and x is idempotent.

Remark 1.74. The use of the adjective minimal in the above definition is customary, but

we wish to note, following Hindman and Strauss [HS12] that it would be more logical to

refer to K(S) as the smallest two sided ideal. Indeed, the phrase minimal suggests that

other minimal ideals may exist. This being said, we accept the traditional notation.

It will be useful to have a criterion for membership in K(S).

Proposition 1.75. Let S be a compact left-topological semigroup, and fix some x ∈ S.

Then the following conditions are equivalent:

1. x ∈ K(S),

2. x ∈ L for some minimal left ideal L,

3. for any y ∈ S there exists z ∈ S such that z · y · x = x.

Proof. The equivalence of 1 and 2 follows directly from the proof of Proposition 1.72.

Suppose that 2 holds, and let y ∈ S as in 3. We have y · x = S · x = L. By the

characterisation of minimal ideals, we have L = S · y · x, so x ∈ L implies that there

exists z ∈ S such that x = z · y · x. Hence, 3 holds.
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Finally, suppose that 3 is satisfied, and consider the left ideal L = S · x. Let us consider

an arbitrary x′ ∈ L, which is necessarily of the form x′ = y · x, and let z be such that

z · x′ = z · y · x = x. It follows that:

S · x′ ⊃ S · z · x′ = S · x = L

Because the other inclusion is clear, we have L = S · x′, which implies minimality of L

by characterisation in Proposition 1.65.

Because these are the idempotent elements of K(S) that are of most importance, we

derive another criterion for minimality of idempotents. We begin by introducing a partial

order on the set of idempotents.

Definition 1.76. Let p, q ∈ S be idempotent elements of a compact left-topological

semigroup S. Then we say that p ≤ q if and only if pq = qp = p.

Lemma 1.77. The relation ≤ defined in 1.76 is a partial order.

Proof. If is clear that the relation is reflexive: p ≤ p because pp = p. It is also clear that

if p ≤ q and q ≤ p then p = pq = q, so the relation is weakly anti-symmetric. Finally, if

p ≤ q and q ≤ r then we have:

pr = pqr = pq = p, rp = rqp = qp = p

so p ≤ r, proving transitivity.

We are now in position to characterise minimal idempotents as the idempotents minimal

with respect to the introduced order.

Proposition 1.78. Let S be a compact left-topological semigroup, and let p ∈ S be

idempotent element. Then the following conditions are equivalent:

1. The idempotent p is minimal in the sense of Definition 1.73.

2. The idempotent p is minimal with respect to the order in Definition 1.76.

Proof. 1 =⇒ 2 Suppose that p ∈ K(G) and that q is an idempotent with q ≤ p; we

need to check that q = p. Let L = S · p be the left ideal generated by p. We see

that q = qp ∈ L. It follows from Proposition 1.75 that we have for some r ∈ S the

relation: p = rqp. Consequently:

p = rqp = rqpq = pq = q,
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which finishes the proof that p = q.

2 =⇒ 1 Suppose that p is minimal with respect to ≤, and consider the left ideal L :=

S · p; we need to show that L is minimal. Let M ⊆ L be a minimal left ideal; we

know that M = S · q for some idempotent q. Because q ∈ S · p, we have qp = q.

Let us consider the r := pq = pqp. It is clear taht r is idempotent:

rr = (pqp)(pqp) = p(qp)(qp)p = pqqp = pqp = r.

Moreover, we have pr = rp = r, so directly by the definition we have r ≤ p.

Because of minimality, we have r = p. Consequently, p = pq ∈ M , and by a

previously shown characterisation we have M = L.

Corollary 1.79. Let p be an idempotent in a a compact left-topological semigroup S.

Then, there exists a minimal idempotent q with q ≤ p.

We now prove some useful properties of the minimal ideal K(S), depending on S. We be-

gin with a simple result on Cartesian products, and then consider a slightly more involved

result on sub-semigroups. These facts will have unexpected combinatorial applications.

Proposition 1.80. If S, T are compact left-topological semigroups, then K(S × T ) =

K(S) × K(T ). Moreover, if S1, . . . , Sr are compact left-topological semigroups, then

K(
∏

i Si) =
∏

iK(Si).

Proof. It is clear that K(S) × K(T ) is a two sided ideal in S × T , so K(S × T ) ⊂

K(S) × K(T ). Conversely, consider any x ∈ K(S), y ∈ K(T ), and let (s, t) ∈ K(S × T )

be arbitrary. Because of minimality of x, y, there exist s′ ∈ S, t′ ∈ T such that s·s′ ·x = x

and t · t′ · y = y. Hence, (x, y) = (s, t) · (s′ · x, t′ · x) ∈ K(S × T ).

The additional claim about products of more than two semigroups follows by a simple

induction.

Proposition 1.81. Let T ⊆ S be compact left-topological semigroups, and suppose that

T ∩K(S) 6= ∅. Then K(T ) = T ∩K(S).

Proof. The inclusion K(T ) ⊆ T ∩ K(S) follows from the simple observation that T ∩

K(S) ⊂ T is a two sided ideal. It remains to prove the inverse inclusion.

Let x ∈ T ∩ K(S). We will show that x ∈ K(T ). By Lemma 1.66, the (principal) ideal

Tx contains a minimal ideal, which is of the form Te for some idempotent e. Because

x ∈ K(S), the ideal Sx is minimal, so in particular from e ∈ Te ⊆ Tx ⊆ Sx it follows that
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Sx = Se, and hence there exist s ∈ S such that x = se. It now remains to notice that

xe = see = se = x, and hence x ∈ Te. Consequently, x ∈ Te ⊂ K(T ), as desired.

In the case when S is commutative, the theory is especially well-behaved. Although

the most important compact semigroups for us are the highly non-commutative ones

like Ult (N), it is interesting in its own right to investigate the behaviour of K(S) in a

commutative setting.

Proposition 1.82. Suppose that S is a commutative compact left-topological semigroup.

Then K(S) is compact. Moreover, there exists a unique idempotent e ∈ K(S), and K(S)

is a group with e as the identity.

Proof. Because S is commutative, the notions of a two-sided ideal and left ideal coincide.

Hence, K(S) is a minimal left ideal, and hence it is compact. Because K(S) is a compact

semigroup, there exists an idempotent e ∈ K(G). If f ∈ K(G) was another idempotent,

then we would have e = xf and f = ye for some x, y ∈ S. Hence, it would follow that:

e = xf = xff = ef = fe = yee = ye = f.

Thus, e is unique. Finally, if x ∈ K(G), we have K(G) = S · x, so there exists y ∈ S

with yx = e. Moreover, we have eyx = ee = e and ey ∈ K(G), so ey is the inverse

of x. Because K(G) was already a semigroup, existance of inverses implies that it is a

group.

It is useful to be able to construct compact left-topological sub-semigroups of a given

compact left-topological semigroup S. If T0 ⊂ S is a (non-compact) sub-semigroup, one

might be tempted to cojecture that T := clT0 is the (smallest possible) compact sub-

semigroup containing T0. Unfortunately, upon closer insection there turns out to be no

reason to believe this happens in the general situation. Because the semigroup operation

is only continuous in the one argument, one cannot argue that clT0 is closed under

the semigroup operation by means of continuity. Nevertheless, under the additional

assumption of commutativity, clT0 turns out to indeed be a sub-semigroup. We begin

by some relevant definitions and observations.

Definition 1.83. If S is a semigroup, then by Z(S) we denote the centre of S, given by:

Z(S) := {x ∈ S : (∀y ∈ S) : xy = yx}.

Observation 1.84. Is S, T are semigroups, then Z(S × T ) = Z(S)× Z(T ).
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Proof. It is clear that (x, x′), (y, y′) ∈ S×T commute if and only if x, y commute and x′, y′

commute. The claim follows directly by fixing (x, x′) and taking (y, y′) arbitrary.

Observation 1.85. If X is a commutative semigroup, then X ⊂ Z(Ult (X)). If X = (N, ·)

or X = (N,+), then it can be shown that Z(Ult (X)) = X, but we don’t prove this result.

We are now ready to give a condition for the closure of a sub-semigroup to be a (compact)

subsemigroup.

Proposition 1.86. Suppose that S is a compact left-topological semigroup, and T0 ⊂

Z(S) is a sub-semigroup contained in the centre of S, and let T := clT0 denote the

closure of T0. Then, T is a (compact) sub-semigroup of S. Moreover, if I0 ⊂ T0 is a (by

necessity, two-sided) ideal and I := cl I, then I is a two sided ideal in T .

Proof. Let p, q ∈ T . We need to check that p · q ∈ T . Because of continuity, we have

p · q = limx→p x · q. Because p ∈ clT0, it suffices to restrict to x ∈ T0 when taking the

limit. Because T0 ⊂ Z(S), we have for x ∈ T0: x · q = q · x. Using continuity again, we

can write q ·x = limy→q y ·x. Again, taking this limit we may restrict to y ∈ T0. Because

T0 is a semigroup, we have y · x ∈ T0. Passing to the limit, we conclude that q · x ∈ T .

Passing to the limit again, we finally find p · q ∈ T , as desired.

For the additional part, note that if either p ∈ I or q ∈ I, then we might restrict to

x ∈ I0 or y ∈ I0. In either case, we would have x · y ∈ I0, and after limit transitions we

conclude that p · q ∈ I. Hence, I is an ideal (in T ).

The above results can be generalised somewhat, using the notion of topological centre.

As previously, we begin with the necessary definition. Next, we make some simple

observations.

Definition 1.87. If S is a left-topological semigroup, then by Ztop(S) we denote the

topological centre of S, which is defined as the set of those q ∈ S for which the right

multiplication by q, i.e. the map S ∋ q 7→ p · q ∈ S, is continuous.

Observation 1.88. Is S, T are left-topological semigroups, then Z(S × T ) = Z(S)×Z(T ).

Proof. The claim follows immediately from characterisation of continuity on product

spaces.

Observation 1.89. If S is a left-topological semigroup, then Z(S) ⊂ Ztop(S).

Proof. It suffices to notice that for the elements of the centre, left multiplication and

right multiplication coincite, and left multiplication is continuous by assumption.
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Observation 1.90. If X is a discrete semigroup, then X ⊂ Ztop(Ult (X)).

Proof. This follows directly from how semigroup structure is defined of Ult (X).

The following is refinement of Proposition 1.86, with centre replaced by topological cen-

tre.

Proposition 1.91. Suppose that S is a compact left-topological semigroup, and T0 ⊂

Ztop(S) is a sub-semigroup contained in the centre of S, and let T := clT0 denote the

closure of T0. Then, T is a (compact) sub-semigroup of S. Moreover, if I0 ⊂ T0 is a (by

necessity, two-sided) ideal and I := cl I, then I is a two sided ideal in T .

Proof. Essentially the same as in Proposition 1.86.

1.4 Finitely additive measures

Yet another way to look at ultrafilters is as a special kind of measures. More precisely, we

show that there is a natural way to identify an ultrafilter U ∈ Ult (X) with a {0, 1}-valued

finitely additive measure on X. Note that this is a rather specific kind of a probabilistic

measure, where each set is assigned measure either 0 or 1; we take the apportunity to

cite an amusing way of putting this, found at the n-Category Café:

If probability indicates your degree of belief, an ultrafilter is a probability

measure for fundamentalists.

This approach leads to new intuitions, and allows us to borrow some new language from

measure theory.

We begin by defining a measure corresponding to an ultrafilter, and vice versa. After-

ward, we prove that this correspondence is bijective.

Definition 1.92. Let U be an ultrafilter. Then we define the associated finitely additive,

{0, 1}-valued measure µ on X by the formula:

µ(A) =







1 if A ∈ U

0 if A 6∈ U

Conversely, if µ is a finitely additive, {0, 1}-valued measure on X then we define the

associated ultrafilter U by the formula:

U = {A ∈ P(X) : µ(A) = 1}.
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Proposition 1.93. The above definition gives a bijective correspondence between ultra-

filters and finitely additive, {0, 1}-valued measures.

Proof. Let U be an ultrafilter, and µ the associated measure. We need first to verify

that µ is indeed what we declared it to be. It is immediate from the definition that it

is {0, 1}-valued. Property (i) translates into µ(∅) = 0 and µ(X) = 1. Finite additivity

is equivalent to the statement that µ(A ∪ B) = µ(A) + µ(B) for any disjoint sets A,B.

Since U is closed under finite intersections, it cannot be the case that µ(A) = µ(B) = 1.

If µ(A) and µ(B) are 0 and 1 (in either order), then A∪B ∈ U , and hence µ(A∪B) = 1,

and the equality agrees. Finally, if A,B 6∈ U then by property (vii) we have µ(A∪B) = 0,

so the equality agrees again.

Similarly, let µ be a finitely additive, {0, 1}-valued measure, and U be the additional

ultrafilter. Again, we need to verify that U is really an ultrafilter. We have µ(X) = 0

and µ(∅) = 0, so X ∈ U and ∅ 6∈ U , so property (i) holds. If A ⊂ B and A ∈ U , then

we can find C such that B = A ∪ C where the sum is disjoint, namely C := B \ A. We

find that µ(B) = µ(A) + µ(C) ≥ 1, so B ∈ U — and thus property (i) is satisfied. If

A ∈ P(X), then µ(A)∪µ(Ac) = µ(X) = 1, hence exactly one of A,Ac belongs to C, and

property (vii) is satisfied. Finally, if A,B ∈ U , then 1 = µ(A) = µ(A ∩B) + µ(A ∩Bc),

thus A ∩ B ∈ U as soon as A ∩ Bc 6∈ U . However, this follows directly from what has

already been shown, since A ∩Bc ⊂ Bc 6∈ U .

It remains to show that the described relations are mutually inverse. Thus, suppose that

U is an ultrafilter, µ is the associated measure, and V is the ultrafilter associated to the

measure µ. We then have:

A ∈ V ⇐⇒ µ(A) = 1 ⇐⇒ A ∈ U ,

and thus U = V. In the same spirit, if µ is a finitely additive, {0, 1}-valued measure, U

is the associated ultrafilter, and ν is the measure associated to U , then

µ(A) = 1 ⇐⇒ A ∈ U ⇐⇒ ν(A) = 1,

and since the measures take only two values, µ = ν and we are done.

It is fairly easy to describe the correspondence explicitly in the one concrete example of

an ultrafilter we have.

Example 1.94. If Fx is the principal ultrafilter associated to a point x ∈ X then the

associated measure µ is the point measure δx centered at x.
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Remark 1.95. The generalised limit can be thought of as the natural generalisation of the

integral. Because there does not seem to be a standard way of defining the integral for

finitely additive measures, we don’t make a rigorous statement out of this observation.

Instead, we note that if U ∈ Ult (X) is an ultrafilter with associated measure µ, and

f : X → R̂ is a function with U–lim
x

f(x) = α, then for any ε > 0, for µ-almost all x we

have α− ε < f(x) < α+ ε, and we encourage the reader work out the details.

Similarly, extending the group operation to the ultrafilters can be though of as a gener-

alisation of convolution of measures. Again, we leave the details to the reader.

Thinking of ultrafilters in terms of measures suggests that it makes sense to speak of

statements being true U -almost everywhere, where we identify the ultrafilter U with the

corresponding measure. For completeness’ sake, we define a statement (involving the

variable x) to be true U -almost everywhere (abbreviated U -a.e.) with respect to x if

and only if the set of those x for which the statement is true is U -big, or belongs to

U ; alternatively, we may say that the statement is true for U -almost all x (abbreviated

U -a.e. x).

This is a well behaved notion, and has the additional useful property that either a

statement is true U -a.e. or it’s negation is true is true U -a.e. Conjunction of finitely

many statements that are true U -a.a. is again true U -a.a., but this rule does not hold for

countable conjunction (as is the case in ordinary measure theory) since U corresponds

to merely a finitely additive measure (as opposed to countably additive one). A more

subtle caveat is that this type of quantification is sensitive to ordering: For a statement

φ in x and y, one could first make the statement that for U -a.a. y, φ is true, and then say

that this statement holds true for U -a.a. x. This is a useful statement, however it is not

equivalent to the similar statement has reversed order of quantification. As an extreme

example, one may say that for U -a.a. n, for U -a.a. m it holds that m > n, but of course

it is not true when quantification is interchanged. This issue can be traced back to the

failure of Fubini’s theorem’s analogue for finitely additive measures.
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Combinatorial applications.

In this chapter study the interplay between ultrafilters and combinatorics. On one hand,

application of ultrafilters allows us to prove interesting statements about combinatorial

objects, such as arithmetic progressions or sets of finite sums, especially the ones related

to partitions. Most of the results derived here were first proved by more classical means,

but ultrafilter approach tends to produce proofs that are more succinct and to be more

amenable to generalisations.

As a warm-up, we prove the Ramsey theorems for graphs and hypergraphs. Our goal

there is not so much derivation of the result, which is classical and not too difficult,

but showing how ultrafilters can be applied in combinatorics, and how they produce

significantly shorter and more elegant proofs. In the subsequent sections, we investigate

some notions of largeness and their relation to ultrafilters. We begin with IP-sets, which

are fairly natural from the combinatorial viewpoint, and are connected to idempotent

ultrafilters. These can be used to derive Hindman theorem. Secondly, we treat C-sets,

which are more special than IP-sets and are easiest to define with help of ultrafilters. As

an elegant application of C-sets, we prove van der Waerden’s theorem and Hales-Jewett

theorem.

Perhaps the most important motivation behind our present inquiry is that it provides a

connection between ultrafilters and notions of largeness which are of independent interest.

The most important results we prove in Chapter 3 assert that a given set of “return

times” belongs to an ultrafilter, assuming that some additional conditions are satisfied.

Given that ultrafilers are not a part of “mainstream” mathematics, these results are not

immediately appealing in the basic form. However, statements including IP-sets and

C-sets are much more easily understood.

39
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Most of the results presented in this chapter can be found in [HS12]. The proof of Ram-

sey’s theorem is inspired by [Gal]. Extremely accessible treatment of many of the topics

discussed here can be found in [Hin05] and [CHS05]. A good discussion of Hindman’s

Theorem for general semigroup can be found in [GT13]. For the original ultrafilter

proof of van der Waerden, see [BFHK89]. For a discussion of partition theorems like

Hales-Jewett, see [BBH94].

2.1 Ramsey theorem

We begin by discussing simple applications of ultrafilters to Ramsey theory for graphs.

These applications are basic insofar as they only use existence of a single ultrafilter, with

no reference to any algebraic or topological properties. Intuitively speaking, for these

applications ultrafilters may be seen as a limit objects attached to an infinite number of

restrictions to subsequences. Indeed, the classical proofs of the discussed results follow

by repeated transitions to subsequences.

To formulate the theorems, we introduce some notation. The reader familiar with graph

theory will find the following definition standard.

Definition 2.1. An (undirected, simple) graph G = (V,E) consists of a set of vertices

V and a set of edges E ⊂
(V
2

)

:= {{u, v} : u, v ∈ V, u 6= v}. The full graph with vertex

set V is the one with the maximal possible set of edges: E =
(

V
2

)

.

An r-colouring of the graph G is an arbitrary map c : E → [r], where we . If e ∈ E is an

edge and c(e) = γ, we say that e has colour γ. If u, v ∈ V , we write c(u, v) rather than

c({u, v}) for the colour of the edge {u, v}; this way c can be identified with a symmetric

function on a subset of V 2.

A subset U ⊂ V is said to be monochromatic if and only if there is a colour γ such that

c(e) = γ for all edges e ∈
(

U
2

)

∩ E.

Note that a colouring of a graph is essentially the same as finite partition of the set

of egdes. The difference is purely notational: we find it more convenient to speak of

monochromatic sets than of sets whose edges which lie entirely in a one cell of a given

partition.

We are now able to formulate and prove the classical Ramsey theorem for graphs. It is

a fundamental result which lies at the very basis of Ramsey theory.

Theorem 2.2 (Ramsey theorem, infinitary version). Let G be the full graph with an

infinite set of vertices V , and let c :
(

V
2

)

→ [r] be a colouring of the edges of V with r

colours. Then there exists an infinite monochromatic subgraph of V .
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Proof. Let U be a non-principal ultrafilter on the set of vertices V .

Define c(u) := U–lim
v

c(u, v) and c := U–lim
v

c(v). Note that c(u) is well defined because

c(u, v) makes sense for U -a.a. v. This says that for any u, the edge c(u, v) has colour

c(u) for U -a.a. v, and the colour c(u) is c for U -a.a. u. Additionally, let A := {u ∈ V :

c(u) = c} denote the set of those u whose typical edge colour c(u) takes the typical value

c. Also, let A(u) := {v ∈ V : c(u, v) = c(u)} denote for each u the set of the endpoints

v of edges (u, v) whose colour c(u, v) takes the typical value c(u). Note that A ∈ U and

for any u also A(u) ∈ U .

We will now construct by induction a sequance of vertices (vn)n∈N so that c(vi, vj) = c

for i < j. For n = 0, we take v0 to be any element of A. For n = 1, we take v1 to be

any element of A ∩A(v0). Generally, if v0, v1, . . . , vn−1 have been constructed, let vn be

any element of the set A ∩ A(v0) ∩ A(v2) ∩ · · · ∩ A(vn−1), which is non the empty set

because it belongs to U . Since vi ∈ A for any i ∈ N, we have c(vi) = c. Since vj ∈ A(vi)

for j ∈ N, j > i, we have c(vi, vj) = c(vi) = c. Thus, all edges between vn indeed have

the colour c, as claimed.

The above theorem speaks of infinite graphs. We can formulate a finitary version of the

above theorem, replacing infinite graphs by arbitrary large finite graphs. Arguably, the

finite version of the theorem is more concrete.

Theorem 2.3 (Ramsey theorem, finitary version). Suppose that a number of colours r

and size M are fixed. Then, there exists N (dependent on M and r) such that if G is a

full graph with at least N vertices, whose edges are coloured in r colours, then G contains

a monochromatic subgraph with at least M vertices.

Proof. Suppose that for some fixed r, M , the claim fails. Let T be the theory of r-

coloured graphs (the language contains r binary relations R1, R2, . . . , Rr corresponding

to the colouring of the edges, and the axioms are such that each edge has exactly one

colour). The statement that the claim fails for the fixed values of r and M means

that for any N we can find a model for T which has at least N elements and has no

M -element monochromatic subgraph — both conditions easily expressible as first order

sentences. From Łoś Theorem it follows that T needs to have a model in which all these

sentences are true: this means that the model has to be infinite, and have no M -element

monochromatic subgraphs. But this contradicts the infinitary version of the theorem,

since the infinite model needs to have an infinite monochromatic subgraph, let alone

M -element.

Remark 2.4. The finitary version of Ramsey theorem can also be deduced by a more

classical compactness argument. In this argument, we start with a countably infinite
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vertex set V = (vi)i∈N, and use the failure of the finitary version to construct for each

N an r-colouring of VN = (vi)i∈[N ] with no monochromatic subgraph of size M . The

difficulty lies in combining the many finite colourings into one. This can be done by

multiple passing to subsequences, using compactness of [r]V , or using ultrafilter limits.

We can repeat very simialar considerations for hypergraphs, which are a natural gener-

alisation of graphs. We begin by giving the relevant definitions.

Definition 2.5. A k-hypergraph G = (V,E) consists of a set of vertices V and a set of

edges E ⊂
(V
k

)

:= {{u1, u2, . . . , uk} : ui ∈ V, i 6= j =⇒ ui 6= uj}. The full k-hypergraph

with vertex set V is the one with the maximal possible set of edges: E =
(V
k

)

.

An r-colouring of the k-hypergraph G is an arbitrary map c : E → [r]. If e ∈ E is an edge

and c(e) = γ, we say that e has colour γ. If u1, u2, . . . , uk ∈ V , we write c(u1, u2, . . . , uk)

rather than c({u1, u2, . . . , uk}) for the colour of the edge {u1, u2, . . . , uk}; this way c can

be identified with a symmetric function on a subset of V k.

A subset U ⊂ V is said to be monochromatic if and only if U there is a colour γ such

that c(e) = γ for all edges e ∈
(U
k

)

.

The follwing theorem is the obvious generalisation of Theorem 2.2 to hypergraphs. The

proof is almost a verbatim copy of the the proof for graphs.

Theorem 2.6 (Ramsey theorem for hypergraphs, infinitary version). Let G be the full

k-hypergraph on with an infinite set of vertices V , and let c :
(V
k

)

→ [r] be a colouring

of the edges of V with r colours. Then there exists an infinite monochromatic subgraph

of V .

Proof. Let U be a non-principal ultrafilter on the set of vertices V .

We begin by extending the colouring c to all subsets of V with cardinality not greater

than k by the following inductive procedure; thus extended c will describe the colour

that is typical for a given subset of vertices. For k-element subsets, the map c
(V
k

)

→ [r]

is already given. Suppose that for some l < k, the map c :
( V
l+1

)

→ [r] has been defined.

Then, for an l-element set distinct verices f = {u1, u2, . . . , ul}, the colour c(f ∪ {v}) is

defined for all v 6∈ f , so in particular for U -a.a. v. It therefore makes sense to define the

typical colour for f as: c(f) := U–lim
v

c(f∪{v}). We additionally define the set A(f) ∈ U

to be the set where the typical colour for f is realised: A(f) := {v ∈ V \f : c(f ∪{v}) =

c(f)}; by definition A(f) ∈ U . This finishes the inductive step. In particular, we have

defined c(∅), which we will denote simply by c.

We will now construct by induction a sequance of vertices (vn)n∈N so that for all f ⊂

{vi}i∈N with #f ≤ k we have c(f) = c. This will finish the proof, because the condition
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implies that in particular for edges e ⊂ {vi}i∈N we have c(e) = c, and therefore {vi}i∈N is

monochromatic. Suppose that for some n ≥ 0, the vertices v0, v1, . . . , vn−1 have already

been constructed so that for f ⊂ {vi}i∈[n] with #f ≤ k we have c(f) = c (we allow

n = 0, where no previous vertices are constructed). Let us define

B :=
⋂

{A(f) : f ⊂ {vi}i∈[n] , #f ≤ k}.

Since all the sets A(f) in the intersection are U -big, also B is U -big, and in particular

non-empty. We claim that for any choice of vn in B, the required conditions will hold for

vn. We need to check that for any f ′ ⊂ {vi}i∈[n+1] with #f ′ ≤ k we have c(f ′) = c. If

vn 6∈ f ′, this is satisfied by the inductive assumption, so we may assume that f ′ = f∪{vn}

with f ⊂ {vi}i∈[n] and #f < k. Since vn ∈ B ⊂ A(f), we have, by the definition of

A(f), the equality c(f ′) = c(f ∪ {vn}) = c(f). By the inductive assumption, c(f) = c.

Thus, we have c(f ′) = c, as claimed. This finishes the inductive step, and thus the proof.

Just as before, we can make the theorem more concrete by referring to finite objects.

We again prefer model-theoretic methods of deriving the finitary version, but a more

classical solution is to use compactness arguments.

Theorem 2.7 (Ramsey theorem for hypergraphs, finitary version). For any number of

colours r and size M , there exists N (dependent on M and r) such that if G is a full

k-hypergraph with at least N vertices, whose edges are coloured in r colours, then G

contains a monochromatic subgraph with at least M vertices.

Proof. Suppose that for some fixed r,M , the claim fails. Let T be the theory of r-coloured

k-hypergraphs (the language contains r relations R1, R2, . . . , Rr with k arguments cor-

responding to the colouring of edges, and the axioms are such that each edge has exactly

one colour). The statement that the claim fails for the fixed values of r,M means that for

any N we can find a model for T which has at least N elements and has no M -element

monochromatic subgraph — both conditions easily expressible as first order sentences.

From Łoś Theorem it follows that T needs to have a model in which all these sentences

are true: this means that the model has to be infinite (at least N vertices for every N),

and have no M -element subgraphs. But this contradicts the infinitary version of the

theorem, since the infinite model needs to have an infinite monochromatic subgraph, let

alone M -element.
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2.2 IP-sets and idempotent ultrafilters

In this section we introduce and study an important notion of combinatorial largeness:

IP-sets and IP
∗-sets. These make sense in an arbitrary commutative semigroup , but

as usual the most interesting example is provided by the natural numbers. In fact,

one can even work with non-commutative semigroups and obtain similar results, but

we restrict to the commutative case. On one hand these concepts are fairly natural,

and tied closely to even more natural syndeticity. On the other hand, they bear a close

relation to ultrafilters. This makes them a convenient bridge between ultrafilters and

concrete mathematics. Our main result in this section is the ultrafilter proof Hindman’s

theorem. The presented proof is due to Galvin and Glazer, and is commonly considered

to be one of the most elegant results in combinatorial number theory. The first known

proof is due to Hindman [Hin74] and uses only elementary tools — at the price of being

rather lengthy and complicated. We follow the treatment by Hindman-Strauss [HS12]

and Bergelson [Ber10].

Throughout this section, X stands for a commutative discrete semigroup. As usual, we

begin with some definitions.

Definition 2.8 (Finite sums and products). Let x = (xn)n∈N be a sequence of elements

of a commutative semigroup X. If X is written multiplicatively, i.e. X = (X, ·), then

we define the family of finite products of x to be:

FP(x) :=

{

∏

i∈I

xi : I ⊂ N, 0 < #I < ℵ0

}

.

Likewise, if X = (X,+) is written additively, then we define the family of finite sums of

x to be:

FS(x) :=

{

∑

i∈I

xi : I ⊂ N, 0 < #I < ℵ0

}

.

Definition 2.9 (IP-sets). A set A ⊂ X is said to be an additive IP-set by definition

if and only if A ⊃ FS(x) for some sequence x. (IP stands for idempotent, [Ber10], or

infinite-dimensional parellopiped [Par12]). Similarly, A is said to be a multiplicative

IP-set by definition if and only if A ⊃ FP(x) for some sequence x.

Remark 2.10. In the setting of an arbitrary commutative semigroup, the difference be-

tween FS(·) and FP(·) is purely notational. In practice, these notions are normally

applied in the context where both + and · have fixed conventional meanings, such as in

N.

Some authors require IP-sets to be precisely of the form FS(x) (respectively FP(x)) for

some sequence x. However, following the rationalisation of Bergelson et al. [], we require
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a weaker condition of inclusion, since begin an IP-set should be a notion of “largeness”,

and thus should be preserved under taking supersets. On a more practical note, it makes

the characterisation which we will prove shortly more elegant.

Example 2.11. Consider X = N, and take xn := 10n. Then FS(x) consists precisely of

the positive integers whose digits are only 0’s and 1’s.

We never assume that xn have to be distinct, nor that their sums need to be distinct. If

e ∈ X is idempotent, then taking xn := e shows that {e} = FS(x) is an IP-set. In this

case it also happens that the principal ultrafilter Fe is idempotent.

The definition of IP-sets we provided used only elementary properties of X, without

ever mentioning ultrafilters. The purpose of the following two lemmas is to establish

a connectio between IP-sets and idempotent ultrafilters. First, we show how algebraic

structure of an ultrafilter implies combinatorial richness of its members.

Lemma 2.12. If (X,+) is a commutative semigroup, U ∈ Ult (X) is an idempotent

ultrafilter and A ∈ U , then A is an IP-set.

Proof. We will inductively construct a sequence (xi)i∈N for which FS(x) ∈ A. In n-th

step, the initial fragment (xi)i∈[n] is assumed to be given, and we construct xn. At each

step of the construction, we require that two conditions should be satisfied. Firstly, for

any ∅ 6= I ⊂ [n], we require that
∑

i∈I xi ∈ A. Secondly, let An :=
⋂

I⊂[n]

(

A−
∑

i∈I

xi

)

; 1

we require that An ∈ U .

Suppose that for some n ∈ N, the initial fragment (xi)i∈[n] has already been constructed

so that the requirements are satisfied. We allow n = 0, which corresponds to no elements

being constructed, and the requirement that A0 = A ∈ U . We wish to construct xn. By

the inductive assumption An ∈ U . Since U + U = U , we can equivalently express this

condition by saying that the set B := {x ∈ X : An − x ∈ U} belongs to U . Since U is

closed under intersections, we also have An ∩ B ∈ U . In particular, An ∩ B 6= ∅, so we

may select xn ∈ An ∩B. We claim that any such xn satisfies the requirements.

Note that by definition we have An+1 = (An − xn) ∩An. Thus, An+1 ∈ U follows from

An − xn ∈ U and An ∈ U . The first of these conditions follows from xn ∈ B, and the

definition of B, while the second is the inductive assumption.

Similarly, note that any index set ∅ 6= I ⊂ [n + 1] is either contained in [n], or can be

written as I = {xn} ∪ I
′ with I ′ ⊂ [n]. We need to show that

∑

i∈I xi ∈ A. In the case

I ⊂ [n], this follows form the inductive assumption, so suppose that I = {xn} ∪ I
′ with

1We remind that A− x = {y ∈ X : y + x ∈ A}. Here A−
∑

i∈∅
· · · := A.
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I ′ ⊂ [n]. Then the requirement can be equivalently expressed as: xn ∈ A −
∑

i∈I′ xi.

This follows immediately from xn ∈ An.

Remark 2.13. Note that the above proof really shows more than is stated in the theorem

formulation. Namely, at each step, we choose xn as an arbitrary element of a given

set which is U -large. This means, that we can make additional requirements of xn.

Most importantly, if X = N we can require that xn be arbitrarily large (with respect to

x1, x2, . . . , xn−1).

As the next step, we prove a statement converse to the above Lemma 2.12: we show

that given combinatorially rich set, one can find an algebraically interesting ultrafilter

to which it belongs.

Lemma 2.14. If (X,+) is a commutative semigroup, and A ∈ P(X) is an IP-set, then

there exists an idempotent ultrafilter U ∈ Ult (X) such that A ∈ U .

Moreover, if x = (xn)n∈N is a sequence and σ denotes the left shift on XN (so that

σmx = (xm+n)n∈N) then there exists an idempotent ultrafilter U ∈ Ult (X) such that

FS(σmx) ∈ U for all m.

Proof. By taking x with FS(x) ⊂ A, we see that it will suffice to prove the second part

of the statement.

Let us define An := FS(σnx), and take Γ :=
⋂

n∈NAn. Since for all n we have An ⊇ An+1

and consequently An ⊇ An+1, the set Γ is the intersection of a descending family of non-

empty compact sets, and hence is a non-empty and compact.

We shall prove that Γ is also a sub-semigroup of Ult (X). We need to check for that

for U ,V ∈ Γ we have U + V ∈ Γ. It will suffice to show that for any n ∈ N, we have

U + V ∈ An, or equivalently An ∈ U + V. By definition of U + V, this is equivalent to:

B := {y ∈ X : An − y ∈ V} ∈ U

We claim that if y ∈ An, then An − y ∈ V. Indeed, any such y can be expressed as

y =
∑

i∈I xi with min I ≥ n. If we set m := max I + 1, then arbitrary element of

Am is of the form z =
∑

j∈J xj where minJ > max I. In particular, I ∩ J = ∅ and

min I∪J ≥ n, so y+z =
∑

i∈I∪J xi ∈ An. This means that Am ⊂ An−y. Since Am ∈ V

by Γ ⊂ Am, we hence have An − y ∈ V, as claimed.

From the above claim it follows that: B ⊃ An. Since An ∈ U , we thus have B ∈ U ,

which finishes the proof that Γ is a sub-semigroup.
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We have shown that Γ is a compact sub-semigroup of Ult (X). By Corollary 1.71, Γ

contains an idempotent. By construction, this idempotent contains all sets An.

Finally, we combine the two Lemmas and reach ultrafilter characterisation of ultrafilters.

Corollary 2.15 (Characterisation of IP-sets via ultrafilters). For a set A ∈ P(X), the

following conditions are equivalent:

1. The set A is an IP-set.

2. There exists an idempotent ultrafilter U ∈ Ult (X) such that A ∈ U .

The characterisation in the above corollary justifies the resolution of IP to “idempotent”,

as in “sets which are members of idempotent ultrafilters”. To see how one can justify the

resolution involving parallelopiped, recall that the n-dimensional parallelopipeds are the

figures given (up to a translation) by the formula:

P =

{

n
∑

i=1

tixi : ti ∈ [0, 1]

}

= Conv
(

FS(x1, . . . , xn) ∪ {0}
)

,

where x1, x2, . . . , xn ∈ Rn are some linearly independent vectors and Conv denotes the

convex hull. The author prefers to connect IP-sets with idempotence, but acknowledges

that opinions on this issue may differ.

It is possible to refine the above characterisation slightly, to include a wider class of

ultrafilters.

Observation 2.16. Let E denote the set of all idempotent ultrafilters on X. For a set

A ∈ P(X), the following conditions are equivalent:

1. The set A is an IP-set.

2. There exists an ultrafilter U ∈ clE such that A ∈ U .

Moreover, if U is an ultrafilter such that for any A ∈ U is an IP-set, then U ∈ clE.

Proof. If A is an IP-set, then we already know by 2.15 that there exists U ∈ E such that

A ∈ U . In the other direction, the condition that A ∈ U for some U ∈ clE is equivalent

to A ∩ clE 6= ∅. By the definition of the closure, this means that A ∩ E 6= ∅, which in

turn is equivalent to A being an IP-set by 2.15.

For the additional part, suppose U is such that A ∈ U implies that A is IP. It follows

that that any base neighbourhood of U of the form A has non-trivial intersection with

E. Hence, U ∈ clE, as claimed.
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Having established the above characterisation, we are able to derive partition regularity

of IP-sets.

Definition 2.17 (Partition regularity). Let A ⊂ P(X) be a family of sets. Then A

is said to be partition regular if and only for any A ∈ A and any finit partition A =

A1 ∪A2 ∪ · · · ∪Ak, we have Ai ∈ A for some i.

Corollary 2.18 (Partition regularity of IP sets). If A ∈ P(X) is an IP-set, and A =

A1∪A2∪· · ·∪Ak is a finite partition of A, then Ai is an IP-set for some i. Equivalently,

the family of IP-sets is partition regular.

Proof. Since A is an IP-set, by Lemma 2.14, it belongs to some idempotent ultrafilter U .

By the ultrafilter property (iv), U contains Ai for some i. By Lemma 2.12, Ai contains

an IP-set.

We now formulate the celebrated Hindman’s theorem, in the many versions in which it

appears. We strip the formulation from the fancy terminology to make sure we avoid

trivial IP sets. Additionally, since this is an end result, we prefer to keep it as transparent

as possible.

Theorem 2.19 (Hindman; integer version). Suppose that N = A1 ∪ A2 ∪ · · · ∪ Ak is a

finite partition of the set of natural numbers. Then, there exists an increasing sequence

of integers x = (xn)n∈N and an index i with FS(x) ⊂ Ai. Likewise, there exists an

increasing sequence of integers y = (yn)n∈N and an index j with FP(y) ⊂ Aj .

Proof. This follows immediately from Corollary 2.18.

Another semigroup which is useful in applications consists in the finite subsets of N,

Pfin(N), with the union of sets as the semigroup operation. For this special case, because

the operation is the union, we use the notation FU(α) for the finite unions of the sequence

of finite sets (αn)n∈N. Note that this semigroup is badly non-cancellative — in fact, each

α ∈ Pfin(N) is idempotent. This makes the notion of IP-sets, as we defined it, essentially

useless, since each non-empty subset of Pfin(N) is IP. Interesting structure in FU(α) only

emerges when additional conditions are imposed on αn.

For α, β ∈ Pfin(N) we say that α < β if and only if maxα < minβ.

Theorem 2.20 (Hindman; finite sets version). Suppose that Pfin(N) = A1∪A2∪· · ·∪Ak

is a finite partition of the family of finite sets of natural numbers. Then, there exists a

sequence of finite sets α = (αn)n∈N with αn < αn+1, an index i with FU(α) ⊂ Ai.
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Proof. We first notice that there exists an idempotent ultrafilter U ∈ Ult (Pfin(N)) such

that for any A ∈ U , for any β ∈ Pfin(N), we can find α ∈ A with β < α. Let γn := {n}

Applying the construction from Lemma 2.14, we find that there exists an idempotent

ultrafilter U such that for any m we have FU(σmγ) ∈ U , were (σmγ)n = γn+m = {n+m}.

We show that this choice of U works. Let A ∈ U be arbitrary, and let β ∈ Pfin(N) with

m := max β+1. Consider the set A′ := FU(σmγ)∩A ∈ U . Clearly, if α ∈ A′ is arbitrary,

then minα ≥ m, so α > β. It follows that U satisfies the required properties.

Let Pfin(N) = A1∪A2∪· · ·∪Ak be a partition, and let U be the ultrafilter just constructed.

We can find i with Ai ∈ U . Revisiting the proof of Lemma 2.12 and the subsequent

Remark, we find that one can construct a sequence α = (αn)n∈N such that FU(α) ⊂ Ai,

and additionally αn < αn+1 for all n.

Remark 2.21. We have derived the Hindman theorem for a general commutative semi-

group, and seen several special cases. One might suspect that the general case of the

theorem should be significantly more difficult than the cases of particular semigroups.

Somewhat surprisingly, this turns out not to be the case. In fact, it is possible to de-

rive from Hindman’s Theorem for finite sets 2.20 the partition regularity of IP-sets as in

Corollary 2.18, which lies at the foundation of our subsequent applications. We refer to

[Ber10] for details. However, operating with general semigroups does not increase the

complexity of the reasoning significantly, so we have no reason to work specifically with

Pfin(N).

In case X = N, we have two natural structures of a semigroup: additive and multiplica-

tive. Hence, if N = A1 ∪ A2 ∪ · · · ∪ is a finite partition, then we can find i such that Ai
is additively IP, and j such that Aj is multiplicatively IP. It is natural to ask if one can

find i such that Ai is both additively and multiplicatively IP. The answer turns out to

be positive, as shown in [Ber10].

Theorem 2.22. Suppose that N = A1 ∪ A2 ∪ · · · ∪ Ak is a finite partition of the set

of natural numbers. Then, there exist increasing sequences of integers x = (xn)n∈N,

y = (yn)n∈N index i with FS(x) ⊂ Ai and FP(y) ⊂ Ai.

Proof. Let E denote the set of all additively idempotent ultrafilters on N. We claim that

clE is a left multiplicative ideal. Clearly, E is non-empty. Because the multiplication

is continuous in the left argument, it will suffice to check that clE is closed under

multiplication by N. Let us consider U ∈ clE, and n ∈ N; we need to show that

n · U ∈ clE. Thanks to characterisation in 2.16, it will suffice to show that if B ∈ n · U

then B is an additive IP-set. Let A := n\B; we know that A ∈ U so A contains a set

FS(x). Hence, B is an additive IP-set, because it contains the set FS(nx) (operation

taken coordinate-wise).
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Because clE is a closed left multiplicative ideal, it is clearly also a compact multiplicative

sub-semigroup. Hence, by theorem 1.69, clE contains a multiplicative idempotent V. Let

i be such that Ai ∈ V. Because V ∈ clE, we know from 2.16 that Ai is an additive IP-set.

Because V is multiplicatively idempotent, from 2.15 it follows that Ai is a multiplicative

IP-set. Finally, we notice that V is clearly not principal, so the sequences x and y from

the theorem formulation can be assumed to be increasing.

We finish this section by introducing the notion of IP∗-sets. We will not yet make much

use of it in this chapter, but in dynamical applications this concept will be crucial. We

begin by giving a defining the operation A 7→ A∗ in more generality than really needed.

Definition 2.23. Let A ⊂ P(X) be a family of sets. Then A∗ is defined to be the family

of all B ∈ P(X) such that for any A ∈ A we have A ∩ B 6= ∅. In particular, B ∈ P(X)

is an IP
∗-set if and only if for any IP-set A we have A ∩B 6= ∅.

We make some simple observations about the operation we just defined. Apart from

developing some intuition, we aim at an application to an ultrafilter characterisation of

IP
∗.

Proposition 2.24. 1. Let A,B ⊂ P(X). If A ⊂ B then B∗ ⊂ A∗.

2. Let I be a set, Ai ⊂ P(X) for i ∈ I. Then we have
(
⋃

i∈I Ai

)∗
=
⋂

i∈I A
∗
i .

3. If A ⊂ P(X) is partition regular and X ∈ A, then A∗ ⊂ A and A∗ is closed under

finite intersections. If F ∈ Filt (X), then F ⊂ F∗. If U ∈ Ult (X), then U∗ = U .

Proof. 1. Follows directly from the definition, since universal quntification over B

leads to a stronger condition than universal quantification over A.

2. For B ∈ P(X), the requirement B ∈
(
⋃

i∈I Ai

)∗ is equivalent to (∀i ∈ I)(∀A ∈

Ai) : A ∩B 6= ∅. For a fixed i, the condition (∀A ∈ Ai) : A ∩B 6= ∅ is equivalent

to B ∈ Ai so the condition B ∈
⋂

i∈I A
∗
i . Hence, B ∈

(
⋃

i∈I Ai

)∗ is equivalent to

(∀i ∈ I)B ∈ A∗
i , which is what was to be shown.

3. If A ∈ A∗, then A ∩ Ac = ∅, so Ac 6∈ A. Because X = A ∪ Ac, it follows that

A ∈ A. Thus, A∗ ⊂ A. For closure under finite intersections, let B1, B2 ∈ A∗ and

A ∈ A; we need to verify that A ∩ B1 ∩ B2 6= ∅. Because A is partition regular,

either A ∩ B1 ∈ A or A \ B1 ∈ A. The latter is impossible, bacause A \ B1 is

disjoint from B1 ∈ A∗. Hence, A∩B1 ∈ A, and A∩B1 ∩B2 6= ∅ because B2 ∈ A∗.

Likewise, if A ∈ F , then for B ∈ F we have A∩B ∈ F so in particular A∩B 6= ∅.

Thus, A ∈ F∗, and consequently F ⊂ F∗. Finally, because ultrafilters are partition

regular filters, we have by the previous assertion U∗ ⊂ U ⊂ U∗, so indeed U = U∗.
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The practical consequence of the above Proposition is that we can charaterise IP
∗-sets in

terms of ultrafilters, just as we did for IP-sets. Note that in particular a finite intersection

of IP∗-sets is again an IP
∗-sets, and intersection of an IP-set with and IP

∗-set is again an

IP-set.

Corollary 2.25 (Characterisation of IP∗-sets via ultrafilters). For a set A ∈ P(X), the

following conditions are equivalent:

1. The set A is IP
∗.

2. For any idempotent ultrafilter U ∈ Ult (X) it holds that A ∈ U .

Proof. Let {Ui}i∈I be the set of all idempotent ultrafilters on U . Then Corollary 2.15

implies that the family of all IP-sets is
⋃

i∈I U . Using the above Proposition 2.24, it

follows that the family of all IP-sets is:

(

⋃

i∈I

Ui
)∗

=
⋂

i∈I

U∗
i =

⋂

i∈I

Ui

The above characterisation follows immediately.

To finish this section, we give a simple example of IP∗-sets.

Proposition 2.26. Suppose that X is a commutative group, and that Y ⊂ X is a

subgroup of finite index: #X/Y <∞. Then Y is an IP
∗-set.

Proof. It suffices to show that for any idempotent ultrafilter U ∈ Ult (X) we have Y ∈ U .

Let us fix such U . Because r := #X/Y < ∞, we can partition X into finitely many

disjoint sets Yi of the form Yi = xi+Y for some xi ∈ X, i ∈ [r]. Because U is an ultrafilter,

for some j we have Yj ∈ U . Because U is idempotent, it follows that Yj − x ∈ U for

U -a.a. x. In particular, there exists x ∈ Yj such that Yj − x ∈ U . Because for any such

x we have Yj = x+ Y it follows that Y = Yj − x ∈ U , as desired.

2.3 C-sets and minimal idempotent ultrafilters

Another important notion of largeness is provided by C-sets (also known as central sets 2)

and C∗-sets. Much like the IP-sets are related to idempotent ultrafilters, the central sets
2We will usually avoid referring to C-sets as ”central sets”, because this would leave no satisfactory

name for the C
∗ sets. It is frequent in literature to use names central and central∗, but we dislike the

latter on aesthetic grounds.
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are related to minimal ultrafilters. We are again able to derive a strong combinatorial

result by consideration of ultrafilters: this time these are van der Waerden’s theorem

and Hales-Jewitt theorem. As in the previous section, X denotes a discrete (not neces-

sarily commutative) semigroup throughout this section. However, we will often need to

specialise to concrete semigroups.

The following definition of C-sets is obviously inspired by the ultrafilter characterisation

of IP-sets.

Definition 2.27. Let A ∈ P(X) be a set. Then A is a C-set if and only if there exists

a minimal idempotent3 ultrafilter U ∈ Ult (X) such that A ∈ U .

Observation 2.28. Let A ∈ P(X) be a set. Then A is a C∗-set if and only if for any a

minimal idempotent ultrafilter U ∈ Ult (X) we have A ∈ U .

It is unfortunate that C-sets do not allow such a natural definition in terms of the basic

semigroup structure as IP-sets do. However, there does exist an equivalent definition

in terms of dynamical systems, at least in the most important case X = (N,+). The

dynamical definition of centrality is due to Furstenberg in [Fur81], and was introduced

a long time before the connection to ultrafilters was discovered.

The following result is in no way easy. We cite it (without a proof) as an additional

motivation behind the study of C-sets.

Theorem 2.29. Let A ⊂ N. Then, the following conditions are equivalent:

1. The set A is C-set in the sense of Definition 2.27

2. There exists a (topological) dynamical system (X,T ), uniformly recurrent point

y ∈ X, point x ∈ X proximal to y and open neighbourhood U ∋ y such that A has

the form:

A = {n ∈ N : T nx ∈ x}.

Proof. See [Ber03].

The above theorem can be generalised to characterise C-sets in arbitrary semigroups by

dynamical properties. However, we will not use them much in our applications.

Armed in the arithmetic preliminaries from Chapter 1, we are able to prove the follow-

ing theorem about arithmetic progressions in central sets with remarkably little work.

This result is similar in the spirit to Lemma 2.12: algebraic properties of an ultrafilter
3This means that U + U = U and U ∈ K(Ult (X)), where K(Ult (X)) denotes the minimal two sided

ideal in Ult (X)
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imply combinatorial richness of a set. To make notation more succinct, we begin with a

definition.

Definition 2.30. Let A ∈ P(N) be a set. We say that A is APr if and only if A contains

an arithmetic progression of length r, i.e. a configuration {a, a+ b, . . . , a+ (r− 1)b} for

some a ∈ N and b ∈ N. Moreover, A is said to be AP if it is APr for all r, i.e. it contains

arbitrarily long arithmetic progressions.

Theorem 2.31. Let V ∈ Ult (N) be a minimal idempotent, and suppose that A ∈ V.

Then, A is AP-set, i.e. for any r ∈ N0, the set A contains an arithmetic progression of

length r.

Proof. Consider the semigroup S :=
∏

i∈[r] βN, and the sets:

E0 := {(a+ ib)i∈[r] : a ∈ N, b ∈ N0}

I0 := {(a+ ib)i∈[r] : a ∈ N, b ∈ N}

Note that with these definitions, existence of an arithmetic progression a, a+ b, . . . , a+

(r− 1)b in a set B ∈ P(N) is equivalent to existence of a vector (a+ ib)i∈[r] ∈ B×n ∩ I0.

The same argument shows that if B ∈ P(N) is non-empty, then B×n contains a common

element with E0, namely any constant sequence.

It is clear that E0 is a semigroup, and that I0 ⊂ E0 is an ideal. What is more, Z(S) =
∏

i∈[r] Z(Ult (N)) =
∏

i∈[r]N, so clearly E0 ⊂ Z(S). It follows by Proposition 1.86 that

E := clE is a semigroup and I := cl I0 is an ideal in E.

Let δ : Ult (N) → S be the diagonal map U 7→ (U)i∈[r]. We note that δ(U) ∈ E for any

U , or equivalently E0 ∩U 6= ∅ for any open neighbourhood U ∋ U . For a proof, consider

any neighbourhood of δ(U), which can be assumed to be of the form
∏

iBi, because

of how topology on Ult (N) and product topologies are defined. Taking B :=
⋂

iBi,

we may further restrict to the neighbourhood B
×n. But now for any b ∈ B we have

δ(b) ∈ B
×n

∩ E, so the intersection is indeed non-empty.

Because of Lemma 1.80, we have δ(U) ∈ K(S) for U ∈ K(Ult (N)). In particular, K(S)∩

E 6= ∅, and it follows from Lemma 1.81 that we in fact have K(S)∩E = K(E). Because

I is an ideal, by the definition of K we have:

I ⊇ K(E) = K(S) ∩ E ⊇ δ(K(Ult (N))).

Let us now consider the minimal idempotent V, and set A ∈ V. Then A×r is a neighbour-

hood of δ(V) in S. The above considerations show that δ(V) ∈ I. Hence A×r
∩ I0 6= ∅,
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which is, as we noted above, equivalent to existence of an arithmetic progression of length

r in A.

The reason why the above theorem is important is that it allows us to prove the classical

van der Waerden theorem.

Theorem 2.32 (van der Waerden). Suppose N = A1 ∪A2 ∪ · · · ∪Ak is a finite partition

of the natural numbers. Then, for some i, the set Ai is AP, i.e. contains arbitrarily long

arithmetic progressions.

Proof. Let V be an arbitrary minimal idempotent ultrafilter. There exists i such that

Ai ∈ V. It follows from the above theorem that Ai is AP.

It comes as no surprise that the above theorem also has a finite version. The derivation

of this finite version is standard and can be done in many ways, so we omit the proof.

Theorem 2.33 (van der Waerden, finite version). Let length r and number k be fixed.

Then there exists N ∈ N such that for any partition [N ] = A1 ∪ A2 ∪ · · · ∪ Ak into k

pieces, there exists i such that the set Ai is APr, i.e. contains an arithmetic progression

of length r.

Proof. Left as an exercise to the reader.

Using the finite version of the van der Waerden Theorem, we can derive the following

elegant corollary.

Corollary 2.34. The family of subset of N which are AP is partition regular.

Proof. Suppose that A is AP, and that A = A1 ∪ A2 ∪ · · · ∪ Ak is a partition. We will

show for any r that one of Ai is APr. It will follow immediately that one of Ai is APr

for arbitrarily large r, and hence also AP.

Let r be fixed. Let N be such that whenever [N ] is partitioned into k parts, one of the

parts is APr. Because A is AP, it contains an arithmetic progression of length N , say

P = {a+ tb}N−1
t=0 . Let Pi := P ∩Ai. Because scaling and shifts do not alter the propery

of being an arithemetic progression, it follows than that one of Pi is APr. Thus, also Ai
is APr, which finishes the proof.

Remark 2.35. We note that, unlike in the case of IP-sets in Lemma 2.14, Theorem 2.31

does not admit a converse: it is not at all true that if A is an AP-set then A ∈ U for

some minimal idempotent U . For example, the set 2N+1 contains an infinite arithmetic
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progression, but is not even IP. One can notice that 2N + 1 is in fact a translate of 2N

(which is even IP
∗). With a little more work, it is possible to find sets with AP but not

being translates of IP-sets.

A theorem closely related to van der Waerden theorem is attributed to Hales and Jewett.

While van der Waerden theorem concerned the commutative semigroup (N,+), Hales-

Jewett speaks of a highly non-commutative situation of words over a finite alphabet. To

begin with, we make some definitions.

Definition 2.36. Let Σ be a set, referred to from now on as “the alphabet”. The free

semigroup F (Σ) generated by Σ is the set of all non-empty sequences w : [n] → σ,

n ∈ N1, together with the operation of concatenation4 (w,w′) 7→ ww′.

Remark 2.37. This definition is justified by a unique factorisation property. It is not

hard to discover that if f : Σ → S is any map from Σ to a semigroup S, then there

exists a unique map f̃ : F (Σ) → S such that f̃ ◦ ι = f , where ι is the natural inclusion

map.

A variable world is the analogue of an affine non-constant function f(v) = av + b.

Definition 2.38. Let v be a variable (formally, we just need v 6∈ Σ). Then a variable

word w(v) is any element of F (Σ ∪ {v}) \ F (Σ), i.e. a word over the alphabet enriched

by v, in which v appears at least once.

If w(v) is a variable word, then for a ∈ Σ, w(a) is the word in F (Σ) obtained from w(v)

by substitution of a for the variable:

w(a)i =







w(v)i if w(v)i 6= v,

a if w(v)i = v.

A combinatorial line is the analogue of an arithmetic progression. It is obtained from

a variable word in the same way an arithmetic progression is obtained from an affine

function.

Definition 2.39. A combinatorial line is a set of the form {w(a) : a ∈ Σ}, where w(v)

is a variable word.

Having introduced the notation, we are able to state the Hales-Jewett theorem. Its

formulation is, as we have emphasised, analogous to van der Waerden’s theorem. Quite
4If w = a1a2 . . . an (ai ∈ Σ) and w′ = a′

1a
′
2 . . . a

′
n′ (a′

i ∈ Σ) then the concatenation of w and w′ is the
word ww′ = a1a2 . . . ana

′
1 . . . a

′
n′
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surprisingly, the proof of the new result can be obtained from the earlier proof almost

by verbatim repetition. The reader will notice that most of the parts are precisely the

same, except one replaces arithmetic sequences by combinatorial lines, and instead of

Proposition 1.86 we need to use the more refined Proposition 1.91.

Theorem 2.40 (Hales-Jewett). Let F (Σ) = A1 ∪ A2 ∪ · · · ∪ Ak be a finite partition

of the space of finite words over an alphabet Σ. Then one of the cells Ai contains a

combinatorial line.

Proof. Consider the semigroup S :=
∏

i∈[r] Ult (F (Σ)), and the sets:

E0 := {(w(c))c∈Σ : w ∈ F (Σ ∪ {v})}

I0 := {(w(c))c∈Σ : w ∈ F (Σ ∪ {v}) \ F (Σ)}

Note that with these definitions, existence of a combinatorial line {w(c)}c∈Σ in a set

B ∈ P(F (Σ)) is equivalent to existence of a vector (w(c))c∈Σ ∈ B×n ∩ I0. The same

argument shows that if B ∈ P(F (Σ)) is non-empty, then B×n contains a common element

with E0, namely any constant sequence.

It is clear that E0 is a semigroup, and that I0 ⊂ E0 is an ideal. We need to check that

the same is true of E and I. We know that, Ztop(S) =
∏

i∈[r] Z(Ult (N)) =
∏

i∈[r]N, so

clearly E0 ⊂ Z(S). It follows by Proposition 1.91 that E := clE is a semigroup and

I := cl I0 is an ideal in E.

Let δ : Ult (N) → S be the diagonal map U 7→ (U)i∈[r]. We note that δ(U) ∈ E for any

U , or equivalently E0 ∩U 6= ∅ for any open neighbourhood U ∋ U . For a proof, consider

any neighbourhood of δ(U), which can be assumed to be of the form
∏

iBi, because

of how topology on Ult (N) and product topologies are defined. Taking B :=
⋂

iBi,

we may further restrict to the neighbourhood B
×n. But now for any b ∈ B we have

δ(b) ∈ B
×n

∩ E, so the intersection is indeed non-empty.

Because of Lemma 1.80, we have δ(U) ∈ K(S) for U ∈ K(Ult (F (Σ))). In particular,

K(S) ∩ E 6= ∅, and it follows from Lemma 1.81 that we in fact have K(S) ∩ E = K(E).

Because I is an ideal, by the definition of K we have:

I ⊇ K(E) = K(S) ∩ E ⊇ δ(K(Ult (F (Σ)))).

Let us now consider the minimal idempotent V, and set A ∈ V. Then A×r is a neighbour-

hood of δ(V) in S. The above considerations show that δ(V) ∈ I. Hence A×r
∩ I0 6= ∅,
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which is, as we noted above, equivalent to existence of an arithmetic progression of length

r in A.



Chapter 3

Applications in ergodic theory.

In this chapter, we study the applications of ultrafilters to ergodic theory. We will prove

that certain sets of “return times” have the combinatorial structure of IP∗-sets of C∗-sets.

We begin by some general considerations about polynomials. We introduce the notion

of discrete derivative, which allows us to characterise the polynomials only in terms of

the additive structure. This leads to the notion of polynomial maps between general

commutative groups.

Our first application is to polynomial maps on a torus; it can also be construed as a

polynomial recurrence result for rotations. By explicit computation of generalised limits,

we are able to show IP
∗-set property of certain interesting sets. These results are meant

to foreshadow subsequent applications to general dynamical systems.

Thanks to the characterisation of polynomials in terms of discrete derivatives, we are

able to introduce a generalisation of the notion of polynomials, which we refer to as

“almost polynomials”, for want of a better name. These are very closely related to p-

VIP-systems, and extend the so-called “generalised polynomials”. Adapting proofs for

standard polynomials, we obtain very similar recurrence results.

Finally, we turn to applications to general dynamical systems. We re-derive and strengthen

Khintchine’s theorem: instead of a statement about a given set of returns being merely

syndetic, we show the IP
∗ property. We then derive some results similar to those of

Schnell, except we deal with minimal idempotents rather than general ones.

We make extensive use of papers by Bergelson, McCutcheon and Knutson, like [BM10],

[BHKM06] and [Ber96]. The paper by Schnell [Sch07], re-deriving results by Bergel-

son, Furstenberg and McCutcheon, is also very relevant to our inquiry. The surveys by

Bergelson [Ber10] and [Ber03] were also very helpful.

58
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3.1 Polynomials and discrete derivative

In this section we will study the properties of polynomial maps. Given that polynomial

maps are among the simplest maps one can imagine, interest in them hardly needs

justification. We will take a rather different approach that is common in algebra. For

our purposes, a polynomial map will first and foremost be a particularly regular map, and

the algebraic aspects will play a secondary role. To begin with, we define polynomials

in the simplest possible situation.

Definition 3.1 (Polynomial). A map f : Z → Z is said to be a polynomial if and

only if f is a polynomial with coefficients in Q in the usual sense (i.e. f is of the form

f(x) =
∑

i qix
i) and f(Z) ⊂ Z.

Remark 3.2. These polynomials include, but are not restricted to, polynomials with

integer coefficients. An example of f : Z → Z which is a polynomial, but not a

polynomial with integer coefficients, is f(x) = x(x+1)
2 . We shall shortly see that the

assumption that the coefficients of f lie in Q is not restrictive, in the sense that the

definition would not change if we allowed more general coefficients, for instance in C.

One of our objectives is to extend the notion of a polynomial to maps between a com-

mutative semigroup and a commutative group.1 Hence, we need to understand what

characterises polynomials in terms of the additive structure. The reader will recall that

polynomial in R or C are characterised by the vanishing of sufficiently high derivatives.

To make use of this insight in the discrete setup, the notion of the discrete derivative

will be useful.

Definition 3.3 (Discrete derivative operator). For a function f : X → Y from a

commutative semigroup (X,+) to a commutative group (Y,+), we define for a ∈ X

the discrete derivative ∆af : X → Y by the formula ∆af(x) := f(x + a) − f(x).

Occasionally, we also refer to ∆af as the finite difference2.

If R is a domain (commutative ring with unit) of characteristic 0, then polynomials in

R[x] can be identified with a subset of functions. Because ∆af is a polynomial whenever

f is a polynomial, we will refer to derivatives of polynomials again as polynomials without

further mention.

Remark 3.4. Note that in finite rings it may happen that a polynomial is not uniquely

determined by its values. For example, in Fp[x], the polynomial xp − x and the 0

1A reason for interest in such extensions is that a dynamical system can be construed as a measure
preserving action of the additive semigroup N. Results about polynomial recurrence then become state-
ments about polynomial maps in N. It is natural to inquire into generalisations of such statements to
measure preserving actions of more general (commutative) semigroups.

2Some authors refer to the expression f(x+ a)− f(x) as the finite difference, and to f(x+a)−f(x)
a

as
the discrete derivative. However, we use these two terms interchangeably.
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polynomial give rise to the same map, but are clearly distinct as polynomials. In general,

definitions similar to the one above make sense for arbitrary commutative rings with unit,

but we restrict to characteristic 0 domains for the ease of presentation. In particular, we

wish to avoid having to make a distinction between polynomials and polynomial maps.

Before we make use of the introduced notion of the discrete derivative, we point out some

of the elementary properties.

Proposition 3.5. Let f, g : X → Y be maps from a semigroup X to a group Y , and

let a, b ∈ X. Then, the following properties hold true:

1. ∆a(f + g) = ∆af +∆ag.

2. ∆a(f · g) = ∆af ·∆ag +∆af · g + f ·∆ag.

3. ∆a∆bf = ∆b∆af = ∆a+bf −∆af −∆bf .

Proof. All the equalities follow from direct substitution into the definition.

We recall some standard notation related to polynomials. The reader will surely find

these standard, but we give a detailed definition to avoid ambiguities.

Definition 3.6 (Degree and leading coefficient). If R is an arbitrary commutative ring

with unit and f ∈ R[x] is a non-zero polynomial, then deg f stands for the polynomial

degree of f in x, and lc f stands for the leading coefficient. We take deg 0 := −∞ and

lc 0 := 0 by definition, so generally deg f ∈ N ∪ {−∞}. Additionally, when speaking of

degrees, we assume the convention that if deg f < k then deg f − k := −∞, and also for

any k we have −∞± k = −∞.

With these conventions, for any f ∈ R[x] we have the decomposition:

f(x) = lc f · xdeg f + g,

where deg g ≤ deg f − 1.

Much like with the standard derivative, application of the discrete derivative to a poly-

nomial decreases the degree by 1, as shown in the following lemma.

Observation 3.7. If R is a characteristic 0 domain and f ∈ R[x] is a non-zero polynomial,

then for any a ∈ R \ {0} we have deg∆af = deg f − 1 and lc∆af = deg f · a · lc f , with

the understanding that −∞ · 0 = 0.
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Proof. We proceed by induction on deg f . The case deg f = −∞, i.e. f = 0, is clear. In

the case when deg f = 0, we have that f(x) = c ∈ R \ {0} is a constant polynomial, so

∆af = 0 for any a, hence the claim holds.

Suppose now that deg f ≥ 1, and the claim holds for all polynomials of degree strictly

smaller than deg f . We can write f in the form f(x) = lc f · xdeg f + g(x), where

deg g < deg f . We then have:

∆af(x) = lc f

deg f
∑

k=0

(

deg f

k

)

akxdeg f−k − xdeg f +∆ag(x) (3.1)

= deg f · a · lc f · xdeg f−1 +

(

lc f ·

deg f
∑

k=2

(

deg f

k

)

akxdeg f−k +∆ag(x)

)

. (3.2)

By inductive assumption, deg∆ag(x) ≤ deg f − 2, and hence the expression in the

parenthesis has degree at most deg f − 2. Since deg f · a · lc f 6= 0, we have

deg
(

deg f · a · lc ·fxdeg f−1
)

= deg f − 1.

It follows that deg∆af = deg f − 1 and lc∆af = deg f · a · lc f , as desired.

Remark 3.8. In finite characteristic, it can happen that for a polynomial f we have

f(x+ a)− f(x) = 0 as polynomials, even though deg f ≫ 1. For instance, in Fp we have

for f(x) = xp − x:

f(x+ a)− f(x) = (x+ a)p − (x+ a)− xp + x =

p
∑

k=1

(

p

k

)

akxp−k − a = ap − a = 0.

The above lemma suggests the following generalisation of the notion of polynomials to

maps between commutative (semi)groups.

Definition 3.9 (Polynomials in general groups). Let (X,+) be a commutative semi-

group, and let (Y,+) be commutative group, written additively. We define polynomials

X → Y inductively, as follows:

1. The unique polynomial of degree −∞ is the zero map x 7→ 0Y .

2. The polynomials of degree 0 are the non-zero constant maps x 7→ c.

3. A map f : X → Y is a polynomial of degree d ≥ 1 if and only if for any a ∈ X,

the map ∆af is a polynomial of degree at most d− 1.
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From Observation 3.7 it follows that for a characteristic 0 domain, the standard poly-

nomials in R[x] are polynomials in the sense of the above definition. More generally, if

R ⊂ S is an extension of characteristic 0 domains, and f ∈ S[x] is such that f(R) ⊂ R,

then the same lemma shows that f is a polynomial in the above sense. We shall now

make the correspondence between polynomials in R[x] and polynomial maps R → R

more precise.

Lemma 3.10. Let R be a characteristic 0 domain, with field of fractions Q. Suppose

that f : R → R is a polynomial in the sense of Definition 3.9. Then f ∈ Q[x], i.e. f

can be represented as a polynomial all of whose coefficients lie in Q. Moreover, any such

polynomial is a combination of the polynomials
(x
n

)

:= xn

n! for n ∈ N with coefficients in

R. Here, xn :=
∏n−1
k=0(x− k).

Proof. Let us denote en(x) :=
(x
n

)

. By a direct computation, we check that ∆1en = en−1

for n ≥ 1, and ∆1e0 = 0. Indeed, we have for n ≥ 1:

∆1en(x) =
(x+ 1)n − xn

n!
=
xn−1((x+ 1)− (x− n+ 1))

n!
= en−1(x).

Let us now take a polynomial f as described in the assumptions. We show by induction

on deg f that f lies in the R-linear span of ei. The case deg f ≤ 0 is immediate, so let

us suppose deg f ≥ 1 and the claim holds for polynomials of lower degrees. By Lemma

3.7, we find that deg∆1f = deg f − 1, so by the inductive assumptions, we can write

∆1f in the form:

∆1f =

deg f
∑

i=1

ciei−1,

where ci ∈ R. Let us consider the polynomial g :=
∑deg f

i=1 ciei ∈ K[x]. Because of the

preliminary observation, we have:

∆1g =

deg f
∑

i=1

ciei−1 = ∆1f.

Hence, ∆1(f−g) = 0, and Lemma 3.7 ensures that deg(f−g) ≤ 0. In other words, there

exists a constant c0 ∈ K such that f = g + c0. Evaluation at 0 yields c0 = f(0) ∈ R.

Because e0 = 1, we now have the expression:

f =

deg f
∑

i=0

ciei.

Hence, f is a combination of e0, e1, . . . , edeg f with coefficients in R, as claimed.
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Corollary 3.11. Let R be a characteristic 0 domain, with field of fractions Q, and let

S be a ring containing Q as a subring. If f ∈ S[x] is a polynomial such that f(R) ⊂ R,

then f ∈ Q[x], and moreover is a combination of the polynomials
(

x
n

)

with coefficients in

R.

Note that the above lemma and corollary contain implications only in one direction:

there is no guarantee that the map x 7→
(x
n

)

should preserve the ring R. However, for

R = Z we have a full characterisation.

Corollary 3.12. Let K be a characteristic 0 field. Then, the polynomials f ∈ K[x] such

that f(Z) ⊂ Z are precisely the combinations of the polynomials
(x
n

)

for n ∈ N, with

integer coefficients.

Proof. The above theorem shows that if f ∈ K[x] is such that f(Z) ⊂ Z, then f is a

combination of
(x
n

)

for n ∈ N. Conversely, we show that
(x
n

)

∈ Z for any n ∈ N and

x ∈ Z. If x ∈ N, then
(x
n

)

has the combinatorial interpretation of the number of ways to

choose n elements out of x elements, and hence surely is an integer. For general x, we

note that the statement that
(

x
n

)

is an integer is equivalent to the statement that n!|xn,

which depends only on the equivalence class of x modulo n!. Hence, it suffices to check

that
(x
n

)

for n! consecutive values of x, which we have already done.

Remark 3.13. The assumption of commutativity is essential for our considerations. It is

natural to ask if the theory can be extended to a non-commutative setting. There seems

to be little hope of developing a theory for general non-commutative (semi)groups. How-

ever, Leibman [Lei02] proposed a fairly successful theory of polynomials in general nilpo-

tent groups. We do not go into more details on this matter, because for our applications

the commutative context is more than sufficient.

We will now introduce the symmetric discrete derivative. Although the standard discrete

derivative is more natural, the following variation will be more useful for our purposes.

We take time to develop some algebraic properties before we move on to applications in

the consecutive sections.

Definition 3.14 (Symmetric finite derivative). For a function f : X → Y from a

semigroup (X,+) to a group (Y,+), we define for a ∈ X the symmetric discrete derivative

∆af : X → Y by the formula ∆af(x) := f(x+ a)− f(x)− f(a).

Moreover, we define the k-fold symmetric discrete derivative:

∆
k
f(x0, x1, . . . , xk) := ∆x1∆x2 . . .∆xkf(x0).
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If R is a characteristic 0 domain and f ∈ R[x], then ∆af ∈ R[x] for any a, so we reserve

the right to refer to ∆af as a polynomial in this situation. Moreover, it is true that

∆
k
f(x0, x1, . . . , xk) ∈ R[x0, x1, . . . , xk].

Observation 3.15. The symmetric discrete derivatives commute: ∆a∆bf = ∆b∆af .

Proof. Both terms are equal to ∆a∆bf(x)−∆af(b) = ∆b∆af(x)−∆bf(a).

The following observation justifies the used terminology and motivates the above defini-

tion.

Observation 3.16. The k-fold symmetric discrete derivative ∆
k
f : Xk → Y is symmetric

(i.e. invariant under the permutation of arguments).

Proof. Because the operators ∆xi commute, the value of ∆
k
f(x0, x1, . . . , xk) is invariant

under the permutation of x1, x2, . . . , xk. From the definition of ∆ it also follows that

for any a, b ∈ X and g : X → X we have ∆ag(b) = ∆bg(a). Applying this rule to

g = ∆x1∆x2 . . .∆xkf , a = x0 and b = x1, we see that ∆
k
f(x0, x1, . . . , xk) is invariant

under swapping of x0 and x1. Since any permutation can be expressed as a composition

of permutations already considered, the claim follows.

It is possible to derive an explicit formula for the k-fold finite difference. Having an

explicit formula is often useful; in particular, it can be used to re-derive some of the

previous two observations immediately.

Proposition 3.17 (Explicit finite difference). The symmetric finite difference is given

by the formula:

∆
k
f(x0, x1, . . . , xk) =

∑

∅6=I⊂[k+1]

(−1)k+1−#If

(

∑

i∈I

xi

)

.

Proof. We prove the claim by induction on k. If k = 0, then the claim clearly holds.

Suppose we want to prove the claim for k, while we know it holds for k − 1. We can
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explicitly transform:

∆
k
f(x0, . . . , xk) = ∆x1∆x2 . . .∆xkf(x0) =

∑

∅6=I⊂[k]

(−1)k−#I∆xkf

(

∑

i∈I

xi

)

=
∑

∅6=I⊂[k]

(−1)k−#If

(

xk +
∑

i∈I

xi

)

−
∑

∅6=I⊂[k]

(−1)k−#If

(

∑

i∈I

xi

)

−
∑

∅6=I⊂[k]

(−1)k−#If (xk)

=
∑

∅6=J⊂[k+1]
k∈J

(−1)k+1−#Jf

(

∑

i∈J

xi

)

+
∑

∅6=J⊂[k+1]
k 6∈J

(−1)k+1−#Jf

(

∑

i∈J

xi

)

− f (xk)

=
∑

∅6=J⊂[k+1]

(−1)k+1−#Jf

(

∑

i∈J

xi

)

.

This formula is the one we were aiming for, which finishes the proof of the inductive

claim.

Having derived an explicit formula for k-fold symmetric finite difference, our next step is

to find a relation to the standard (non-symmetric) finite difference. This is established

in the following lemma.

Lemma 3.18. If X is a commutative monoid with neutral element 0X , and f : X → Y

is a map to a commutative group Y , then the following relation holds:

∆
k
f(x0, x1, . . . xk)− (−1)kf(0X) = ∆x0∆x1 . . .∆xkf(0X). (3.3)

Proof. For k = 0, 1, the formula can be verified directly. For k ≥ 2, we proceed by

induction. Using the claim for 1 and for k − 1, we conclude that:

∆
k
f(x0, x1, . . . , xk) = ∆

k−1
f(x0 + x1, . . . , xk)−∆

k−1
f(x0, . . . , xk)

−∆
k−1

f(x1, . . . , xk)

= ∆x0+x1∆x2 . . .∆xkf(0) + (−1)k−1f(0)

−∆x0∆x2 . . .∆xkf(0)− (−1)k−1f(0)

−∆x1∆x2 . . .∆xkf(0)− (−1)k−1f(0)

= (∆x0+x1 −∆x0 −∆x1)∆x2 . . .∆xkf(0) + (−1)kf(0)

= ∆x0∆x1∆x2 . . .∆xkf(0) + (−1)kf(0)



Chapter 3. Ergodic theory 66

This finishes the inductive proof.

Remark 3.19. The assumption of X being a monoid is not restrictive. If X is merely a

commutative semigroup, one can make X into a monoid by artificially adding a neutral

element 0X . One can then extend f by assigning any value to f(0X).

Corollary 3.20. If R is a characteristic 0 domain and f ∈ R[x] is a polynomial, then

the polynomial ∆
k
f(x0, x1, . . . xk) − (−1)kf(0) ∈ R[x1, . . . , xk] is divisible by xi for any

i. In particular, it has degree at most deg f − k in any variable xi, and has the constant

term equal to 0. Moreover, it holds true that ∆
deg f

f = (−1)deg ff(0).

Proof. From Bezout’s theorem, it follows that in general that for g ∈ R[x], ∆yg(x) =

g(x+ y)− g(x) is divisible by y, as polynomials. From the above lemma, it follows that

∆
k
f(x0, x1, . . . xk) − (−1)kf(0) is divisible by x0. By symmetry, it is divisible by xi for

all i. Since the total degree of this polynomial is at most deg f , the degree in any of the

k+1 variables cannot exceed deg f − k. The last assertion is an immediate consequence

of taking k = deg f .

Corollary 3.21. Let f : X → Y be a polynomial map. If X is a monoid, then

∆
k
f(x0, . . . , xk) = (−1)kf(0X),

for k ≥ deg f . In general, if X is only a semigroup, there exists a constant C(f) ∈ Y

such that

∆
k
f(x0, . . . , xk) = (−1)kC(f),

for k ≥ deg f .

3.2 Polynomial maps to the torus

Having deepened our understanding of polynomials, we now turn to a simple example of

an explicit computation of a generalised limit. We begin with a general case, and then

proceed to draw some surprising conclusions.

Proposition 3.22. Let f : X → T be a polynomial map from commutative monoid to

compact commutative group T , and let p ∈ βX be an idempotent ultrafilter. Then we

have:

p–lim
n

f(n) = f(0).

In particular, if f(0) = 0, then:

p–lim
n

f(n) = 0.
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Proof. The proof follows by induction on the degree of f . For deg f ≤ 0 the claim is

trivial. Thus, let deg f > 0, and suppose that the claim holds for all polynomials of

smaller degrees. Let λ denote the limit p–lim
n

f(n) — our goal is to show that λ = f(0).

Note that f(n+m) = ∆f(m,n) + f(m) + f(n). Since p is idempotent, we have:

λ = p–lim
n

f(n) = p–lim
m

p–lim
n

f(n+m)

= p–lim
m

p–lim
n

(

∆f(m,n) + f(m) + f(n)
)

= p–lim
m

p–lim
n

∆f(m,n) + 2λ.

For a fixed m, the polynomial ∆f(m,n) in the variable n has degree strictly smaller than

deg f . Likewise, for fixed n, ∆f(m,n) is a polynomial in m of degree strictly smaller

than n. Thus, the inductive assumption applies:

p–lim
m

p–lim
n

∆f(m,n) = p–lim
m

∆f(m, 0) = ∆f(0, 0) = −f(0).

Hence, the above computation leads to:

λ = 2λ− f(0).

This is equivalent to λ = f(0), which was our claim.

We can make the above result more concrete by applying it to a particular choice of spaces

and explicitly describing polynomial maps. Our choice is to investigate polynomials

Z → T, but similar considerations are possible for other choices; in particular we can

derive multi-dimensional analogues by considering polynomials Zk → Tl.

Corollary 3.23. Let p ∈ βZ be a fixed idempotent ultrafilter. For any α ∈ T and

polynomial f : Z → Z we have:

p–lim
n

αf(n) = αf(0).

Moreover, for any αi ∈ T, 1 ≤ i ≤ d, we have:

p–lim
n

d
∑

i=1

αin
i = 0.

Remark 3.24. The above corollary is a particular property of idempotent ultrafilters as

opposed to general ultrafilters. As we will see, limits along arbitrary ultrafilters do not

show nearly as much regularity.
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A useful consequence of the above results is the following approximation result. It speaks

of real valued polynomials, which are a very natural object to study.

Corollary 3.25 (Integral approximation). Let g ∈ R[x] be a polynomial with real coeffi-

cients with g(0) = 0. For any ε > 0, consider the set of those integers which are mapped

by g to ε-almost integers:

Aε := {n ∈ Z : dist(g(n),Z) < ε}.

Then the set Aε is an IP
∗-set.

Proof. If π : R → T denotes the standard projection, we have the relation:

dist(g(n),Z) = d(π(g(n)), 0),

where d denotes the standard distance in T. If g(x) =
∑d

i=1 gix
i, then π(g(n)) =

∑d
i=1 π(gi)n

i. From the above Corollary 3.23, it follows that for any idempotent ultra-

filter p we have p–lim
n

d
∑

i=1

π(gi)n
i = 0. If follows that the set Aε is p-large for any ε > 0.

Since Aε is p-large, it is an IP
∗ set in view of p being arbitrary.

In all of the above results, we relied on the assumption that the ultrafilter p ∈ βX used

for taking limits was an idempotent: p + p = p. It is natural to ask if anything specific

can be said about limits along arbitrary ultrafilters. It turns out that for limits these

limits can exhibit fairly arbitrary behaviour, as we see shortly.

We will use the following classical equidist results, due mostly to Weyl. Similar results

can be proved in more generality. For a derivation of these results, see [EW11a]

Theorem 3.26 (Weyl). Let α ∈ R be irrational. Then the sequence nα (mod 1), n ∈ N

is equidistributed in T.

More generally, if g : R → R is a polynomial with at least one irrational coefficient except

for the constant term, then the sequence g(n) (mod 1), n ∈ N is equidistributed in T.

A generic tool for extending eqidistribution results is the following criterion. In particu-

lar, it allows one to generalise results about one dimensional equidistribution into higher

dimensioins.

Theorem 3.27 (Weyl equidistribution criterion). Let (αn)n∈N be a sequence with terms

in Td. Then the following conditions are equivalent:

1. The sequence (αn)n∈N is equidistributed.
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2. For any k ∈ Zd one has:

lim
N→∞

N
∑

n=1

e2πik·αn = 0,

where k · γ :=
∑

i∈[d] kiγi.

Using the above equidistribution results, we are in position to describe make the afore-

mentioned statements about limits along general ultrafilters. The following example can

be juxtaposed with Lemma 3.22.

Example 3.28. Let (αi)i∈[d] ∈ Td be a sequence with at least one irrational entry.

By Weyl Theorem 3.26, the sequence φ(n) :=
∑d

i=1 αin
i is equidistributed in T. In

particular, for any fixed γ ∈ T, the sets Aε := {n ∈ Z : d(φ(n), γ) < ε} are nonempty

for ε > 0, and hence the family of set A := {Aε : ε > 0} trivially has the finite

intersection property. Applying Lemma 1.14, we conclude that A is contained in some

ultrafilter p, for which we necessarily have p–lim
n

φ(n) = γ.

The above result concerns a single polynomial of arbitrary degree. Even more can be

said for linear polynomials. It is clear that for a fixed ultrafilter p the map λp : T ∋ α 7→

p–lim
n

nα ∈ T is additive, in the sense that λp(α + β) = λp(α) + λp(β), α, β ∈ T. We

have shown that for idempotent p, the map λp is identically 0. Similar statement is true

if p = βf(q) for polynomial f : Z → Z with f(0) = 0, which is a consequence of Lemma

3.22. It is natural to ask if any additional restriction can be placed on λp for arbitrary

p. It turns out this is not the case, as the below observation shows.

Proposition 3.29. Let φ : T → T satisfy φ(α + β) = φ(α) + φ(β). Then, there exists

an ultrafilter p ∈ βZ such that φ = λp, where λp is defined by λp(α) = p–lim
n

nα.

Proof. Let Γα := {p ∈ βZ : λp(α) = φ(α)}. The claim is equivalent to existence of p,

such that p ∈ Γα for all α, hence it will suffice to show that
⋂

α∈T Γα 6= ∅. Because the

map p 7→ λp(α) is continuous for any fixed α, the sets Γα are closed. Thus, because βZ

is compact, it will be enough to show that the finite intersections of the form
⋂

α∈A Γα,

with A ⊂ T and A — finite, are non-empty.

Let Ã ⊂ [0, 1) ⊂ R denote the set corresponding to A under the natural identification3

of T and [0, 1). Consider the Q-linear space V := linQ

(

Ã ∪ {1}
)

. Let Ã0 ⊂ R be a basis

of V , so that 1 ∈ Ã0 and any element of Ã is a Q-linear combination of elements of Ã0.

Putting Ã1 := 1
N Ã0 for properly chosen integer N , we can assure that Ã1 is Q-linearly

independent, 1
N ∈ Ã1 and each element of Ã is a Z-linear combination of elements of Ã1.

3The natural projection map π : R → T = R/Z maps [0, 1) to T bijectively. Some authors identify
T and [0, 1) implicitly, but in this case the distinction is important.
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Finally, let us write Ã1 = B̃ ∪ {1/N}, and let B ⊂ T be the projection of B̃. At is clear

that Γ1/N ∩
⋂

α∈B Γα ⊂
⋂

α∈A Γα, so it will suffice the former set is non-empty. Because

Nφ(1/N) = φ(1) = 0, we have φ(1/N) = k/N for some k. Hence p ∈ Γ1/N if and only

if k +NZ is p-large. Let us enumerate B = (βj)j∈J . Again, a classical theorem ensures

the equidistribution of the sequence of vectors (mNβj)j∈J (for m ∈ Z) in TJ , because of

the Q-linear independence of {1}∪{Nβj}J . It follows that the vectors ((mN + k)βj)j∈J

(m ∈ Z) are also equidistributed, and in particular form a dense set.

Hence, there exists a sequence (mt)t∈N such that limt→∞(Nmt+k)βj = φ(βj) for allj ∈ J .

It follows that any ultrafilter p for which {Nmt + k : t ∈ N} is p-large, belongs to

Γ1/N ∩
⋂

α∈B Γα. Since such ultrafilters clearly exists, this finishes the proof.

The above lemma shows that the class of the maps α 7→ p–lim
n

nα for p ∈ βZ is rather

rich: Any map T → T which satisfies the necessary condition of being additive can be

represented in this form for some p.

A natural question arises as to the richness of the class of additive maps T → T. The

obvious examples are “multiplication” maps α 7→ kα for some fixed k ∈ Z. It is difficult

to think of a different example, and there is a good reason for this. We state the following

proposition without the proof, which can be obtained by the suitable adaptation of the

classical reasoning for Cauchy functional equation.

Proposition 3.30. Let φ : T → T be an additive map. Then, the following conditions

are equivalent:

1. The map φ is Lebesgue measurable.

2. The map φ is continuous.

3. The map φ is of the form φ(α) = kα for some k ∈ Z.

Of course, the condition 3 implies 1. The implication from 2 to 3 is relatively straight-

forward, and can be deduced from the similar fact for additive maps R → R. The

implication from 1 to 2 is an example of a more widely discussed phenomenon known as

automatic continuity. Much research into this area was done by Frechét, Sierpiński and

Steinhaus, and more recently by Weil, as is well discussed for example by Rosendal in

[Ros09].

One can show by the suitable adaptation of the classical reasoning for Cauchy functional

equation that any different additive maps T → T is not Lebesgue measurable at any

interval. It is relatively straightforward to show that a continuous additive map T → T

has to be a multiplication by an integer.
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To complete the picture, let us consider the maps α 7→ p–lim
n

f(n)α, where f : Z → Z

is a fixed polynomial map and p ranging over βZ. At first, one might again hope that

given a non-constant polynomial f : Z → Z, any additive map T → T is of the form

α 7→ p–lim
n

f(n)α for appropriately chosen p. Our earlier result shows that this is indeed

true for f(n) = n. However, taking f(n) = 2n or f(n) = n2 and evaluating p–lim
n

f(n)α

at α = 1
2 we see that this naive hope is not realised. However, a slightly weaker statement

is true, as shown in the following result.

Proposition 3.31. Let f : Z → Z be a non-constant polynomial map. Let A =

{αi}i∈I ⊂ T be a sequence such that A∪{1} is linearly independent4 over Q, and let B =

{βi}i∈I ⊂ T be arbitrary. Then, there exists an ultrafilter p such that p–lim
n

f(n)αi = βi

for all i ∈ I.

Proof. Define Γi := {p ∈ βZ : p–lim
n

f(n)αi = βi}. It is clear that Γi are closed, and

that the claim will follow once we prove that
⋂

i∈I Γi 6= ∅. Because βZ is compact, it

will suffice to show that the finite intersections
⋂

i∈I0
Γi (I0 ⊂ I, finite) are non-empty.

Once again, Theorem 3.26 ensures that (f(n)αi)i∈I0 ∈ TI0 is equidistributed, hence

dense. It follows that there exists a sequence (nt)t∈N such that limt→∞ f(nt)αi = βi

and consequently there exists an ultrafilter p with p–lim
t

f(nt)αi = βi for i ∈ I0. This

ultrafilter p lies in
⋂

i∈I0
Γi, which finishes the proof.

Remark 3.32. Proceeding along similar lines as in Proposition 3.29, one can modify the

above Proposition 3.31 to the following statement:

Given a a non-constant polynomial map f , and an addive map φ : T → T, and a set

C ⊂ T such that 1 does not lie in Q-linear span5 of C, we can find an ultrafilter p such

that p–lim
n

f(n)α = φ(α) for α ∈ C.

Somewhat regrettably, we cannot take C = T in the above statement.

To close this section, we use the results obtained so far to obtain somre results about

the group structure and cardinality of βN, foreshadowing the latter developements. We

begin by re-deriving the formula for the cardinality of βN is a short way, and show that

the idempotent ultrafilters constitute a very small part of βN in certain sense.
4To be precise, we should specify that αi 6= αj for i 6= j, and that to consider linear independence

we take representatives in [0, 1). We hope that nevertheless it is clear to the reader what is meant.
5Again, we identify the set C ⊂ T = R/Z with the set of representatives of its elements in [0, 1) ⊂ R.
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Example 3.33. Let A = {αi}i∈I ⊂ T be such that 1∪A is Q-linearly independent, and

#A = c. We can consider the map from Φ : βN → TI , given by p 7→

(

p–lim
n

αιn

)

i∈I

,

which can easily be verified to be a morhphism of compact commutative semigroups.

Let us consider the image of Φ, Φ(βN). Proposition 3.31 asserts that for any choice of

βi ∈ T, i ∈ I there exists p ∈ βN such that p–lim
n

αin = βi. It follows that for this

choice of p we have Φ(p) = (βi)i∈I . Since βi were chosen arbitrarily, we conclude that Φ

is surjective: Φ(βN) = TI . In particular, we see that #βN ≥ #TI = cc = 2c. Because

the reverse inequality is obvious, we have #βN = 2c.

By Lemma 3.22, it holds for any idempotent p ∈ βN and integer polynomial f with

f(0) = 0 that:

Φ(βf(p)) = p–lim
n

(αif(n))i∈I = (0)i∈I =: 0.

On the other hand, let us consider Γ := {p ∈ βN : Φ(p) = 0}. Because the map

Φ is continuous, Γ is compact. Because Φ is a semigroup homomorphism and {0} is a

semigroup, Γ is a semigroup. Moreover, Γ contains the idempotent ultrafilters, and even

ultrafilters of the form βf(p) for f — polynomial with 0 7→ 0. (We will see that the

function f in the last statement can be chosen from an even richer family.) In particular,

Γ contains the smallest compact semigroup that contains the idempotents.

We will call a subset of T ⊂ βN a generalised translate of Γ if it is equal to Γ, or if it

consists of a single ultrafilter p ∈ βN, or if it is of the form T1 + T2 where T1, T2 are

generalised translates of Γ constructed earlier. Hence, we are considering sets like Γ+ p,

p + Γ, p + Γ + q, p + Γ + q + Γ, and so on. It is easily shown by structural induction

that if T is a generalised translate of Γ, then the image Φ(T ) consists of a signle element.

It follows by a short argument that βN cannot be covered by less than 2c generalised

translates of Γ.

3.3 Almost polynomials

Polynomials are an extremely well behaved class of functions, satisfying a range of re-

currence results. For a trivial example, we have Lemma 3.22 which describes the form of

the limit p–lim
x

f(x) (for f — polynomial, p — idempotent ultrafilter), together with the

corollaries concerning the approximation of real-valued polynomials by integers. For a

more serious example, one can consider Fürstenberg-Sárközy’s theorem, asserting that a

set of integers with positive Banach density contains two elements differing by the value

of any integral polynomial which maps 0 to 0. A very profound result which one might

hope to generalise is Polynomial SzemerédiTheorem (see for example [BL96]), which itself



Chapter 3. Ergodic theory 73

is a generalisation of the classical SzemerédiTheorem for arithmetic progressions. It is

fairly natural to search for a generalisation of the notion of a polynomial which preserves

some of the regularity used in the proofs of these results.

In this section, we introduce the notion of “almost polynomials” to formalise the idea

that a function shows similar behaviour to a polynomial with respect to taking finite

differences, but relativised with respect to a chosen ultrafilter p. An almost polynomial

is essentially synonymous with p-VIP system (modulo a constant term and possibly the

generality of definition), but we prefer to use a name that has an intuitive content.

Additionally, we take a different point of departure, and only later will it become apparent

that our definition is closely related to the classical one. We begin by building some

general theory, which will mostly be applied to maps Z → Z.

The following definition is inspired by Definition 3.9.

Definition 3.34 (Almost polynomials). Let (X,+) be a commutative semigroup, and

let (Y,+) be commutative group, and let p ∈ βX be an ultrafilter. We define the family

of p-almost polynomials X → Y inductively, as follows:

1. A map f : X → Y is a p-almost polynomial of degree −∞ if and only if f = 0Y

p-a.e.

2. A map f : X → Y is a p-almost polynomial of degree 0 if and only if there is a

constant c ∈ Y \ {0Y } such that f = c p-a.e.

3. A map f : X → Y is a polynomial of degree at most d ≥ 1 if and only if for

p-almost all a ∈ X, the map ∆af is an almost polynomial of degree at most d− 1.

We denote the collection of all p-almost polynomials by Ap(X,Y ). If f ∈ Ap(X,Y ),

then degp f denotes the degree of f as p-almost polynomial. If f 6∈ Ap, then we define

degp f = +∞, so that the statement degp f ≤ d, d ∈ N, includes the assumption that

f ∈ Ap.

Convention 3.35. Throughout this section, X = (X,+) will stand for a commutative

semigroup, (Y,+) will stand for a commutative group, and p ∈ βX will stand for an

ultrafilter on X, unless specified otherwise. We abbreviate the notation Ap(X,Y ) to

Ap or even A when no confusion is possible. Likewise, we omit p in degp f and similar

expressions.

We have seen that the constant term plays an essential role for properties of ordinary

polynomials. The following definition gives the right generalisation of the constant term

for the almost polynomials.
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Definition 3.36. For a map f : X → Y , ultrafilter p ∈ βX, and integer d ∈ N we

define:

Cpd(f) := (−1)d p–lim
m0,...,md

∆
d
f(m0,m1, . . . ,md),

with the understanding that the topology of Y is discrete, and if the limit does not exist

in Y , then Cpd(f) remains undefined. If p is understood from the context, we skip the

upper index and write simply Cd(f).

We now prove several results which show why Cd(f) is an interesting object.

Proposition 3.37. In the situation of the above definition, for d ≥ 1 it holds for p-a.a.

a ∈ X that Cd(f) = −Cd−1(∆af), in the sense that is one of the limits converges then

so does the other, and the values agree. In particular, f ∈ A and degp f ≤ d if and only

if Cd(f) exists.

Proof. The first part of the statement follows from the observation that:

−p–lim
a

Cd−1(∆af) = (−1)dp–lim
a

p–lim
m0,...,md−1

∆
d
f(m0,m1, . . . ,md−1, a)

which is the same as the definition of Cd(f), up to renaming variables and using the

symmetry of ∆d
f . Because Y is given the discrete topology, we for p-a.a. it holds that

−Cd−1(∆af) = Cd(f), assuming either limit exists.

For the second part of the statement, we use induction. The case d = 0 is clear, so let

us suppose d ≥ 1. Then, for p-a.a. a ∈ X, the statement that degp f ≤ d is equivalent

to degp∆af ≤ d − 1, which by induction is equivalent to existence of Cd−1(∆af) =

Cd(f).

Lemma 3.38. If f ∈ A and deg f ≤ d, and p ∈ βX is idempotent, then Cd(f) =

Cdeg f (f).

Proof. We will show that for d ≥ deg f it holds that Cd+1(f) = Cd(f). Once this is

shown, the rest of the claim follows by simple induction.

We begin by writing out the formula for Cd+1(f). It will be convenient to distinguish two

of the variables by giving them different names. Note that we may shuffle the variables
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at the first step because of the symmetry of ∆d+1
f .

Cd+1(f) = (−1)d+1
p–lim

a
p–lim

b
p–lim
m1,...,md

∆a∆m1,m2...,md
f(b)

= (−1)d+1
p–lim

a
p–lim

b
p–lim
m1,...,md

∆m1,m2...,md
f(b+ a)

+ (−1)dp–lim
a

p–lim
b

p–lim
m1,...,md

∆m1,m2...,md
f(a)

+ (−1)dp–lim
a

p–lim
b

p–lim
m1,...,md

∆m1,m2...,md
f(b).

Note that in the first of the three resulting summands, a and b occur only in the expression

a+ b, so using the idempotence of p, this can be condensed to:

(−1)d+1
p–lim

n
p–lim
m1,...,md

∆m1,m2...,md
f(n) = −Cd(f).

The remaining two limits are equal to Cd(f), because the limits over non-occurring

variables can be cancelled. The claim follows:

Cd+1(f) = −Cd(f) + Cd(f) + Cd(f) = Cd(f).

Remark 3.39. Note that the proof relies on the idempotence of p already for deg f = 0.

Indeed, we have:

Cp1 (f) = −p–lim
m,n

∆mf(n) = −p–lim
m,n

(f(n+m)− f(n)− f(m)) = −Cp+p0 (f) + 2Cp0 (f),

which is not the same as Cp0 (f) in general, unless p + p = p. For a concrete example,

take X = N, Y = Z and f(n) = n · χ2N(n) (that is f(2m) = 2m and f(2m + 1) = 0),

and let p be such that p ∈ 2N + 1. Then, f = 0 p-a.e., so deg f = −∞ and Cp0 (f) = 0.

However, because (p+p) ∈ 2N, we have f(n) = n for (p+p)-a.a. n. Hence f is definitely

not constant almost everywhere with respect to p + p, and Cp1 (f) = −Cp+p0 (f) remains

undefined.

Convention 3.40. From this point on we assume that p is idempotent, except when

explicitly mentioned otherwise.

The above lemma shows that Cd(f) does not depend on d, provided that d is large enough

for Cd(f) to be defined. Hence, we shorten the notation to C(f) when d is immaterial.

Polynomials which map 0 to 0 exhibit particularly nice properties with respect to recur-

rence. The following is the analogue for almost polynomials.
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Definition 3.41. An almost polynomial f is said to be admissible if and only if C(f) = 0.

We denote the set of admissible almost polynomial by Ap
0, or A0 if p is understood from

the context.

Example 3.42. If f : X → Y is a polynomial map in the sense of Definition 3.9, then

f is an almost polynomial, and deg f ≤ degp f , where deg stands for the degree of f as

a polynomial. Moreover, in this case f is admissible if and only if f(0) = 0, because for

any a ∈ X we have ∆af(0) = −f(0).

Lemma 3.43. If f : X → Y is almost polynomial from commutative group X to

commutative group Y then C(f) is the unique constant such that f−C(f) is an admissible

almost polynomial.

Proof. This is a direct consequence of how ∆a acts on constants, and linearity of C.

Proposition 3.44. Let f, g : X → Y be maps such that f = g p-a.e. Then deg f = deg g

and C(f) = C(g).

Proof. The claim will follow immediately, once we show that for any d ∈ N we have the

equality:

p–lim
m0,...,md

(

∆
d
f(m0,m1, . . . ,md)−∆

d
g(m0,m1, . . . ,md)

)

= 0,

which implies in particular that Cd(f) = Cd(g) provided that either constant is defined.

Using the formula for ∆
d from Lemma 3.17, we observe that it suffices to show that for

any index set I ⊂ {m0,m1, . . . ,md} we have the equality:

p–lim
m0,...,md

(

f

(

∑

i∈I

mi

)

− g

(

∑

i∈I

mi

))

= 0.

Note that for i 6∈ I, the expression whose limit we are taking is independent of mi,

and thus the operation of taking p–lim
mi

is just the identity, and may thus be dropped.

Using the symmetry, we may assume that I = {0, 1, . . . , r} for some r, which reduces

the problem to showing that:

p–lim
m0,...,mr

(

f

(

r
∑

i=1

mi

)

− g

(

r
∑

i=1

mi

))

= 0.

Using the idempotence of p, we see that this is equivalent to:

q–lim
n

(f(n)− g(n)) = 0,
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or, more naturally, f = g q-a.e., where q = p + p + · · · + p, where r copies are in place.

Thanks to the fact that p is idempotent, we have q = p, so we arrive at the assumption.

Hence, the claim holds.

Remark 3.45. If it was not the case that p is idempotent, we would need a much stronger

condition, of f and f ′ being equal p-a.e., (p + p)-a.e., and generally (p + p + · · · + p)-

a.e. for any number of repetitions of p. It should be taken as a strong hint that in our

considerations, the assumption of idempotence cannot be weakened.

Observation 3.46. If f, f ′ ∈ A, then f + f ′ ∈ A. Moreover, C(f + f ′) = C(f) + C(f ′)

and deg(f + f ′) ≤ max{deg f,deg f ′}.

Proof. Let d := max{deg f,deg f ′}. It is clear from the previous considerations that:

Cd(f + f ′) = Cd(f) + Cd(f
′) = C(f) + C(f ′).

Hence, the claim follows.

Observation 3.47. Suppose that f ∈ A(X,Y ) is an almost polynomial and g ∈ Hom(Y,Z)

is a morphism of commutative groups. Then g ◦ f ∈ A(X,Z) is again an almost polyno-

mial. Moreover, deg g ◦ f ≤ deg f and C(g ◦ f) = g(C(f)).

Proof. It is clear that for d := deg f we have:

Cd(g ◦ f) = g (Cd(f)) .

Hence, the claim follows.

Lemma 3.48. Let f ∈ A(X,Y ) and f ′ ∈ A(X,Y ′), where Y, Y ′ are both commutative

groups. Suppose additionally that a bi-additive6 map Y × Y ′ ∋ (y, y′) 7→ y · y′ ∈ Z is

defined, where Z is a commutative group. Then, f · f ′ : X → Z (defined pointwise), is

an almost polynomial. Moreover, deg f · f ′ ≤ deg f + deg f ′ and C(f · f ′) = C(f)C(f ′).

Proof. We begin by considering a few special cases. In the case when deg f = −∞ or

deg f ′ = −∞, then f · f ′ = 0Z p-a.e., and hence f · f ′ ∈ A(X,Z) and deg f · f ′ = −∞.

In the case when deg f = 0, there exists a constant c ∈ Y such that f = c for p-a.e.. It

follows that f · f ′ = c · f ′ p-a.e.. Because the map y′ 7→ c · y′ is a morphism, the claim

follows from the above observation. The same reasoning applies when deg f ′ = 0.
6By bi-additive map we mean that with one argument fixed, the map is a morphism of semigroups.
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For the general case, we use induction on the degrees (deg f,deg f ′). Proving the theorem

for f, f ′, we may assume that the claim holds for g, g′ with deg g+deg g′ < deg f+deg f ′.

Because of the above considerations, we may assume that deg f > 0 and deg f ′ > 0.

To show that f ·f ′ ∈ A(X,Z), it will suffice to check that ∆a(f ·f
′) ∈ A for p-a.a. values

of a. Directly by writing out the formulas, one can verify that:

∆a(f · f ′) =
(

∆af + f(a)
)

·
(

∆af
′ + f ′

)

+
(

∆af + f
)

· f(a) + f ·∆af
′. (3.4)

From the inductive Definition 3.34, it follows that for p-a.a. values of a we have the

expected bounds for degrees: deg
(

∆af + f(a)
)

≤ deg f−1, deg
(

∆af
′ + f ′

)

≤ deg f ′−1,

deg
(

∆af + f
)

≤ deg f , deg∆af
′ ≤ deg f ′−1. This means that the inductive assumption

can be applied to each of the three products in equation (3.4). It follows that f · f ′ ∈

A(X,Z). More precisely, we have:

deg∆a(f · f ′) ≤ max
{

deg
(

∆af + f(a)
)

·
(

∆af
′ + f ′

)

,

deg
(

∆af + f
)

· f(a), deg f ·∆af
′
}

≤ deg f + deg f ′ − 1.

Hence deg f ·f ′ = deg∆a(f ·f
′)+1 ≤ deg f +deg f ′, which proves one part of the claim.

For the final part of the claim, we again use equation (3.4) and the inductive assumption.

Note that we have:

C(∆af + f) = C(∆af) + C(f) = −C(f) +C(f) = 0.

and likewise C(∆af
′ + f ′) = 0. This identity, together with the inductive assumption,

allow us to perform the following computation:

C
(

∆a

(

f · f ′
))

= C
((

∆af + f (a)
)

·
(

∆af
′ + f ′

))

+ C
((

∆af + f
)

· f (a)
)

+ C
(

f ·∆af
′
)

= C
(

∆af + f (a)
)

· C
(

∆af
′ + f ′

)

+ C
(

∆af + f
)

· C (f (a))

+ C (f) · C
(

∆af
′
)

= −C (f)C
(

f ′
)

Hence, we have C(f · f ′) = −C
(

∆a(f · f ′)
)

= C(f)C(f ′).

Corollary 3.49. Suppose that (Y,+, ·) is a ring. If f, f ′ ∈ A0 and g ∈ A, then f + f ′ ∈

A0 and f · g ∈ A0. In other words, A0 constitutes an ideal in A.
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Proof. By previous results we have C(f + f ′) = C(f) + C(f ′) = 0 and C(f · g) =

C(f)C(g) = 0.

To finish our considerations on almost polynomials, we cite a fundamental structure

theorem for such maps. The following result is taken from [BM10], and needs to be

modified slightly to fit our treatment. We denote by Pd(S) the family of non-empty

subsets of S with cardinality at most d.

Theorem 3.50. Let X be a commutative semigroup and Y — a commutative group, let

p ∈ βX be idempotent, let f : X → Y be a map, and fix d ∈ N. Then, the following

conditions are equivalent:

1. The map f is an almost polynomial with degree at most d: f ∈ Ap
0(X,Y ) and

degp f ≤ d.

2. There exists a map u : Pd(X) → Y and a constant c ∈ Y such that the following

formula is satisfied for any r ∈ N:

p–lim
a1,...,ar

f

(

r
∑

i=1

ai

)

−
∑

α∈Pd(X)
α⊂{ai}ri=1

u(α) = c.

Moreover, if the above conditions are satisfied, then c = C(f).

Partial proof. 2 =⇒ 1. If 2 holds, then we can replace f (
∑r

i=1 ai) by the expression
∑

α∈Pd(X),α⊂{ai}
r
i=1

u(α) + c under the generalised limit p–lim
a1,...,ar

. This allows us to

compute the limit

p–lim
x0,...,xd

∆
d
f(x0, . . . , xd),

using the explicit formula from Lemma 3.17. Once we prove that the above limit

exists, it will follow from previous considerations that f ∈ Ap
0 with degp f ≤ d, and

the value of the limit equals (−1)dCp(f). For brevity of notation, let u(∅) := c.

We can compute that:

p–lim
x0,...,xd

∆
d
f(x0, . . . , xd) = p–lim

x0,...,xd

∑

I⊂[d+1]
I 6=∅

(−1)d+1−#If

(

∑

i∈I

xi

)

= p–lim
x0,...,xd

∑

I⊂[d+1]
I 6=∅

(−1)d+1−#I
∑

α∈Pd(X)∪{∅}
α⊂{xi}i∈I

u(α).
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The restriction I 6= ∅ in the above sum is awkward, but we can dispose of it by

artificially adding the term (−1)d+1c to both sides. After that, we can easily change

the order of summation, leading to:

p–lim
x0,...,xd

∆
d
f(x0, . . . , xd)− (−1)dc = p–lim

x0,...,xd

∑

α∈Pd(X)∪{∅}

u(α)
∑

I⊂[d+1]
{xi:i∈I}⊃α

(−1)d+1−#I .

For a fixed α the inner sum over I can be computed explicitly. If we allow I(α) :=

{i : xi ∈ α} then the sum can be rewritten as:

∑

I⊂[d+1]
{xi:i∈I}⊃α

(−1)d+1−#I =
∑

I(α)⊂I⊂[d+1]

(−1)d+1−#I = (−1)d+1−#I(α)
∑

J⊂[d+1]\I(α)

(−1)#J .

If we denote m := d+1−#I(α) and group the terms in the above sum with respect

to j := #J , we see that:

∑

J⊂[d+1]\I(α)

(−1)#J =
∑

0≤j≤m

(−1)j
(

m

j

)

= (1− 1)m = 0.

Note that we rely on m > 0, which is a consequence of #α ≤ d. Hence, the

previously considered limit trivialises:

p–lim
x0,...,xd

∑

α∈Pd(X)∪{∅}

u(α)
∑

I⊂[d+1]
{xi:i∈I}⊃α

(−1)d+1−#I = 0Y .

This leads to the desired formula, finishing the proof of this implication:

p–lim
x0,...,xd

∆
d
f(x0, . . . , xd) = (−1)dc.

1 =⇒ 2. See [BM10].

The above result can lead to shorter proofs of some of our claims, most notably Lemma

3.48. We choose a different perspective, relying more on induction than explicit structure

theorems. The function u in the above theorem is sometimes referred to as the generating

function for f . One of the consequences of the implication we proved is a practical way

of verifying that a given function f is an almost polynomial: it suffices to find the

corresponding generating function u and check the relation in 2. A word of warning

is due at this point: it is not the case that for an arbitrary choice of the function

u : Pd(X) → Y one can find a corresponding almost polynomial f ∈ A0(X,Y ).
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3.4 Integer almost polynomials

We now turn to applications of the previously introduced theory to maps Z → Z. Similar

results can be obtained for multivariate polynomials Zk → Zl, but we sacrifice some of

the generality for the sake of simplicity.

Our goal is to generalise previous results about integer-valued polynomials. We would

like, in particular, to allow for non-rational coefficients. Since multiplication on the torus

by a non-integer is not well defined, we need to incorporate a notion of the integral part.

It seems to be the most morally justified to use the “closest integer” function, rather

that the “floor” function, since the former is better behaved, as shall be seen in the

considerations below.

Definition 3.51. For x ∈ R by JxK we denote the closest integer to x, given by JxK :=
⌊

x+ 1
2

⌋

. By 〈x〉 we denote the “fractional part”: 〈x〉 := x− JxK.

The following result is the aforementioned generalisation of Lemma 3.22 to the context

of generalised polynomials.

Proposition 3.52. If f : Z → Z is an almost polynomial then for any α ∈ T it holds

that

p–lim
n

αf(n) = αC(f).

In particular, if f is admissible, then:

p–lim
n

αf(n) = 0.

Proof. We reason in full analogy to the case of ordinary polynomials, and use induction

on d. Let λ denote the sought limit p–lim
n

αf(n). If d ≤ 0, then αf(n) = C(f) for p-a.a.

n, so clearly λ = αC(f). Thus, we may suppose f is an almost polynomial of degree

d ≥ 1, and the claim holds for almost polynomials of all smaller degrees.

Using idempotence of p and elementary transformations, we find:

λ = p–lim
n

αf(n) = p–lim
m

p–lim
n

αf(n+m)

= p–lim
m

p–lim
n

αf(n) + p–lim
m

p–lim
n

αf(m)+

p–lim
m

p–lim
n

α∆f(n,m)

= 2λ+ p–lim
m

p–lim
n

α∆mf(n).
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Using Lemma 3.48, for p-a.a. m, the expression ∆mf(n) is an almost polynomial in n

with degree strictly smaller than d, with C(∆mf(n)) = −C(f). Thus, the inductive

assumption applies, and:

p–lim
m

p–lim
n

α∆mf(n) = p–lim
m

αC(∆mf(n)) = −αC(f).

Hence, the above computation leads to:

λ = 2λ− αC(f).

Thus, λ = αC(f), as claimed.

Corollary 3.53. For any scalars αi ∈ R, and any almost polynomials fi of degree di,

where i = 1, 2, . . . , N , consider the function g : Z → R given by the formula:

g(n) :=

N
∑

i=1

αifi(n). (3.5)

Suppose additionally that
∣

∣

∣

∑N
i=1 αiC(fi)

∣

∣

∣ < 1
2 . Then, we have:

p–lim
n

〈g(n)〉 =
N
∑

i=1

αiC(fi).

Proof. From the previous theorem, we know that both p–lim
n

〈g(n)〉 and
∑N

i=1 αiC(fi)

represent the same element of T, and lie in (−1
2 ,

1
2). Hence, they are equal.

The above Proposition 3.52 describes behaviour of limits of almost polynomials. How-

ever, it does not give any description of A other than the somewhat indirect one in

Definition 3.34. We shall now give an operation that can be used to obtain almost

polynomials that are not ordinary polynomials.

Lemma 3.54. For arbitrary scalars αi ∈ R, and functions fi ∈ A, where i = 1, 2, . . . , N ,

consider the function g : Z → R given by the formula:

g(n) :=

N
∑

i=1

αifi(n). (3.6)

Then, JgK ∈ A and deg g ≤ maxi di. What is more, if additionally we assume that
∣

∣

∣

∑N
i=1 αiC(fi)

∣

∣

∣ < 1
2 , then JgK ∈ A0.

Proof. Let us denote d := maxi deg fi; we will apply induction with respect to d. The

case d = −∞ is clear, because then for all i we have fi = 0 p-a.e.. If d = 0, then for all
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i it holds that fi = C(fi) p-a.e., and hence:

g =
N
∑

i=1

αiC(fi) p-a.e.

Thus, g is constant p-a.e., and so is JgK. It follows that JgK ∈ A and deg JgK = 0.

Moreover, if the additional assumption holds, then g ∈
(

−1
2 ,

1
2

)

, and hence JgK = 0

p-a.e., and consequently JgK ∈ A0.

For the inductive step with d ≥ 1, let us note that:

∆m JgK = ∆m (g − 〈g〉) = ∆mg −∆m 〈g〉 =
q
∆mg

y
+
〈

∆mg
〉

−∆m 〈g〉

=
q
∆mg

y
+
〈

∆m 〈g〉
〉

−∆m 〈g〉 =
q
∆mg

y
−

q
∆m 〈g〉

y
.

Note that we have ∆mg =
∑N

i=1 αi∆mfi. Because deg∆mfi = deg fi − 1 for p-a.a.

m (provided that deg fi ≥ 1) the inductive assumption can be applied to conclude

that
q
∆mg

y
∈ A and deg

q
∆mg

y
≤ d − 1. Moreover, because for any m it holds

(pointwise) that
∣

∣∆m 〈g〉
∣

∣ < 3
2 , we conclude that

q
∆m 〈g〉

y
∈ {−1, 0, 1}, and consequently

q
∆m 〈g〉

y
∈ A with deg

q
∆m 〈g〉

y
≤ 0. Therefore, we have for p-a.a. m:

deg∆m JgK ≤ max
{

deg
q
∆mg

y
,deg

q
∆m 〈g〉

y}
≤ d− 1.

Hence JgK ∈ A and deg JgK = deg∆m JgK + 1 ≤ d.

Let us now suppose that the additional assumption holds, so that we have

γ :=

N
∑

i=1

αiC(fi) ∈

(

−
1

2
,
1

2

)

.

Thanks to the above Corollary 3.53, we have p–lim
n

〈g(n)〉 = γ. We can then compute:

p–lim
m

p–lim
n

∆m 〈g〉 (n) = p–lim
m

p–lim
n

(〈g(n +m)〉 − 〈g(n)〉 − 〈g(m)〉) = −γ.

Because |γ| < 1
2 , the closest integer map J·K is continuous at γ, and thus:

p–lim
m

p–lim
n

q
∆m 〈g〉 (n)

y
= J−γK = 0.

Hence, for p-a.a. m we have
q
∆m 〈g〉

y
∈ A0. (Let us remark that this part of the proof

works under a weaker assumption
∑N

i=1 αiC(fi) 6∈ Z+ 1
2 .)
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For the other term, we notice that for p-a.a. m it holds that C(∆mfi) = −C(fi), and

hence the the additional assumption also implies that
q
∆mg

y
∈ A0. Therefore:

C(JgK) = −p–lim
n

C(∆m JgK) = −p–lim
n

(

C(
q
∆mg

y
)− C(

q
∆m 〈g〉

y
)
)

= 0.

Corollary 3.55. For any constants αi ∈ R with i = 0, 1, . . . , N , the function f : Z → Z

given by:

g(n) :=

N
∑

i=0

αin
i, f(n) := Jg(n)K

is an almost polynomial. Moreover, f is an admissible almost polynomial, provided that

|α0| <
1
2 .

Corollary 3.56. 1. The class of almost polynomial is closed under taking sums, prod-

ucts, and the operation f 7→ Jαf + βK for α, β ∈ R.

2. The class of admissible almost polynomial is closed under sums, multiplication by

an almost polynomial, and the operation f 7→ Jαf + βK for α, β ∈ R with |β| < 1
2 .

3. Any function constructed by applying these operations, starting with ordinary poly-

nomials, is an (admissible) almost polynomial regardless of the choice of the idem-

potent ultrafilter p. In particular, if f : Z → Z is thus constructed admissible

almost polynomial and α ∈ R is a constant, then the set

Aε := {n ∈ Z : dist(αf(n),Z) < ε}

is IP
∗ for all ε > 0.

Remark 3.57. In the above results, it was essential that if f is admissible then so is

Jαf + βK for α, β ∈ R, provided that |β| < 1
2 . It is natural to inquire what happens in the

case of more general values of β. If β = b+β0, with |β0| <
1
2 and b ∈ Z, then Jαf + βK =

Jαf + β0K + b, so although Jαf + βK is not admissible, it can be made admissible by

subtracting a constant. This essentially reduces the question to β = 1
2 , or equivalently to

considering the almost polynomial ⌊αf⌋. It is clear from above considerations that, for

a fixed idempotent p, either ⌊αf⌋ is admissible, or ⌊αf⌋+1 is admissible. It is, however,

not the case that one of those functions is admissible for any idempotent p. This is an

obstacle to sets of recurrence or good approximation being IP
∗.

Example 3.58. Let α ∈ R be irrational. Then there exist two idempotent ultrafilters p

and q, such that n 7→ ⌊αn⌋ =
q
αn− 1

2

y
is admissible with respect to p, and n 7→ ⌈αn⌉ =

q
αn+ 1

2

y
is admissible with respect to q. Moreover, for any idempotent ultrafilter,

exactly one of these functions is admissible.



Chapter 3. Ergodic theory 85

In particular, for any constants β ∈ R \ Z, c ∈ {0, 1}, and ε > 0, the set of n ∈ Z such

that β (⌊αn⌋+ c) is ε-close to an integer:

Aε(c) := {n ∈ Z : d (β (⌊αn⌋+ c) ,Z) < ε}

is not an IP
∗ set, although Aε(0) ∪Aε(1) is an IP

∗ set.

Proof. The key observation is that 〈αn〉 approaches 0 along idempotent ultrafilters, and

the limit value can be approached either from above or from below.

More precisely, note that since α is irrational, a standard result shows that the sequence

{〈αn〉}n∈N is equidistributed in T. For a sequence (εi)i∈N with εi > 0 and
∑

i εi <
1
2 ,

we may choose ni ∈ N such that 〈αni〉 ∈ (0, εi). For n ∈ FS
(

(ni)i∈N
)

we then have

〈αn〉 ∈ (0,
∑

i εi) ⊂
(

0, 12
)

. By Lemma 2.12, there exists an idempotent p such that

FS
(

(ni)i∈N
)

∈ p, and in particular 〈αn〉 ∈
(

0, 12
)

for p-a.a. n. It follows that
q
αn− 1

2

y
=

JαnK for p-a.a. n, and hence the function n 7→
q
αn − 1

2

y
is admissible with respect to p.

Likewise, repeating the construction, but choosing εi < 0 with
∑

i εi > −1
2 , we arrive

at an idempotent q such that
q
αn+ 1

2

y
= JαnK for q-a.a. n. Hence, the function

n 7→
q
αn+ 1

2

y
is admissible with respect to q.

The claim about either of the functions
q
αn± 1

2

y
being admissible is a direct consequence

of the observation that for any n either
q
αn − 1

2

y
= JαnK or

q
αn+ 1

2

y
= JαnK.

Another question that naturally comes to mind is whether the recurrence properties that

have been considered so far are a special feature of (almost) polynomials, or if there is

a wider class of functions for which analogous results hold. We will show that for a

function increasing more slowly than linear, there always exists an idempotent p such

that the limit p–lim
n

αf(n) is in general non-zero. We extract the following technical

lemma before we proceed with the proof.

Lemma 3.59. Let εi and mi be sequences such that 2εi
mi

> 3
mi+1

. Denote Ai := {α ∈ T :

miα ∈ (γ − εi, γ + εi). Then,
⋂

i∈NAi is not the empty set.

Proof. Let Bk :=
⋂

i≤kAi. We claim that Bk contains an interval of length 2εk
mk

. For

k = 0, this is clear. Suppose for some k the claim holds. Then, Bk+1 = Bk ∩ Ak+1.

From the form Ak+1 has, it is immediate that T can be partitioned into mk+1 intervals

I1, I2, . . . , Imk
of length 1

mk+1
such that Js := Ak+1 ∩ Is is an interval of length 2εk+1

mk+1
.

By inductive assumption, Bk contains an interval of length at least 2εk
mk

> 3
mk+1

. This

means that there exists s such that Bk ⊃ Is ⊃ Js, and the claim follows.

Because Bk is a descending family of compact non-empty sets,
⋂

i∈NAi =
⋂

k∈NBk 6= ∅.
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Proposition 3.60. Let f : N → R be such that limn→∞ f(n) = ∞. Suppose addition-

ally that limn→∞ f(n) − f(n + 1) = 0; for example f(n) = o(n) and f is increasing.

Then, there exists an idempotent p such for any γ ∈ T there exists α ∈ T such that

p–lim
n

α Jf(n)K = γ. Moreover, α can be chosen in any interval of positive measure.

Proof. Let us fix a sequence εi with limi→∞ εi = 0. Because of the assumption on f , it

is easy to construct an increasing sequence of integers ni such that JfK is constant on

[ni, ni + ni−1 + · · · + n1]. What is more, ni can also be chosen to be increasing steeply

enough so that the assumptions of the Lemma above are satisfied for mi := Jf(ni)K.
Under this assumption, it is clear that {Jf(n)K : n ∈ FS

(

(ni)i∈N
)

} = {Jf(ni)K : i ∈

N} = (mi)i∈N. Let Ai := {α ∈ T : miα ∈ (γ−εi, γ+εi), as in the lemma above, and let

α ∈
⋂

i∈NAi. Because α ∈ Ai, we have d(αmi, γ) < εi. It follows that limi→∞ αmi = γ.

Hence, for any p such that FS
(

(ni)i∈N
)

∈ p, we have p–lim
n

αf(n) = γ.

We conjecture that similar results should be true for f with any order of growth which is

polynomially bounded, but different than polynomial. More precisely, if f : N → R is an

increasing function such that for some integer k we have7 f = ω(nk) and f = o(nk+1),

we believe that there exist α ∈ T an idempotent p ∈ βN such that p–lim
n

α Jf(n)K 6= 0

(possibly under some additional assumption, such as f being restriction to N of a function

which is analytic, or belongs to a Hardy field).

To close this section, we compare our considerations with more well-established notions,

and offer some examples. The class of (admissible) almost polynomials is, as the perspi-

cacious reader might have already observed, closely related to the more classical notions

of (admissible) generalised polynomials.

Definition 3.61 (Generalised polynomials). The family of generalised polynomials is

the smallest family G of maps Z → Z such that the following are satisfied:

• generalised polynomials extend ordinary polynomials: Z[x] ⊂ G;

• generalised polynomials form an algebra: if g, h ∈ G then g · h, g + h ∈ G;

• generalised polynomials are closed under the floor map: if (gi)i∈[n] ∈ Gn and

(αi)i∈[n] ∈ R then ⌊
∑

i∈[n] αigi⌋ ∈ G.

7We say that a function f has order of growth ω(g) if limn→ ∞
f(n)
g(n)

= ∞. Likewise, we say that f

has order of growth o(g) if limn→ ∞
f(n)
g(n)

= 0. These definitions are normally only applied to positive

and monotonous g. Assuming thatt f and g are positive and monotonous, the conditions f = ω(g) and
g = o(f) are equivalent.
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Definition 3.62 (Admissible generalised polynomials). The family of admissible gener-

alised polynomials is the smallest family Ga ⊂ G of maps Z → Z such that the following

are satisfied:

• polynomials vanishing at 0 are admissible: xZ[x] ⊂ Ga;

• admissible generalised polynomials form an ideal in G: if g ∈ Ga, h ∈ G then

g · h ∈ Ga, and if g, h ∈ Ga then g + h ∈ Ga;

• generalised polynomials are closed under a “shifted” floor map: if ε ∈ (0, 1),

(gi)i∈[n] ∈ Gna and (αi)i∈[n] ∈ R then ⌊
∑

i∈[n] αigi + ε⌋ ∈ Ga.

Thanks to Lemma 3.48, it is visible that generalised polynomials are almost polynomials,

and admissible generalised polynomials are admissible almost polynomials. Hence, our

results naturally yield results in the more classical terms.

One might wonder whether the classes we define here are really more general. It turns

out that they indeed are, as the following examples show. We stress that the following

ideas are strongly inspired by IP-systems, and more generally VIP-systems, whose domain

is the the family of finite sets of natural numbers, Pfin(N). More detailed discussion of

such examples can be found in [BHKM06].

Example 3.63 (Base change). Consider the map f : N → N defined by the condition

that for α ∈ Pfin(N0) we have:

f

(

∑

i∈α

2i

)

=
∑

i∈α

3i.

Note that the above definition makes sense, because each integer has a unique binary

expansion. Descriptively, f(n) is the value one obtains by writing n base 2, and then

reinterpreting this as an expansion base 3. For n ∈ N, let α(n) denote the unique set for

which we have n =
∑

i∈α(n) 2
i, so that we have the relation:

f(n) =
∑

i∈α(n)

3i.

It is easy to see that we have the linear relation:

f(n+m) = f(n) + f(m),

provided that α(n) ∩ α(m) are disjoint. Note that this condition is satisfied as soon as

2k|n for some k with 2k > m. Because 2kN is IP
∗ by Proposition 2.26, we have for any
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idempotent p:

p–lim
m

p–lim
n

∆
2
f(n,m) = p–lim

m
p–lim

n

(

f(n+m)− f(n) + f(m)
)

= 0.

As a consequence, degp f = 1 for arbitrary idempotent p.

Above, we exploited the uniqueness and existence of the binary expansion. Below we

show how the same idea can be applied to more general bases. Additionally, there was

nothing special about base 3: we could have selected an arbitrary sequence (bi)i in place

of
(

3i
)

i
. Because the only allowable digits base 2 are 0 and 1, above we could conveniently

identify binary expansion of a number with a set of its non-zero digits; for general bases

we need to proceed differently.

Example 3.64. Suppose that we are given a sequence (ai)i∈N0
and a sequence (di)i∈N0

,

such that each n ∈ N has unique expansion:

n =
∑

i∈N0

µi(n)ai,

with µi(n) ∈ [di] for all i ∈ N0. Concretely, one can take ai := ai and di := a for some

a ≥ 2, leading to the expansion base a. Consider an arbitrary sequence (bn)n∈N0
and a

define the map f : N → N given by the formula:

f(n) =

∞
∑

i=0

µi(n)bi.

Assume additionally that the sets Ai := {n ∈ N : µi(n) = 0} are IP
∗. It is easy to verify

that this condition is satisfied if for all i we have ai < ai+1 and ai|ai+1. Then, for a fixed

m and n belonging to the IP
∗-set

⋂

i:µi(m)6=0Ai it holds that for any i either µi(m) = 0

or µi(n) = 0. Consequently, for such m,n we have µi(n +m) = µi(n) + µi(m) for all i,

and consequently f(n+m) = f(n) + f(m). Hence, for any idempotent p it holds that

p–lim
m

p–lim
n

∆
2
f(n,m) = 0,

and thus degp f = 1 (except for degenerate choices of b, leading to degp f ≤ 0).

As a special case, for any a ≥ 2 and b ≥ 1, we may choose ai = ai and bi = bi. Then

the map f described by reinterpreting expansion base a as expansion base b is an almost

polynomial of degree 1. Note that for b = 1, the value f(n) is the sum of digits of n base

a.
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We can yet another example of class of almost polynomials, which is based on a somewhat

more peculiar positional system. While the previous examples are well known, to the

best of our knowledge the following example new.

Example 3.65 (Fibonacci base). Let fi be the i-th Fibonacci number (starting with

f0 = 1, f1 = 2). It is a classical fact attributed to Zeckendorf (cf. [Zec72]) that any

integer n can be represented in the form:

n =
∑

i∈N0

µi(n)fi,

where µi(n) ∈ {0, 1} and for no i does it hold that µi(n) = µi+1(n) = 1. Such repre-

sentation is often referred to as Fibonacci base or Zeckendorf expansion, and has been

studied in some detail, see for example [HCB73] or [GKP94, pp. 295-296].

Suppose that we can show that Ai := {n ∈ N : µi(n) = 0} are IP
∗. Using the same

arguments as previously, we can check that given an idempotent p and a fixed m, for

p-many n it holds that µi(n+m) = µi(n)+µi(m) for all i. Consequently, we can derive

that any function of the form
∑

i µi · bi is almost polynomial of degree 1.

We now show that the sets Ai indeed are IP
∗. For a proof by contradiction, suppose that

B is an IP-set with Ak ∩B = ∅, i.e. such that µk(n) = 1 for all n ∈ B. Fix a sufficiently

large integer j, and for n ∈ N let t(n) denote the “tail” of n, obtained by restricting to

the j terminal digits:

t(n) :=
∑

i∈[j]

µi(n)fi.

Let p be an arbitrary idempotent in B. Because t(n) takes only finitely many values, the

limit a := p–lim
n

t(n) exists. Because p is idempotent, we can easily find n,m ∈ B such

that t(n) = t(m) = t(n+m) = a. We can write n = n′ + a, m = m′ + a, n+m = s′ + a,

where t(n′) = t(m′) = t(s′) = 0. We then have the relation:

n′ +m′ + a = s′.

It is not difficult to convince oneself that µi(n′ +m′) = 0 if i < j − 2, so we can write

n′ +m′ = r′ + b with t(r′) = 0 and b having at most one non-zero digit at position j − 1

or j − 2. Consequently, we have the relation:

r′ + a = s′ − b.

Using the relation fi+
∑s−1

t=0 fi+1+2t = fi+2s, we conclude that µi(s′−b) = 0 for i < j−3.

On the other hand, µk(r′+a) = 1, which leads to a contradiction, provided that j > k+3.

This finishes our considerations for the Fibonacci base.
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We conjecture that similar reasonings should work for more general positional systems.

In particular, some recursively defined sequences other than the Fibonacci sequence can

be used to construct other positional systems in analogous manner.

We can go yet a step further and construct a fairly general class of “automatic” functions,

which turn out to be degree 1 almost polynomials. We need a preliminary concerning

automata. The following definition is taken from [AS03].

Definition 3.66. A deterministic finite automaton with output A (DFAO or automaton,

for short) over a finite finite alphabet Σ, consists of the following data:

1. set of states Q, with a distinguished initial state qinit;

2. transition function τ : Q× Σ → Q;

3. output function λ : Q× Σ → N0.

The intuition behind an automaton is the following. The automaton starts in the state

qinit. A sequence α0, α1, α2, . . . of symbols from Σ is provided on input. The automaton

accepts them one by one, and if it accepts a symbol α when it is in state q, then it

passes to state q′ = τ(q, α). After each such transition, the symbol λ(q, α) is produced

on output.

Let a, b ∈ N2 be fixed bases, and for n ∈ N, let n =
∑∞

i=0 µi(n)a
i be the unique

decomposition of n in base a. Suppose that A = (Q, τ, λ) is an automaton over the

alphabet Σ = [a]. We can think of A as generating a function fA : N → N in the

following way. We begin by indentifying n with a sequence of its digits base a, then we

apply A and interpret the result as a number base b. More formally, let us fix n ∈ N

with expansion n =
∑∞

i=0 µia
i; we will define fA(n). First, we denote the consecutive

steps q0 := qinit and qi+1 := τ(qi, µi). Next, we denote the outputs λi := λ(qi, µi); note

that λi depends implicitly on n. Finally, we put:

fA(n) :=

∞
∑

i=0

λib
i.

We call a function f : N → Z an automatic function if it is of the form fA for some

automaton A.

We leave the following result without proof, which is not difficult, but rather technical.

Proposition 3.67. Let A = (Q, qinit, τ, λ) be an automaton, and let f be the correspond-

ing function. Suppose that the map τ(·, a) : Q → Q is bijective for any a ∈ Σ. Then f

is an almost polynomial with degree at most 1 with respect to any idempotent p.
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As the reader might have noticed, we do not actually prove that the almost polynomials

we just presented are not generalised polynomials. Because generalised polynomials are

always polynomially bounded while functions constructed above need not be, one can

show that not all of these almost polynomials presented are generalised polynomials. We

believe that in general none of the above almost polynomials are generalised polynomials,

except for some degenerate cases, but we have no way of showing this rigorously.

The examples presented above are somewhat far-fetched: it is not clear that anyone

would be interested in thus defined functions in the first place. There turn out to be more

natural examples of admissible almost polynomials that are not admissible generalised

polynomials. Note that the proof of Lemma 3.48 in fact shows that for a fixed g ∈ G,

there are just finitely many values that Cp(g) can take, depending on the idempotent p.

It follows that for (gi)i∈[n] ∈ G and (αi)i∈[n] ∈ R we have
r
∑

i∈[n] αigi

z
∈ Ap

0 for all p,

provided that |αi| are small enough that for any p we have
∣

∣

∣

∑

i∈[n] αiC
p(gi)

∣

∣

∣
< 1

2 . For

an explicit example, ⌊ ⌊πn⌋43 + 1
2e⌋ lies in Ap

0 for any p, but probably not in Ga. That being

said, for ε ∈ (0, 1), the map ⌊ ⌊πn+ε⌋43 + 1
2e⌋ lies in Ga, so the difference does not appear to

be very significant.

To close the discussion about almost polynomials, we stress some pitfalls and oddities

that one can encounter.

Firstly, the property of being an almost polynomial depends on p, even though the

examples we encountered so far did not take p into consideration. We have noted that for

bounded maps bi : Z → Z, i ∈ [r], the map f given by f(n) :=
∑

i∈[r] bi(n)n
k is an almost

polynomial with respect to any p. In fact, if bpi := p–lim
n

bi(n) and fp(n) :=
∑

i∈[r] b
p
in

k

then f(n) = fp(n) for p-a.a. n, and consequently f and fp are indistinguishable as

members of Ap. However, for different p the polynomials fp may very well be different.

In particular, it may well be that degp f 6= degq f and Cp(f) 6= Cq(f) for p 6= q.

In fact, given two different idempotents p and q and arbitrary almost polynomials fp ∈

Ap, f q ∈ Aq, one can construct f ∈ Ap ∩ Aq such that f(n) = fp(n) for p-a.a. n and

f(n) = f q(n) for q-a.a. n. This can be achieved quite simply. Note that there exist a

set A which is p-large but not q-large, as well as a set B which is q-large but not p-large.

Taking f := χA · f + χB · g we can easily verify that f has the mentioned relation to fp

and f q.

Another aspect we wish to stress is that it is not the case that almost polynomials have

the order of growth expected of polynomials. Of course, this is not much of a surprise,

given that we can modify a member of Ap on a p-small set without changing its properties

as an almost polynomial. At this point, one might yet be hoping that some notion of

order of growth relative to p would work. However, even with naturally defined almost
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polynomials which can be approximated by ordinary polynomials up to a constant factor,

this hope fails. For example, the map given by
∑

i µia
i 7→

∑

i µib
i from Example 3.64 has

degree 1, but has the order of growth8 Θ
(

nln b/ lna
)

, instead of the expected Θ(n). The

almost polynomial given by the formula f(n) = Jαn 〈βn〉K with α, β ∈ R \ Q is clearly
9 O(n) and one can even check that for any idempotent p we have p–lim

n

f(n)

n
= 0.

However, explicit computation of ∆f shows that degp f = 2, so f is far from satisfying

the expected approximation Θ(n2).

3.5 Dynamical applications

We shall now see how theory developed so far can be applied to measure preserving pre-

serving systems. For this purpose, we will be considering averages of powers of operators

on Banach spaces. The link between Banach spaces and dynamical systems uses the

Koopman operator given by UT (f) = f ◦ T . Mostly, we will be interested in the Hilbert

spaces L2, but for the time as as far as it is possible we use develop our methods in the

most general context.

Definition 3.68. Let E be a reflexive Banach space, let (An)n∈X ∈ B(E)X an bounded

sequence of (continuous linear) operators on E , indexed by a set X, and let p ∈ βX be an

arbitrary ultrafilter. By the standard symbol p–lim
n

An we denote the generalised limit

taken in the weak topology. The limit exists because of reflexivity of E and Banach-

Alaoglu theorem.

Since strong convergence implies weak convergence, we do not intorduce additional sym-

bol for the strong limit. When convergence is strong, we will note this explicitly.

We prove some basic properties of limits related to commutativity.

Lemma 3.69. Let (An)n∈X and (Bn)n∈X be bounded sequences of operators on a reflex-

ive Banach space E, and suppose that An commutes with Bn for all n. Then, for any

ultrafilter p ∈ βX, the limits p–lim
n

An and p–lim
n

Bn is commute.

In particular, if (An)n∈Z is a uniformly bounded sequences of operators on a Hilbert space

H, and An is normal for each n, then the limit p–lim
n

An is normal.

8We say that a function f has the order of growth Θ(g) if there exist constants C1, C2 > 0 such that
C1g(n) < f(n) < C2g(n) for sufficiently large n.

9We say that a function f has the order of growth O(g) if there exist a constant C > 0 such that
f(n) < Cg(n) for sufficiently large n. In particular, f is Θ(g) if and only if f is O(g) and g is O(f).
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Proof. Let L := p–lim
n

An and M := p–lim
n

Bn. By direct computation, using separate

weak continuity of operator multiplication, we check that:

LM = p–lim
m

Amp–lim
n

Bn = p–lim
m

p–lim
n

AmBn = p–lim
m

p–lim
n

BnAm =ML.

Because the adjoint is continuous in the weak topology, the additional claim follows by

applying the previous part with E = H and Bn = A∗
n.

We now discuss a very special case of theorems that shall be considered afterwards.

The obtained result is not of much interest on its own, but serves as a motivation for

what follows. In applications, we will be mostly interested in the limits of powers of the

Koopman operator of a dynamical system.

Proposition 3.70. Let A ∈ B(E) be a power-bounded10 operator on a reflexive Banach

space E, and let p ∈ βN be an idempotent ultrafilter. Then P := p–lim
n

An is idepotent:

P 2 = P .

In particular, if A ∈ B(H) is a normal operator on a Hilbert space H with ‖A‖ ≤ 1, then

P := p–lim
n

An is an orthogonal projection.

Proof. Using idempotence of P , we first transform:

P = p–lim
n

An = p–lim
m

p–lim
n

An+m = p–lim
m

p–lim
n

AmUn.

Using the fact that operator multiplication is separately continuous in the weak topology,

we can transform further:

P = p–lim
m

p–lim
n

AmAn = p–lim
m

Amp–lim
n

An = P 2.

Therefore, P = P 2, as required.

For the additional part of the claim, note that is A is normal, then so is P , thanks to

Lemma 3.69. Hence, P is an orthogonal projection thanks to the well-known criterion.

The following lemma shows how to transform statements like the above into more con-

crete results about recurrence. We give the most general formulation first, and then apply

it to the situation at hand. To begin with, we briefly recall the relevant definitions.
10An operator A is power-bounded if the sequence ‖An‖, n ∈ N is bounded.
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Definition 3.71. A measure preserving system is a quadruple X = (X,M, µ, T ) where

X is a compact topological space, M is a σ-algebra on X, µ is a probability measure

on M and T : X → X is a measure preserving transformation. The Koopman operator

UT ∈ B(L2(X,µ)) associated to T is the operator given by UT (f) = f ◦ T . In general,

UT is an isometry. If T is invertible, then UT is unitary and U−1
T = UT−1 .

Lemma 3.72. Let (X,M, µ) be a measure space. Let (Tn)n∈X be a family of measure

preserving invertible transformations, and let Un ∈ B(L2(X,µ)) be the associated Koop-

man operators. Suppose that the limit P := p–lim
n

Un is a projection. Finally, let A ∈ M

be such that µ(A) > 0. Then:

p–lim
n

µ(A ∩ T−1
n A) ≥ µ(A)2.

Proof. Let 1A denote the characteristic function of A, let 1X denote the constant function

1. Note that Un1X = 1X , and thus also P1X = 1X . We can now translate the statements

about measures of sets into statements about scalar products, in particular µ(A) =

〈1A, 1X〉 and µ(A ∩ T−1
n A) = 〈1A, Un1A〉. It follows that:

p–lim
n

µ(A ∩ TnA) = p–lim
n

〈1A, U
n1A〉 =

〈

1A, p–lim
n

Un1A

〉

= 〈1A, P1A〉 = ‖P1A‖
2 = ‖P1A‖

2 ‖P1X‖
2

≥ 〈P1A, P1X 〉2 = 〈1A, P1X 〉2 = 〈1A, 1X 〉2 = µ(A)2

Corollary 3.73 (Khintchine). Let (X,M, µ, T ) be a measure preserving system, let A ∈

M be such that µ(A) > 0, and let p ∈ βZ be an idempotent ultrafilter. Then:

p–lim
n

µ(A ∩ T−nA) ≥ µ(A)2.

In particular, we have:

lim sup
n→∞

µ(A ∩ T−nA) ≥ µ(A)2.

Moreover, for any ε > 0, the set of return times:

Rε := {n ∈ Z : µ(A ∩ T−nA) > µ(A)2 − ε}

is p-large, and therefore is an IP
∗ set.

Proof. The first statement is an immediate application of the above preparatory Lemma

3.70. The additional parts of the statement are just equivalent ways of expressing the

convergence, and quantifying over all idempotents p.
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Our next goal is to give more general theorems describing when the operators of the form

p–lim
n

Uf(n) are projections. We will need some preliminary results.

The following decomposition is a classical theorem. It will be important for applications

of minimal ultrafilters. A detailed proof and discussion can be found in Eisner’s [Eis10].

With the theory on compact semigroups developed in Chapter 1 we could re-derive it

without too much work, but it would take us too far afield, so we merely cite it instead.

Theorem 3.74 (Jacobs-Glicksberg-de Leeuw decomposition). Let E be a reflexive Ba-

nach space, and let A ∈ B(E) be an operator with ‖A‖ ≤ 1. Then, E decomposes into the

direct sum Er ⊕ Es, where:

Er := lin{f ∈ E : (∃γ ∈ C, |γ| = 1) Af = γf},

Es := {f ∈ E : 0 ∈ clweak{Anf}n∈N}.

The minimal idempotent Q in the semigroup generated by A is the orthogonal projection

onto Er.

The above decomposition allows us to consider the operator limits of powers of A on

the two spaces Er and Es independently. The situation of Er is especially simple, as the

following observation shows.

Observation 3.75. Let p ∈ βZ, and f ∈ Ap
0(Z,Z) be such that f > 0 p-a.e.. Let E be a

reflexive Banach space, let A ∈ B(E) be an operator with ‖A‖ ≤ 1, and let E = Er⊕Es be

the Jacobs-Glicksberg-de Leeuw decomposition of E with respect to A. Then the limit

P := p–lim
n

Af(n), restricted to Er, is the identity operator IEr .

Proof. We first note that for f ∈ E such that Af = γf with |γ| = 1, we have Pf = f .

This is true because Af(n)x = γf(n)x, and by assumption on f and Lemma 3.52 we have

p–lim
n

γf(n) = 1. Because such f span Er, it follows that P |Er = IEr .

It follows form the above observation that the situation on Er is clear in the most gen-

erality we can hope for. On Es we only have the simple result provived by Proposition

3.70. This is as much as we are able to say for general (reflexive) Banach spaces.

To make further progress we need to restrict to Hilbert spaces, which allows us to use

the version of van der Corput Lemma for generalised limits. This lemma is of vital

importance for many inductive arguments.

Lemma 3.76 (van der Corput, [Sch07]). Let H be a Hilbert space, let (X,+) be a

semigroup, and let (xn)n∈X ∈ HX be a bounded family indexed by elements of X, and let



Chapter 3. Ergodic theory 96

p ∈ βX be an idempotent ultrafilter. Suppose additionally that p–lim
m

p–lim
n

〈xn+m, xn〉 =

0. Then it also holds true that p–lim
n

xn = 0.

Proof. Let us denote y := p–lim
n

xn. As an immediate application of idempotence of p,

we notice that for any positive interger s we have can also express y as:

y = p–lim
n1,...,ns

xn1+···+ns .

Likewise, we notice that the condition p–lim
m

p–lim
n

〈xn+m, xn〉 = 0, together with idem-

potence of p, implies that we have for any r, s ≥ 1:

p–lim
m1,...,mr

p–lim
n1,...,ns

〈xn1+···+ns+m1+···+mr , xn1+···+ns〉 = 0.

For any N we therefore have:

y =
1

N

N
∑

s=1

p–lim
n1,...,ns

xn1+···+ns .

In particular, because norm is semi-continuous from below in the weak topology:

‖y‖2 =
1

N2

∥

∥

∥

∥

∥

p–lim
n1,...,nN

N
∑

s=1

xn1+···+ns

∥

∥

∥

∥

∥

2

≤
1

N2
p–lim
n1,...,nN

∥

∥

∥

∥

∥

N
∑

s=1

xn1+···+ns

∥

∥

∥

∥

∥

2

=
1

N2

N
∑

r,s=1

p–lim
n1,...,nN

〈xn1+···+ns , xn1+···+nr〉 .

As a direct application of the remark about scalar products, if r 6= s we have

p–lim
n1,...,nN

〈xn1+···+ns , xn1+···+nr〉 = 0.

It allows us to simplify the above expression:

‖y‖2 ≤
1

N2

N
∑

s=1

p–lim
n1,...,nN

‖xn1+···+ns‖
2

=
1

N
p–lim

n
‖xn‖

2 .

Because N was chosen arbitrarily and p–lim
n

‖xn‖
2 is a constant independent of N , it

follows that ‖y‖ has to be equal to 0. Thus, y = 0, as desired.
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With this tool we are able to obtain a general result on limits along minimal idempotents.

Under some additional assumptions, we are able to identify the limit quite explicitly as

the minimal projection. Somewhat surprisingly, the case of degree 1 almost polynonials

seems to be the most problematic. The following lemma is somewhat unsatisfactory

— in a sense, it formalises an induction procedure, but does not secure the basic step.

To avoid repetition, we introduce the situation which will be common in a number of

consecutive results.

Convention 3.77. We let H denote a Hilbert space, p ∈ βZ an ultrafilter, and U a fixed

unitary operator on H. Let Q denote the minimal projection generated by U , as in

Theorem 3.74. Finally, let the class of maps Fp be defined by:

Fp = {f ∈ Ap
0(Z,Z) : p–lim

n
Uf(n) = Q}.

Proposition 3.78. Assume notation as in B:situation:Fp, and suppose that f ∈ Ap
0 is

such that for p-a.a. a we have ∆af ∈ Fp. Then f ∈ Fp.

Proof. Denote P := p–lim
n

Uf(n); our goal is to show that P = Q. It is clear that P

is normal, as a limit of normal operators, thanks to Lemma 3.69. What is more, all

operators that appear throughout the proof arise as limits of powers of U , and hence

by Lemma 3.69 they commute with one another. We will use this fact without further

mention.

By Corollary 3.75, we already know that Q|Hr = IEr . Hence, it will suffice to show that

Q|Hs = OHs .

Let us consider a fixed x ∈ Hs; our goal is to show that p–lim
n

Uf(n)x = 0. Using van der

Corput Lemma 3.76, it will suffice to show that p–lim
m

p–lim
n

〈

Uf(n)x,Uf(n+m)x
〉

= 0.

This can be established easily enough by algebraic manipulation:

p–lim
m

p–lim
n

〈

Uf(n)x,Uf(n+m)x
〉

= p–lim
m

p–lim
n

〈

Uf(n)x,U∆mf(n)+f(n)+f(m)x
〉

= p–lim
m

p–lim
n

〈

U−f(m)x,U∆mf(n)x
〉

= p–lim
m

〈

U−f(m)x, p–lim
n

U∆mf(n)x

〉

= p–lim
m

〈

U−f(m)x,Qx
〉

= 0.

The above result shows that once we identify members f ∈ Fp with degp f = 1, we

are given a criterion for members of Fp with higher degrees. More precisely, it becomes
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evident that if f ∈ Ap
0 and ∆

deg f−1
a1,a2,...f ∈ Fp for p-a.a. a1, a2, . . . , then f ∈ Fp. We start

with a result in this direction.

Lemma 3.79. With notation as in 3.77, suppose that p is minimal, and let f : Z → Z

be the identity map f(n) = n. Then f ∈ Fp.

Proof. Consider the semigroup morphism βN → B(H) given by p 7→ p–lim
n

Un. Let

S be the image of βN. It is clearly a semigroup, it is compact, and the semigroup

{Un : n ∈ N} is dense in it. It is a consequence of previously shown results that S

is commutative. Let K := K(S) be the minimal (two-sided) ideal. A relatively simple

arguemnt shows that K = QS and that K is a group with Q as the identity; see [Eis10]

for details.

Let I ⊂ βN be the set of those ultrafilters q for which q–lim
n

Un ∈ K. Because q 7→

q–lim
n

Un is a morphism of compact semigroups and K is a two-sided ideal, it follows

that I is a two-sided ideal. This means that K(βN) ⊂ I.

Let us return to the minimal idempotent p, and denote P := p–lim
n

Un. Because p

is idempotent, we already know that P |Hr = IHr . Because p ∈ K(βN), the above

considerations show that P ∈ QS, so P |Hs = OHs . Hence, P = Q.

Lemma 3.80. For a unitary operator V on H, let Q(V ) denote the minimal projection

as in Jacobs-Glicksberg-de Leeuw decomposition. Then it holds that Q(V ) = Q(V k).

Proof. We proceed by induction on k, with the case k = 1 being trivially satisfied.

Let us additionally denote by S(V ) the compact semigroup generated by V . We notice

that we have the following decomposition of S(V ):

S(V ) =
k−1
⋃

l=0

V lS(V k).

The inclusion V lS(V k) ⊂ S(V ) is clear. For the reverse inclusion we first note that:

S0(V ) =
k−1
⋃

l=0

V lS0(V
k),

where S0(V ) denotes the (non-compact) semigroup generated by V , and then take clo-

sures of both sides.

From the above observation, it follows that for some 0 ≤ l < k we have Q(V ) ∈ V lS(V k).

Because Q(V )k = Q(V ), we conclude that Q(V ) ∈ V klS(V k)k ⊆ S(V k). Because
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Q(V ) is a minimal projection in S(V ) ⊇ S(V k), we conclude that Q(V ) ∈ K(S(V k)).

Finally, becauseQ(V k) is the unique idempotent in K(S(V k)), we conclude that Q(V k) =

Q(V ).

Corollary 3.81. With notation as in 3.77, assume that p is minimal, and let f : Z → Z

be the linear map f(n) = kn, k ∈ N. Then f ∈ Fp.

Proof. From the above Lemma 3.80, it follows that:

p–lim
n

Ukn = Q(Uk) = Q(U) = Q.

Hence, the claim follows.

Proposition 3.82. With notation as in 3.77, assume that p is minimal, and let f :

Z → Z be the base-changing map described in Example 3.64, defined for some fixed

a ∈ N2, bi ∈ Z by:

f

(

∑

i

µia
i

)

=
∑

i

µibi,

where |µi| < a and all µi have the same sign11. Then f ∈ Fp, provided that we have:

{q–lim
n

Uf(n) : q ∈ βZ} ∩QS 6= ∅.

Proof. Let H :=
⋂

k∈N a
kZ ⊂ βZ. Note that H is compact, because it is the intersec-

tion of compact sets. Moreover, is is a semigroup, because akZ are all semigroups by

Proposition 1.86. If m ∈ Z is fixed then for n divisible by a sufficiently large power of a

(dependent on m) we have:

f(n+m) = f(n) + f(m).

It follows that for q ∈ H and arbitrary p we have:

p–lim
m

q–lim
n

(f(n+m)− f(n)− f(m)) = 0.

Denote Φ(p) := p–lim
n

Uf(n) for p ∈ βZ. The above shows that for q ∈ H we have:

Φ(p+ q) = p–lim
m

q–lim
n

Uf(n+m) = p–lim
m

q–lim
n

Uf(n)+f(m) = Φ(p)Φ(q).

In particular, Φ restricted to H is a morphism of semigroups.
11We need a minor alteration to account for the domain changing from N to Z, but it is easy to see

that this alteration does not lead to any significant problems.
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Let q ∈ βZ be such that Φ(q) ∈ QS, which exists by the additional assumption. For any

k we can find ck such that qk := q + ck ∈ akZ. It is clear that Φ(qk) ∈ QS, and hence

a simple compactness argument shows that Φ(H) ∩QS 6= ∅. Consequently the minimal

ideal in the semigroup Φ(H) is QΦ(H).

Consider the two sided ideal Φ−1(QΦ(H))∩H. Clearly, it contains K(H) = K(βZ)∩H.

We know that H contains all the idempotents. Hence, if q is a minimal idempotent,

we have Φ(q) ∈ QΦ(H). Finally, because Q is the only idempotent in the QΦ(H), we

conclude that Φ(q) = Q. But this means precisely that q ∈ Fp.

Having characterised some degree 1 polynomials in Fp for p — minimal idempotent, we

are able to derive a description elements of Fp of higher degrees.

Theorem 3.83. With notation as in 3.77, for p minimal idempotent the following are

true:

1. If f : Z → Z is a standard polynomial with f(0) = 0, then f ∈ Fp.

2. If f ∈ Fp and g ∈ Ap
0 are such that deg f < deg g, then f + g ∈ Fp.

3. If f ∈ Ap
0, then ndeg

p f+1 + f ∈ Fp.

4. If f : Z → Z is a ”weighted sum of digits” as in Proposition 3.82 and g : Z → Z

is a standard polynomial, the f ◦ g ∈ Fp.

If fact, we have not been able to find an example of an admissible almost polynomial

such outside Fp. This leads us to state the following conjecture, for which the above

results constitute a motivation.

Conjecture 1. If p is a minimal idempotent then Fp = Ap
0.

The reason for interest in the above considerations is that we can apply them to general

measure-preserving systems. The resulting theorem is similar to Khintchine’s, except it

speaks of recurrence along (generalised) polynomials. It is the immediate consequence

of the above Theorem 3.83 together with Lemma 3.72.

Corollary 3.84. Let (X,M, µ, T ) be a measure preserving system, and A ∈ M be such

that µ(A) > 0, and let p ∈ βZ be a minimal idempotent, and let f ∈ Fp. Then:

p–lim
n

µ(A ∩ T−f(n)A) ≥ µ(A)2.

In particular, we have:

lim sup
n→∞

µ(A ∩ T−f(n)A) ≥ µ(A)2.
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Moreover, for any ε > 0, the set of return times:

Rε := {n ∈ Z : µ(A ∩ T−f(n)A) > µ(A)2 − ε}

belongs to p, and is therefore is an C∗ set12.

3.6 Some classical results

Let us compare the above result with that of Schnell [Sch07], which in turn is largely

inspired by results of Bergelson et al. [BHKM06]. A special case of the main theorem of

[Sch07] is the following:

Theorem 3.85 (Schnell). Let (Ui)mi=1 be a family of commuting unitary operators on a

Hilbert space H. Let p ∈ βZn be an idempotent, and fi : Zd → Zn be polynomials with

f(0) = 0. Then, the operator P := p–lim
n

m
∏

i=1

Ufi(n) is a projection operator.

Our argument is essentially a variation on the methods employed by Schnell. Let us

consider the still more specialised case of the result, with m = d = 1. On one hand,

our result is weaker insofar as it needs the ultrafilter to be minimal in addition to being

idempotent. On the other hand, it is also stronger insofar as it identifies the limit

explicitly, and works for generalised polynomials.

Other results which deserve a mention involve IP-limits. These limits are extensively

used in ergodic theory, most notably in [BHKM06], [FK85], [BFM96]. As we will see,

these limits are strongly related to ultrafilter limits along idempotents.

For brevity, and to establish a better correspondence with existing literature, we denote

F := Pfin(N). We turn F into a semigroup by taking the group operation to be the

set union, as usual. Additionally, we assume the topology of F to be discrete, wherever

relevant. Recall that the notation α < β for α, β ∈ F is a shorthand for maxα < min β.

We are now in position to define the IP-limit.

Definition 3.86 (IP-limit). Let Z be a topological space, and let (xα)α∈F be a sequence

of elements of Z, indexed by F . Then we say that IP−lim
α
xα = y if and only if for any

U ∈ TopZ with y ∈ U there exists α0 ∈ F such that for any α ∈ F with α > α0 it holds

that xα ∈ U .

To make the notion of IP-limit useful, one needs to define a proper way of passing to

subsequences. Note that to extract a subsequence from a sequence (xi)i∈N, one normally

12For relevant definitions, see 2.27 and 2.23
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begins by choosing a sequence of indices (in)n∈N with in < in+1 for all n ∈ N, and then

looks at the sequence
(

xij
)

j∈N
. The following definition provides the right index set for

the subsequence of a set-indexed sequence.

Definition 3.87 (IP-ring). A family F1 ⊂ F is said to be an IP-ring if and only if it is

of the form: F1 = FU(α) for some sequence α = (αn)n∈N with αn < αn+1 for all n ∈ N,

where FU(α) denotes the set of finite unions.

Given an IP-ring F1 = FU(α), there is a natural way to identify F1 with F , much like

there is a natural identification between N and a subsequence (in)n∈N. The correspon-

dence is given by the map β 7→ αβ :=
⋃

i∈β αi. Note that the surjectivity is simple, while

injectivity relies on the condition that αn < αn+1 for all n. This identification leads to

the natural extension of Definition 3.86.

Definition 3.88 (IP-limit along IP-ring). Let Z be a topological space, and let (xα)α∈F
be a sequence of elements of Z, indexed by F . Suppose that F1 = FU(α) is an IP-ring.

Then we define the IP limit of xα along F1 to be:

IP−lim
α∈F1

xα := IP−lim
β
xαβ

,

with the understanding that if the expression on the right is undefined then so is the

expression on the right.

An important consequence of Hindman’s Theorem is that IP-limits of sequences in a

compact space behave much like ordinary limits, as exemplified by the following propo-

sition.

Proposition 3.89. Let Z be a compact metrizable space, and let (xα)α∈F be a sequence

of elements of Z, indexed by F . Then there exists an IP-ring F1 such that the limit

IP−lim
α∈F1

xα exists.

Sketch of proof. We show that given an open cover C ⊂ TopZ, we can construct an

IP-ring F ′ such that there exists U ∈ C such that xα ∈ U for all α ∈ F ′. First, because

of compactness, we may assume without loss of generality that C is finite. Next, we may

consider for each U ∈ C the set AU := {α ∈ F : xα ∈ U}. Clearly, AU for U ∈ C form

a finite partition of F . Hence, by Hindman’s Theorem 2.20 we find that one of the cells

of this partition, say AV , contains an IP-ring, say F ′. Directly by construction, xα ∈ V

for all α ∈ F ′, as desired.

We leave it to the reader to apply the above procedure to construct the IP-ring mentioned

in the assertion. One can do it inductively, by considering the covers consisting of balls

with radii descending to 0.
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There is a natural link between IP-sets in N, IP-limits and idempotent ultrafilters. To

begin with, we introduce an alternative way of viewing IP-sets, which is in the author’s

humble opinion a major motivating factor for the study of IP-limits. Recall that for a

sequence x with elements in an additive group, the set FS(x) can be described as the

values of the
∑

i∈α xi for α ∈ F . This motivates the following definition.

Definition 3.90 (IP-systems). Let X be a commutative semigroup. An IP-system in X

is a map x : F → X such that x(α ∪ β) = x(α) ∪ x(β) whenever α ∩ β = ∅.

It is clear that IP-sets in X are precisely the sets of values of IP-systems. Considering

IP-systems gives a clearer understanding of the structure, and is slightly more general,

since a given IP-set can potentially correspond to different IP-systems.

Possibly the most frequent and probably the most basic way in which IP-limits occur is

in the expressions of the type

IP−lim
α∈F1

xn(α),

where n is an IP-system and F1 is an IP-ring. Such limits are essentially equivalent to

limits along idempotent ultrafilters, as shown in the following proposition.

Proposition 3.91. Let Z be a metrizable topological space, (xn)n∈N a sequence with

elements in Z, and let y ∈ Z. Let n : F → N be an IP-system. Denote the the

corresponding IP-sets Ak = {n(α) : α ∈ F , minα > k} and A := A0. The following

conditions are equivalent:

(1) There exists an IP-ring F1 such that IP−lim
α∈F1

xn(α) = y.

(2) There exists an idempotent ultrafilter p ∈
⋂

k Ak such that p–lim
n

xn = y.

Proof. (1) =⇒ (2) Suppose that F1 = FU(α) is such that IP−lim
α∈F1

xn(α) = y. By

Lemma 2.14 there exists an idempotent p such that for any k the set FU
(

σkα
)

is

p-large (where σkα = (αk+l)l∈N, as before). It is clear that p–lim
n

xn = y and that

p satisfies the remaining conditions.

(2) =⇒ (1) Fix a metric ρ on Z. Let Bk denote the set {n ∈ N : ρ(xn, y) < 1/k}.

Because the sets Bk are p-large, an application of Lemma 2.12 shows that one can

construct a sequence of integers m = (mi)i∈N such that FS
(

σkm
)

⊂ A ∩ Bk for

any k. Moreover, because p ∈ Al for any l, we can ensure that mi =
∑

j∈αi
n(i)

with αi < αi+1 for any i. It follows that F1 := FU(α) is the sought IP-ring.
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We have seen that there is ample justification for interest in when limits of unitary

operators are projections. We restricted our attention to powers of unitary operators, but

in literature one frequently encounters (unitary) actions of general (semi-)groups. The

following definition should be construed as a generalisation of the assignment n 7→ Un

for a unitary operator U . We could have stated the definition in much more general

terms, but for our purposes the following will suffice.

Definition 3.92 (Unitary action). Let X be a commutative semigroup, and let H be a

Hilbert space. A unitary action of X on H is a map x 7→ Ux, such that for any x, y ∈ X

it holds that Ux+y = UxUy.

We are now in position to state some noteworthy results. The simplest among them is

the following.

Theorem 3.93 ([FK85]). Let H be a separable Hilbert space, let X be a commutative

group, and let x 7→ Ux be a unitary action of X on H. Suppose that x : F → X is an

IP-system and F1 is an IP-ring such that the following limit exists:

P := IP−lim
α∈F1

Ux(α).

Then, P is an orthogonal projection.

Remark 3.94. In the case of actions of the integers, the above theorem is equivalent to

Lemma 3.70, modulo an application of principle 3.91.

Several generalisations of the above result are possible. Firstly, IP-system in the above

statement can be replaced by a so called IP-polynomial. We don’t define this notion rig-

orously, but merely remark that the relation in which IP-polynomials stand to IP-systems

is similar to the relation of polynomials to linear functions. For a precise definition, see

[BHKM06].

Theorem 3.95 ([BFM96]). Let H be a separable Hilbert space, and let x 7→ Ux be a

unitary action of Zk on H. Suppose that x : F → X is an IP-polynomial and F1 is an

IP-ring such that the following limit exists:

P := IP−lim
α∈F1

Ux(α).

Then, P is an orthogonal projection.

The above theorem can be generalised further, to allow for FVIP systems in place of

IP-polynomials. The relevant theorem is due to Bergelson, Håland Knutson and Mc-

Cutcheon. Because definition of FVIP exceeds the scope of our investigation, we do not

formulate the the theorem. We refer the reader to [BHKM06].
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Applications in voting & model

theory

4.1 Voting & Arrow’s theorem

Yet another way to view ultrafilters is through the prism of voting procedures. Many

strengths of this approach lie more in the intuitively appealing picture than in rigorous

results, which should be borne in mind throughout this section. Whenever non-standard

terminology is used, the goal is purely expository, and more theoretically inclined reader

may disregard these superfluous details.

Let us begin by introducing a situation which will essentially remain fixed throughout

this section. We consider a population X (where X is a possibly infinite set, with no extra

structure), which is voting on candidates from a set C (again, no additional structure is

required; in practical applications C is finite, but we don’t make this restriction). Each

voter x ∈ X has some preference between the candidates, which are expressed by a total

order ≺x, i.e. a ≺x b if and only if x prefers b to a. Note that we do not include any

notion of strength of preference in our picture, nor do we allow a voter to be undecided

between two options. Moreover, we assume each voter to be rational to have preferences

that form a total order: if for a voter x a candidate b is preferable to candidate a, and

candidate c is preferable to b, then c is also preferable to a.

The goal of the vote is to establish an aggregated preference. More precisely, a social

welfare function (also known as preference aggregation rule) is a function that assigns to

the family of preferences (≺x)x∈X a total order ≺soc which we consider to be the outcome

of the vote, i.e. the preference of the society as a whole, or the aggregated preference of

the voters.

105
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There are several conditions that a preference aggregation rule could be expected to

satisfy:

(M) Monotonicity (also known as Positive Association of Social and Individual Values)

— if a candidate moves up in individual rankings, then his final position does not

fall. Formally, let a ∈ C be a candidate, and (≺x)x∈X , (≺
′
x)x∈X be two individual

preferences. Suppose that for any voter x the following holds: if b, c ∈ C \{a} then

b ≺x c if and only if b ≺x c ; moreover, if b ≺x a then also b ≺′
x a. We require that

in this situation for any b ∈ C with b ≺soc a we have b ≺′
soc a.

(NI) Non-imposition (also known as Unanimity) — if the vote is unanimous, then the

aggregated preference is the same as the individual preference of the voters. For-

mally, if there is a universal total order ≺∗ on C such that for all candidates a, b ∈ C

and all voters x it holds that a ≺x b if and only if a ≺∗ b, then also for all candidates

a, b it holds that a ≺soc b if and only if a ≺∗ b.

(IIA) Independence of Irrelevant Alternatives — relative ranking of any two given in-

dividuals is independent of preferences concerning other individuals. Formally, let

a, b ∈ C be two candidates, and let (≺x)x∈X , (≺
′
x)x∈X be two individual prefer-

ences such that for any voter x we have a ≺x b if and only if a ≺′
x b. Then we

require that a ≺soc b if and only if a ≺′
soc b.

Note that in presence of (IIA), the conditions (M) and (NI) are equivalent to apparently

stronger conditions given below.

(M’) If a ∈ C is a candidate and ≺x and ≺′
x are two individual preferences, such that for

any other candidate b ∈ C the condition b ≺x a implies b ≺′
x a, then the condition

b ≺soc a implies b ≺′
soc a for any b ∈ C.

(NI’) If for some two candidates a, b ∈ C and all voters x ∈ X it holds that a ≺x b,

then also a ≺soc b.

The reason for giving the more complicated and weaker assumptions is that in social

choice theory, these are more commonly accepted and easier to justify. In fact, most

preference aggregation rules encountered in practice satisfy (M) and (NI), but fail to

satisfy (IIA). The cause this state of affairs will become clear as soon as Arrow’s theorem

is formulated.

A voter x ∈ X is called a dictator if he alone controls the election. More precisely, x is a

dictator if and only if for any individual preferences and any pair of candidates a, b ∈ C

it holds that a ≺soc b if and only if a ≺x b. This means that the social preference is
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always identical to the preference of x, even if the entire rest of the society holds precisely

opposite preferences to x. It is often thought that dictatorship should be avoided, at

least on the grounds that in that case voting does not contribute any new information.

The following celebrated theorem due to Arrows shows that, in most practical situations,

this can only be accomplished is we sacrifice some of the desirable properties mentioned

above. We mostly follow the approach by Galvin [Gal], see also [Tao] and [Tao].

Theorem 4.1. For a finite set of voters X ranking candidates from a set C with #C ≥ 3,

any preference aggregation rule that satisfies conditions (IIA), (M) and (NI) is necessarily

dictatorial.

We will derive Arrow’s theorem from the following more general result, which does not

require finiteness of the set of the voters.

Theorem 4.2. Let X be an arbitrary set of voters, ranking candidates from a set C with

#C ≥ 3. For a fixed preference aggregation rule, define D to be the family of those sets

of voters who have control over the election:

D := {A ∈ P(X) : (∀a, b ∈ C) ((∀x ∈ A) a ≺x b) =⇒ (a ≺soc b)}.

If the assumptions (IIA), (M) and (NI) are satisfied, then D is an ultrafilter.

Remark 4.3. It is easily seen that x is a dictator if and only if D = Fx is the principal

ultrafilter corresponding to x.

Remark 4.4. The assumption #C ≥ 3 in the above theorems is essential, since for #C = 2

and finite X (with odd cardinality) a simple majority vote is non-dictatorial and satisfies

(M), (NI) and (IIA). More generally, if #C = 2, one can construct a fairly general

weighted voting procedure. For 2 alternatives, there are just two possible preferences,

and it will be convenient to label them “YES” and “NO”. Let us attach to each voter

x ∈ X a weight wx ≥ 0, and define some threshold 0 < t <
∑

x∈X wx. We declare that

the society chooses “YES” if and only if
∑

x∈Y wx > t, where Y is the set of those voters

who chose “YES”. It is clear that the conditions (M) and (NI) are satisfied, as well as

trivially (IIA). As long as wx < t for all x, this scheme is not dictatorial.

We use this opportunity to stress that in the formulation of Arrow’s theorem we do not

in any way require that voters should be “equal”, nor do the candidates have to be treated

“equally”.

Proof of Theorem 4.2. By the (NI) property together with (IIA), we have X ∈ D. Also,

clearly ∅ 6∈ D.
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If A ∈ D and B ⊃ A, then it is also visible that B ∈ D, since quantifying over B gives a

stronger condition than quantifying over A.

We now check that if A,B ∈ D then A ∩ B ∈ D. For a proof by contradiction, suppose

that A∩B 6∈ D. Then, there are some candidates a, b ∈ C, such that for some individual

preferences ≺x we have a ≺x b for all x ∈ A ∩ B, but the aggregate preference is in

favour of a: b ≺soc a. By (M), we may assume without loss of generality that b ≺y a for

y ∈ X \A∩B, since moving a up on some preference lists cannot harm his final position.

Let us now consider another candidate c ∈ C \ {a, b}, whose existence is guaranteed by

#C ≥ 3. By (IIA), we can assign any preference between c and a, b (consistent with

already existing preferences between a and b) without changing the relation b ≺soc a.

Let us consider the following assignment of preferences:

for x ∈ A ∩B : a ≺x c ≺x b,

for x ∈ A \B : b ≺x a ≺x c,

for x ∈ B \A : c ≺x b ≺x a,

for x ∈ X \ (A ∪B) : whatever.

With this assignment, we have for x ∈ A: a ≺x c. Since we assumed A ∈ D, it follows

that a ≺soc c. Similarly, we have for x ∈ B: c ≺x b. Since B ∈ D, it follows that c ≺soc a.

It follows that a ≺soc c ≺soc b, contradicting the assumption b ≺soc a.

At this point, we have shown that D is a filter. We will now proceed to show the

ultrafilter property, namely that for any partition X = A ∪ B with A ∩ B = ∅, either

A ∈ D or B ∈ D. For that purpose, we will provide an alternative description of D. For

a fixed pair of candidates a, b ∈ D, let Da,b denote the family of those sets of voters who

have control the choice between a and b, in the sense that if they prefer b to a, then the

collective preference is also in favour of b over a:

Da,b := {A ∈ P(X) : ((∀x ∈ A) a ≺x b) =⇒ (a ≺soc b)}

It is clear by the definition of D that:

D =
⋂

a,b

Da,b.

We claim that all the sets Da,b are in fact equal to one another, and hence also to D.

We first show for a, b, c ∈ C, distinct, that Da,b ⊂ Da,c. For a proof, let us take A ∈ Da,b

and show that A ∈ Da,c. We need to prove that for any individual preferences such
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that a ≺x c for all x ∈ A, we have a ≺soc c. Because of (M), we may assume that for

x ∈ X \A we have c ≺x a. By (IIA), we may assume any preference between a, c and b.

Let us consider the following assignment of preferences:

for x ∈ A : a ≺x b ≺x c,

for x ∈ X \ A : b ≺x c ≺x a.

Since A ∈ Da,b and for x ∈ A we have a ≺x b, it follows that a ≺soc b. Since we have

b ≺x c for all x ∈ X, it follows that b ≺soc c. Combining these, we conclude that a ≺soc c,

as desired. Because the choice of A was arbitrary, it follows that indeed Da,b ⊂ Da,c.

By a symmetric argument we can also verify the inverse inclusion, so for arbitrary distinct

a, b, c ∈ C we have Da,b = Da,c. By the same reasoning, but with preferences inverted,

we also find Da,b = Dc,b. Finally, we also note that:

Da,b = Da,c = Db,c = Db,a

Hence, we conclude that for any a, b, a′, b′ ∈ C with a 6= b and a′ 6= b′ (but possibly

{a, b}∩{a′, b′} 6= ∅ ) we have Da,b = Da′,b′ . It follows by taking intersection over all a′, b′

that Da,b = D.

After this preliminary work, it will suffice to show that Da,b has the property that for

any partition X = A ∪ B with A ∩ B = ∅, we have A ∈ Da,b or B ∈ Da,b. But this is

relatively simple. Consider the preference such that a ≺x b if x ∈ A and b ≺x a if x ∈ B.

It follows from (M) that if a ≺soc b, then A ∈ Da,b, and if b ≺soc a then B ∈ Da,b. Thus,

Da,b = D has the ultrafilter property.

Proof of Arrows Theorem 4.1. Under the assumptions of Arrows Theorem 4.1, the con-

ditions of Theorem 4.2 are clearly satisfied, so the family D defined as in the formulation

of Theorem is an ultrafilter. Since X is finite, the only possible ultrafilters are the prin-

cipal ones, so D is the principal ultrafilter Fx corresponding to some voter x ∈ X. In

particular {x} ∈ D, so x is the sought dictator.

The following result is a converse of Theorem 4.2.

Proposition 4.5. Let U ∈ Ult (X) be an ultrafilter. Define preference aggregation rule

by declaring a ≺soc b to be equivalent to {x ∈ X : a ≺x b} ∈ U . This gives a well defined

preference aggregation rule that satisfies the conditions (IIA), (M) and (NI).
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Proof. Let us note that a ≺soc b ∈ {⊤,⊥} is given by (a ≺soc b) = U–lim
x

(a ≺x b) (where

the limit is taken in {⊤,⊥} with discrete topology. Equivalently, if one identifies binary

relations with elements of {⊤,⊥}C×C with the natural Tichonoff/pointwise convergence

topology, then (≺soc) = U–lim
x

(≺x).

We will first check that ≺soc is indeed a total order. For this, we need to check a number

of conditions, namely antisymmetry, transitivity and totality. This can be done directly,

but we will pursue a slightly more sophisticated approach. For a, b, c ∈ C, and binary

relation ≺ on C denote the sentences

asyma,b (≺) := ¬((a ≺ b) ∧ (b ≺ a))

transa,b,c (≺) := ((a ≺ b) ∧ (b ≺ c)) =⇒ (a ≺ c)

totala,b (≺) := (a ≺ b) ∨ (b ≺ a)

A binary relation ≺ on C is a total order if and only if the sentences asyma,b (≺),

transa,b,c (≺) and totala,b (≺) are true for any a, b, c. These are clearly quantifier free

sentences in first order logic, true whenever ≺ is a total order. Consider any such

sentence φ(≺), viewed as a map from {⊤,⊥}C×C to {⊤,⊥}. Since φ(≺) depends only

on finitely many “coordinates”, it is clearly continuous. From this continuity and the

description of ≺soc it follows that:

φ(≺soc) = φ

(

U–lim
x

(≺x)

)

= U–lim
x

φ(≺x) = U–lim
x

(⊤) = ⊤

In particular asyma,b (≺soc) , transa,b,c (≺soc) and totala,b (≺soc) are true for any a, b, c,

and hence ≺soc is a total order.1

The condition (M) holds for this preference aggregation rule directly by the definition,

relying chiefly on the fact that U is closed under taking supsets. Likewise, the condition

(NI) holds, because X ∈ U . Finally, the condition (IIE) holds, because the definition of

a ≺soc b makes no mention of any other candidates.

One can check that the construction of an ultrafilter from a preference aggregation rule

in Theorem 4.2 and the construction of a preference aggregation rule from an ultrafilter

in Proposition 4.5 are mutually inverse.

Corollary 4.6. For a fixed set of candidates C, with #C ≥ 3, there is a bijective

correspondence between ultrafilters on X and preference aggregation rules satisfying for a
1The advantage of this approach is that it does not rely too much on the form of the conditions that

define the order. The same proof works for weak orders, equivalence relations, and generally all relations
that can be described by conditions of the form (∀a, b, c, . . . )φa,b,c,...(≺).
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vote of the population X on candidates from a set C with #C ≥ 3 that satisfy conditions

(M), (IIE) and (NI).

The sentiment that ultrafilters can be thought as a voting system is was expressed by

Tao in some of his expositor materials []. The subsequent applications in model theory

can be thought of as a generalisation of this idea.

4.2 Ultrapowers

We give a brief overview of the foundations of model theory. Because we believe the

basics of model theory would be familiar to a working mathematician, at least on the

intuitive level, we do not go into much detail. For a more detailed discussion, we refer

to any number of introductory materials on model theory, such as [Mar02] or [Hod97].

A very accessible treatment, which includes the ultrafilter construction and Łoś theorem

roughly in the form presented here, is provided by the lecture notes [Cla].

To express various mathematics, one first need a language:

Definition 4.7 (Language). A language L consists of the following data:

1. For each n ∈ N, a family of n-argument function symbols (usually denoted by

f(x1, x2, . . . , xn)).

2. For each n ∈ N, a family of n-argument relation symbols (usually denoted by

R(x1, x2, . . . , xn)).

3. A family of constant symbols (usually denoted by c).

We stress that a function symbol is not a function, but merely a symbol used to denote

a function. Likewise for relations and constants.

The assignment of a meaning to a symbol goes by the name of interpretation, and is

formalised as follows.

Definition 4.8 (Structure). For a language L, a L-structure S consists of the following

data:

1. The underlying space S

2. For each n-argument function symbol f , a function fS : Sn → S.

3. For each n-argument relation symbol R, a relation RS : Sn → {⊤,⊥}.
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4. For each constant symbol c, a constant cS ∈ S.

Apart from the symbols specific to the language, we also need logical symbols and vari-

ables to construct mathematically meaningful entities. The set of variables will be fixed

and denoted by (xi)i∈N, but in practice different symbols can be used for increased no-

tational convenience (for example, x, y, z, . . . ).

Terms in the given language are the well formed expressions that describe elements of the

underlying space. They are the basic building blocks for more complicated expressions.

This is made precise by the following definition.

Definition 4.9 (Terms). The set of terms over the language L is defined to be the

smallest family of expressions such that:

1. Every constant symbol c is a term.

2. Every variable symbol x is a term.

3. If f is an n-argument function symbol and t1, t2, . . . , tn are terms, then the expres-

sion f(t1, t2, . . . , tn) is a term.

Formulas are the well formed expressions that describe statements that can either true

of false, after the interpretation. This is made precise by the following definition.

Definition 4.10 (Formulas). The set of formulas over the language L is defined to be

the smallest family of expressions such that:

1. If R is an n-argument relation, and t1, t2, . . . , tn are terms, then R(t1, t2, . . . , tn) is

a formula.

2. If φ and ψ are formulas, then the following are formulas: (¬φ), (φ ∧ ψ), (φ ∨ ψ),

(φ⇒ ψ) and (φ⇔ ψ).

3. If φ is a formula and x is a variable, then the following are formulas: (∀x) φ and

(∃x) φ.

Remark 4.11. Formulas that are logically equivalent will not normally be distinguishable.

For instance φ ∨ ψ and ¬(¬φ ∨ ¬ψ) will play the same role. Using the standard logical

identities, we can restrict the vocabulary of logical symbols to ¬,∨ and ∃, which we

will implicitly use in proofs using structural induction. Conversely, we may treat any

additional logical symbols, such as the disjoint alternative ∨, to be just shorthands for

their definitions in terms of the more fundamental symbols.
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Note that the above allows formulas such as (∀x1)((∀x1) φ). The convention is then to

bind the variable to the most nested quantifier, so the formula in question is logically

equivalent to (∀x2)((∀x1) φ), provided that x2 does not appear in φ. However, we will

never use formulas of that kind in practice.

A formula is allowed to contain free variables, i.e. such that are not bound by a quanti-

fier. We will sometimes write φ(x1, x2, . . . , xk) instead of φ if x1, x2, . . . , xk are unbound

variables, to highlight this. It follows that formulas cannot yet be assigned a truth or

false within any L-structure. Sentences are the type of formulas to which a logical value

can be ascribed. Some level of vagueness is allowed, because we do not define what it

means for a variable to be bound by a quantifier, relying on the intuitive understanding

of the reader.

Definition 4.12 (Sentence). A formula φ is said to be a sentence if and only if it contains

no free variables.

We now give a definition of how sentences are interpreted inside structures. We allow

ourselves some vagueness also at this point, because we merely formalise the skill of

interpreting formulas that the reader obviously possesses. One point to keep in mind

is that the quantifiers are always interpreted to run over the underlying space (hence,

no quantification over sets of elements, or elements of some external sets, is possible).

A formal definition uses induction over complexity of formulas, and can be found for

instance in [Mar02].

Definition 4.13 (Interpretation). If S is an L-structure and φ is a sentence over L, then

φ corresponds to a statement φS obtained by replacing all function symbols f by the

corresponding functions fS, all relation symbols R by the corresponding relations RS, all

constant symbols c by the corresponding constants cS, replacing each quantifier of the

form ∀x or ∃x, where x is a variable, by ∀x ∈ S or ∃x ∈ S, and (finally) interpreting the

logical symbols in the standard way.

If the statement φS is true, we say that φ is true in S, which we express by writing S |= φ.

More generally, if Φ is a set of sentences, then we say that Φ is true in S if φ is true in S

for any φ ∈ Φ; we express this by writing S |= Φ.

Finally, if φ(x1, x2, . . . , xn) is a formula in n unbound variables x1, x2, . . . , xn, then for

a1, a2, . . . , an ∈ S, we say that φ(a1, a2, . . . , an) is true, or S |= φ(a1, a2, . . . , an), if and

only if the substitution procedure just described, combined with replacing xi by ai, yields

a true sentence.

Definition 4.14 (Theory). A theory T over the language L is a set of sentences over

L. Some authors require theories to be consistent and closed under logical consequence;

but we pose no such restriction.
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A L-structure S is said to be a model of T if and only if all sentences from T are true

in S, i.e. if S |= T. A sentence φ is said to be a consequence of T, which we express by

writing T |= φ, if and only if for any L-structure S with S |= T it holds that S |= φ.

To introduce a specific theory, one might proceed as follows. First, specify the language

needed to describe the desired properties. Next, specify a set of statements A, referred to

as axioms that describe relations between various symbols. It would normally considered

a good thing if the list of A is relatively short and effectively generated. Finally, consider

the theory T consisting of all logical consequences of the accepted axioms: for a formula

φ, we have φ ∈ T if and only if A |= φ.

Before we proceed to discussing some examples, we need to make the following clarifica-

tion.

Remark 4.15 (Identity). We deliberately did not include the equality symbol “=” as

a logical symbol. This goes against the current fashion, but was used for example by

Robinson in [Rob65]. In all theories under consideration, there will instead be a binary

relation =, corresponding to equality. For this relation to serve as equality, we need to

ensure several properties. Firstly, we need it to be an equivalence relation, which is easy

to ensure by adding axioms:

(∀x) x = x,

(∀x)(∀y)x = y =⇒ y = x,

(∀x)(∀y)(∀z)x = y ∧ y = z =⇒ x = z.

Secondly, we need to ensure that equality behaves appropriately with functions, which

is accomplished by adding for any n-argument function symbol f axiom:

(∀x1, . . . , xn)(∀y1, . . . , yn)x1 = y1 ∧ · · · ∧ xn = yn =⇒ f(x1, . . . , xn) = f(y1, . . . , yn).

Finally, we need to ensure that equality behaves appropriately with relations, which is

accomplished by adding for any n-argument relation symbol R axiom:

(∀x1, . . . , xn)(∀y1, . . . , yn)x1 = y1∧· · ·∧xn = yn =⇒ (R(x1, . . . , xn) ⇐⇒ R(y1, . . . , yn)).

We refer to these axioms as the axioms of equality. Elements a, b ∈ S with a =S b will

be indistinguishable within the theory, but may well be distinct elements of the set S.

A model where the relation =S is interpreted as the equality of set elements is called

normal, hence what we said amounts to acceptation of non-normal models.
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If S is a non-normal model of some theory T, then there is a natural way to construct a

normal model on the set S/ =S. Thus, considering non-normal models does not provide

more generality in any real sense. The reason for our treatment is that the ultraproduct

construction is more elegant that way. We always assume that the considered theories

have the binary relation =, and the axioms mentioned above belong to T.

Example 4.16 (Sets). Let L = {=}, and the let axioms A consist only of the identity

axioms (which in this case amounts to the statement that = is an equivalence relation).

Then the corresponding theory describes sets.

Example 4.17. If we take L = {·,=} and impose no additional axioms, except for

the ones about identity, than the resulting theory describes groupoids (also known as

magmas).

If we add the axiom of connectivity:

(∀x, y, z)(x · y) · z = x · (y · z),

we get the theory of semigroups.

If we add the axiom of existence of unit:

(∃e)(∀x)(ex = x) ∧ (xe = x)

then we get the theory of monoids.

Depending on the taste, one could alternatively define monoids by adding a constant

symbol for the unit e, and adding the shorter axiom:

(∀x)(ex = x) ∧ (xe = x)

If we add the axiom that each element has an inverse:

(∀x)(∃y)(xy = e)

then we get the theory of groups. Note that if we do not decide to add e as a constant,

we need to treat this sentence as a shorthand for a sentence similar to:

(∃e)((∀x)(ex = x) ∧ (xe = x)) ∧ ((∀x)(∃y)xy = e)).
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Example 4.18. Let us take L = {·, <}. We impose, as always, axioms of identity. If

we also include the axiom of transitivity:

(∀x, y, z) (x < y) ∧ (y < z) =⇒ (x < z),

and the axiom of strong asymmetry:

(∀x) 6= (x < x),

then the resulting theory describes partial orders. If we add the axiom of totality:

(∀x, y) (x < y) ∨ (y < x),

then we get the theory of total orders. We may also add axioms for theory of dense

orders:

(∀x, y) ((x < y) =⇒ (∃z) x < z < y).

The results of the previous section concerned the issue of voting. One could consider

each individual preference ≺x as a model for the theory2 T of total orders on C, or more

precisely as the only piece of data we need to identify such a model. One of the result

was that given the individual preferences (or a family of models for T indexed by X) and

an ultrafilter U on X, we were able to construct an aggregated preference, which was

yet another model of T. We now want to extend this approach to different theories. The

case that will be of most interest will be when X = N and the theory T has a specified

standard model — the outcome will be an introduction of a non-standard one.

Definition 4.19 (Construction of ultraproducts). Let X be a set, let U be a distin-

guished ultrafilter on X, and let Sx for x ∈ X be an L-structure. Then we define the

ultraproduct P :=
∏U
x∈X Sx as follows.

As the underlying set, we take the standard product P :=
∏

x∈X Sx.

For any n-argument function symbol f in L, we define the corresponding function coor-

dinatewise:

fP(a
1, a2, . . . , an) :=

(

fSx(a
1
x, a

2
x, . . . , a

n
x

)

x∈X
.

2 There is a slight technical difficulty here. It is not difficult to get the theory of total orders: we just
need one binary relation ≺ in the language, and axioms of transitivity, asymmetry and totality. We can
also impose the condition that C is a subset of the set being ordered by adding a #C constant symbols
to the theory, one for each element of C, say (ca)a∈C

, and #
(

C

2

)

axioms ensuring that these constants
are different: ¬(ca = cb). The difficulty lies in ensuring that the universe is not larger. If C is finite, we
can add axiom saying that each element is equal to one of the introduced constants: (∀x)

∧

a∈C(x = ca)
(where

∧

is a shorthand for multiple application of ∧). For infinite C, we can’t of course form this
sentence, and probably we have no way to ensure that there are no extra elements, hence we would be
more correct to speak of the theory of orders on supersets of C in this case.
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For any n-argument relation R in L, we define

RP(a
1, a2, . . . , an) := U–lim

x
RSx(a

1
x, a

2
x, . . . , a

n
x).

(In particular, if L contains a relation symbol =, and its interpretation =Sx is the actual

equality of set elements, then =P is the equality on U -many indices, as opposed to equality

per se. Hence, P is not normal.)

If all structures Sx in the product are equal to some fixed structure S, then the product

is referred to as an ultrapower of S.

Theorem 4.20 (Łoś). Let φ(v1, . . . , vn) be any formula over the language L with n

free variables v1, . . . , vn, and let a1, a2, . . . , an ∈ P . Then, the following conditions are

equivalent:

1. P |= φ(a1, a2, . . . , an)

2. Sx |= φ(a1x, a
2
x, . . . , a

n
x) for U-many x ∈ X.

In particular, if φ has no free variables and P, and Sx |= φ for all x, then also P |= φ.

If Sx = S for some fixed structure S, then S and S model the same sentences. If all

structures Sx are models of a theory T, then also P is a model of T.

Proof. To keep notation concise, let v = v1, v2, . . . vn and a = a1, a2, . . . , an. We prove

the characterisation by structural induction on the formula φ(v). The most primitive

possible for of φ is when it is a relation symbol applied to terms. If φ is not of this form,

then we may assume it is constructed from simpler formulas using the logical symbols:

∧,¬ and ∃. We consider the following cases:

• Suppose that φ(v) = R(t1(v), t2(v), . . . , tn(v)) for some relation symbol R and some

terms t1(v), . . . , tn(v) dependent on v. Then the claim is an immediate consequence

of how the interpretation RP is defined.

• Suppose φ(v) = α(v)∧β(v). By the inductive assumption, the claim holds for α(v)

and for β(v).

Let A be the set of x ∈ X such that Sx |= α(ax), and likewise let B be the set of

x ∈ X such that Sx |= β(a). It is clear that Sx |= α(ax) ∧ β(ax) = φ(ax) if and

only if x ∈ C.

By the inductive assumption, we have P |= α(a) if and only if A ∈ U . Likewise,

P |= β(a) if and only if B ∈ U . Hence, P |= φ(a) if and only if A,B ∈ U . It is
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a general fact that A,B ∈ U if and only if A ∩ B ∈ U . Therefore, the condition

P |= φ(a) is equivalent to A ∩B ∈ U , which in turn is just another way of stating

that Sx |= φ(ax) for U -many x.

• Suppose φ(v) = ¬α(v). By the inductive assumption, the claim holds for α(v). Let

A be the set of x ∈ X such that Sx |= φ(ax) if and only if x ∈ Ac.

By the inductive assumption, we have we have P |= α(a) if and only if A ∈ U .

Obviously, P |= φ(a) if and only if it is not true that P |= α(a). Hence P |= φ(a)

if and only if A 6∈ U . By a general rule, A 6∈ U if and only if Ac ∈ U . Combining

these facts, we conclude that P |= φ(a) if and only if Sx |= φ(ax) for U -many x.

• φ(v) = (∃u)α(v, u) for some α. By the inductive assumption, the claim holds for

the sentence α (with one more variable).

Suppose that P |= φ(a). Then, there exists b ∈ P such that P |= α(a, b). By

the inductive assumption, Sx |= α(ax, bx) for U -many x. Hence, we also have

Sx |= φ(ax) for U -many x, as desired.

Suppose conversely that Sx |= φ(ax) for U -many x, say for x ∈ A. Then let bx be

such that Sx |= α(ax, bx) for x ∈ A, and let bx be arbitrary for x ∈ Ac. Then we

have Sx |= α(ax, bx) for U -many x, and by the inductive assumption it follows that

P |= α(a, b). In particular, P |= ψ(a), which concludes the proof.

The reason for interest in ultraproducts, and in particular in ultrapowers, is the so called

(countable) saturation property.

Corollary 4.21. Let U ∈ Ult (N) be a non-principal ultrafilter, let T be a theory with

model S, and let P :=
∏

x∈X S be the ultrapower of S. Let {φi(v)}i∈N be a finitely

satisfiable sequence of sentences, i.e. for any finite I ⊂ N there exists a ∈ S such that

S |= φi(a) for i ∈ I. Then, there exists a ∈ P such that P |= φi(a) for all i ∈ N.

Proof. Let an ∈ S be such that S |= φi(an) for i ≤ n. Let a := (an)n∈N ∈ P . We claim

that for all i we have P |= φi(a). Indeed, for a fixed i we know that S |= φi(an) for n ≥ i,

so it fails to hold for at most finitely many i. Because U is not principal, it contains

no finite sets, and hence S |= φi(an) for U -many n. By Theorem 4.20, it follows that

P |= φi(a).

Example 4.22. Throughout, let U ∈ Ult (N) be a fixed non-principal ultrafilter. Let R

be the standard real numbers, and R∗ be the ultrapower of R with respect to U . It is

obvious that any positive integer n, there exists ε ∈ R such that 0 < ε < 1
n . Hence, there
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exists ε ∈ R∗ such that 0 < ε < 1
n for any positive integer n. Such ε is often referred

to as infinitesimal. It is fairly easy to give an example of such a number, it suffices to

take ε = (εn)n∈N ∈ R∗ with limn→∞ εn = 0. Usage of infinitesimals is the essence of

non-standard analysis.

Note that although ε is infinitesimal, it makes sense to apply all standard operations to

it. For instance, it makes sense to form expressions such as 1 + 43ε + ε2 or 1
ε . Also,

if f : R → R is any function, then we have a natural way of extending it to R∗ by

adjoining a corresponding function symbol to the language. Hence, it makes sense to

consider expressions like sin ε or f(x+ε)−f(x)
ε .

4.3 Axiom of Determinacy and Axiom of Choice

Let us recall that the construction of ultrafilters relied on the Axiom of Choice, AC.

Although in most of mainstream mathematics AC is almost unilaterally accepted, there

is still noticeable interest in axioms which are incompatible with AC. Moreover, it is worth

knowing which parts of theory really depend on Choice, and in which the dependence

is only superficial. Throughout this section, we will be working with Zermelo-Fraenkel

Axiomatization, ZF, unless explicitly noted otherwise. Most of the results discussed here

are apparently a part of mathematical folklore; an exhaustive treatment can be found

in [Grä09]. A popular and extremely readable introduction, which was the first contact

with ultrafilters for the author, can be found [Par07].

It is by no means obvious that Axiom of Choice is independent of Zermelo-Fraenkel

Axioms. In fact, it the proof of independence due to Paul Cohen uses a highly non-trivial

method of forcing. A more accessible method of proving independence from Choice is by

employing additional axiom which known to be consistent with ZF but false in ZFC, and

proving that this statement is not consistent with the result at hand. A possible choice

for this purpose is the Axiom of Determinacy which we will now introduce. First, we

need a definition, which we form in a slightly informal form.

Definition 4.23 (ω-game). An ω-game is a two-player, perfect information, determin-

istic game of length ω, played with integers.

In such game, there are two players, say A and B. They take turns choosing integers,

starting with A, knowing the choices made in previous turns. There are ω moves made,

and hence the choices made by the players result in construction of an infinite sequence

of integers, say (ai)i∈ω, where A chooses a0, B chooses a1 knowing a1, and so on. The

game is determined by a set X ⊂ ωω: if (ai)i∈ω ∈ X then A wins, else B wins.
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A strategy (for player A) is a way to assign the next move of A to a given position.

Formally, it is a collection of maps S = (Si)i∈ω such that Si : ω2i → ω. We say that A

follows the strategy S if at i-th move he chooses a2i = Si((aj)j<2i). The strategy S is

said to be winning if by following S, A wins, regardless of how B plays. Strategies for

B are defined analogously.

A game is said to be determined if either of the players has a winning strategy.

In the above definition, the requirement that the moves consist in choosing integers is not

as restrictive as it might appear. In practice, it suffices that in each turn, the number of

moves is at most countable: it is then possible to enumerate possible moves, and identify

the choice of an integer with the choice of the corresponding move.

Example 4.24. Consider a game of chess with the standard rules, but with the threefold

repetition rule replaced by the rule that if the game proceeds indefinitely, then black wins.

The resulting game is an ω-game, although admittedly not a very interesting one. The

same holds for checkers.

We are now ready to formulate the Axiom of Determinacy.

Definition 4.25. Axiom of Determinacy (AD) is the statement that each ω-game is

determined.

Justification of interest in AD lies in the following difficult theorem, which we cite with-

out proof. We will not explicitly use it, but if it wasn’t true, much of the subsequent

considerations would be moot. The inquisitive reader is referred to [Kan08] and [Jec78]

for more details.

Theorem 4.26. Axiom of Determinacy is consistent with Zermelo-Fraenkel Axioms.

Axiom of Determinacy has many surprising consequences, which are in contradiction

with the standard result derived with use of the Axiom of Choice. Again, we give not

give a proof, nor will we ever use them. Our only aim here is to give the reader a flavour

of what mathematics looks like in ZF+ AD.

Theorem 4.27. Any of the following is a consequence of the Axiom of Determinacy:

1. Every subset of R is Lebesgue measurable.

2. Every subset of R has the property of Baire.

3. Every subset of R has the perfect set property.
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4. Every uncountable subset of R has cardinality c.

5. There is no Hamel basis of the R over Q.

We will now present an elegant and non-trivial example of an ω-game.

Example 4.28 (The ultrafilter game.). Suppose that U ∈ Ult (N) be an arbitrary non-

principal ultrafilter. Consider the following game. Two players, Alice and Bob, take

turns selecting consecutive terms of a sequence (an)n∈N: first Alice selects any a0, then

Bob selects arbitrary a1 > a0, then Alice selects a2 > a1, and so on. After ω moves, the

sequence (an)n∈N is constructed. We then define sets sets A and B are as:

A :=
⋃

n∈N

[a2n−1, a2n), B :=
⋃

n∈N

[a2n, a2n+1),

where a−1 := 0 by convention. It is clear that A∩B = ∅ and A∪B = N, so exactly one

of A and B belongs to U . Alice wins if A ∈ U , Bob wins if B ∈ U .

Proposition 4.29. Suppose that U is an ultrafilter. Then the ultrafilter game described

above in Example 4.28, neither player has a winning strategy.

Proof. For a proof by contradiction, suppose that one of the players can ensure his

victory. For concreteness, suppose that it is Bob. The considerations in the case when

Alice has the winning strategy are entirely analogous.

Consider two instances of the game being played in parallel; one with Alice and Bob

generating sequence (an)n∈N, the other one with Alice′ and Bob′ generating sequence

(a′n)n∈N, where in both games Bob and Bob’ play according to the hypothesized winning

strategy. We will show that Alice and Alice′ can cooperate to win at least one of the

games. Their joint strategy is as follows.

First, Alice makes her initial move a0 arbitrarily. Bob answers with some move a1. Now,

Alice′ makes her first move a′0 := a1, to which Bob′ answers with a′1. Then, Alice plays

a2 := a′1, and waits for the move of Bob a3. Alice′ then plays a′2 := a3, and waits for

Bob to play a′3. They continue in this fashion. In general, suppose that after a number

of turns it is the time for Alices to choose a2n and a′2n. Alice moves first, choosing

a2n := a′2n−1. Then Bob plays some a2n+1. Once Bob’s move is made, Alice′ chooses

a′2n := a2n+1. After Bob′ makes his move, it is again the turn of the Alices, and the cycle

is complete.
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Note that by construction a′n = an+1 for any n ∈ N. In particular, if we denote the sets

A′, B′ in analogy to the sets A,B, we find that:

A′ :=
⋃

n∈N

[a′2n−1, a
′
2n) = [0, a′0)∪

⋃

n∈N

[a′2n+1, a
′
2n+2) = [0, a1)∪

⋃

n∈N

[a2n, a2n+1) = [0, a1)∪B

As a consequence, the symmetric difference A′△B is finite, and does not belong to U .

Because of the assumption that Bob used a winning strategy, we know that he wins the

game against Alice. It follows that B ∈ U . Since A′△B 6∈ U , we also have A′ ∈ U .

However, this means that Alice′ wins the game against Bob′, who was also assumed to

play according to winning strategy. This is a contradiction, proving that the assumption

of existence of winning strategy for Bob was false.

Corollary 4.30. Existence of non-principal ultrafilters on N is inconsistent with AD. In

particular, it is consistent with ZF that no non-principal ultrafilters exist.

Proof. Assume AD holds, and suppose that U is a non-principal ultrafilter on N. Consider

the ultrafilter game described in Example 4.28. On one hand, according to Proposition

4.29, neither of the player has a winning strategy for this game. On the other hand, this is

an ω-game, so AD implies the existence of a winning strategy. These two statements are

contradictory, so the assumption that a non-principal ultrafilter on N exists is inconsistent

with AD.

In particular, we have just re-derived the following clasically known fact. Note that we

are not dependent on any consistency results here.

Corollary 4.31. The Axiom of Choice and the Axiom of Determinacy are incompatible

within Zermelo-Fraenkel Axiomatization, in the sense that the theory ZF + AC + AD is

inconsistent.

A practical consequence of Corollary 4.30 is that there is little hope of an explicit con-

struction of an ultrafilter on N. We will not go into the details of what it precisely means

for a construction to be “explicit”, but such construction should clearly be possible carry

out within ZF. Hence, independence of existence of ultrafilters from ZF offers strong

evidence that the construction is impossible3.

3We choose not to formulate these results in a more decisive way for two reasons. Firstly, it is not
entirely certain that each “explicit” construction is formalisable within the ZF framework. Secondly, it
might possibly be the case that a construction itself is possible within ZF, and it is only the proof of
correctness that requires stronger axioms.



Bibliography

[AS03] Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences. Cambridge

University Press, Cambridge, 2003. Theory, applications, generalizations.

[BBH94] Vitaly Bergelson, Andreas Blass, and Neil Hindman. Partition theorems for

spaces of variable words. Proc. London Math. Soc. (3), 68(3):449–476, 1994.

[Ber96] Vitaly Bergelson. Ergodic Ramsey theory—an update. In Ergodic theory of

Zd actions (Warwick, 1993–1994), volume 228 of London Math. Soc. Lecture

Note Ser., pages 1–61. Cambridge Univ. Press, Cambridge, 1996.

[Ber03] Vitaly Bergelson. Minimal idempotents and ergodic Ramsey theory. In

Topics in dynamics and ergodic theory, volume 310 of London Math. Soc.

Lecture Note Ser., pages 8–39. Cambridge Univ. Press, Cambridge, 2003.

[Ber10] Vitaly Bergelson. Ultrafilters, IP sets, dynamics, and combinatorial number

theory. In Ultrafilters across mathematics, volume 530 of Contemp. Math.,

pages 23–47. Amer. Math. Soc., Providence, RI, 2010.

[BFHK89] Vitaly Bergelson, Hillel Furstenberg, Neil Hindman, and Yitzhak Katznelson.

An algebraic proof of van der Waerden’s theorem. Enseign. Math. (2), 35(3-

4):209–215, 1989.

[BFM96] Vitaly Bergelson, Hillel Furstenberg, and Randall McCutcheon. IP-sets and

polynomial recurrence. Ergodic Theory Dynam. Systems, 16(5):963–974,

1996.

[BHK96] Vitaly Bergelson, Neil Hindman, and Bryna Kra. Iterated spectra of

numbers—elementary, dynamical, and algebraic approaches. Trans. Amer.

Math. Soc., 348(3):893–912, 1996.

[BHKM06] Vitaly Bergelson, Inger J. Håland Knutson, and Randall McCutcheon. IP-

systems, generalized polynomials and recurrence. Ergodic Theory Dynam.

Systems, 26(4):999–1019, 2006.

123



Bibliography 124

[BK12] Alexandre Borovik and Mikhail G. Katz. Who gave you the Cauchy-

Weierstrass tale? The dual history of rigorous calculus. Found. Sci.,

17(3):245–276, 2012.

[BL96] V. Bergelson and A. Leibman. Polynomial extensions of van der Waerden’s

and Szemerédi’s theorems. J. Amer. Math. Soc., 9(3):725–753, 1996.

[BL07] Vitaly Bergelson and Alexander Leibman. Distribution of values of bounded

generalized polynomials. Acta Math., 198(2):155–230, 2007.

[Bla93] Andreas Blass. Ultrafilters: where topological dynamics = algebra = com-

binatorics. Topology Proc., 18:33–56, 1993.

[BM10] V. Bergelson and R. McCutcheon. Idempotent ultrafilters, multiple weak

mixing and Szemerédi’s theorem for generalized polynomials. J. Anal. Math.,

111:77–130, 2010.

[CHS05] Timothy J. Carlson, Neil Hindman, and Dona Strauss. Ramsey theoretic

consequences of some new results about algebra in the Stone-Čech compact-

ification. Integers, 5(2):A4, 26, 2005.

[Cla] Pete L. Clark. Introduction to model theory and its applications.

[CN74] W. W. Comfort and S. Negrepontis. The theory of ultrafilters. Springer-

Verlag, New York, 1974. Die Grundlehren der mathematischen Wis-

senschaften, Band 211.

[Com77a] W. W. Comfort. Some recent applications of ultrafilters to topology. In

General topology and its relations to modern analysis and algebra, IV (Proc.

Fourth Prague Topological Sympos., Prague, 1976), Part A, pages 34–42.

Lecture Notes in Math., Vol. 609. Springer, Berlin, 1977.

[Com77b] W. W. Comfort. Ultrafilters: some old and some new results. Bull. Amer.

Math. Soc., 83(4):417–455, 1977.

[Eis10] Tanja Eisner. Stability of operators and operator semigroups, volume 209

of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel,

2010.

[Ell58] Robert Ellis. Distal transformation groups. Pacific J. Math., 8:401–405,

1958.

[Eng89] Ryszard Engelking. General topology, volume 6 of Sigma Series in Pure

Mathematics. Heldermann Verlag, Berlin, second edition, 1989. Translated

from the Polish by the author.



Bibliography 125

[EW11a] Manfred Einsiedler and Thomas Ward. Ergodic theory with a view towards

number theory, volume 259 of Graduate Texts in Mathematics. Springer-

Verlag London Ltd., London, 2011.

[EW11b] Manfred Einsiedler and Thomas Ward. Ergodic theory with a view towards

number theory, volume 259 of Graduate Texts in Mathematics. Springer-

Verlag London Ltd., London, 2011.

[FK85] H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for IP-

systems and combinatorial theory. J. Analyse Math., 45:117–168, 1985.

[Fur81] H. Furstenberg. Recurrence in ergodic theory and combinatorial number the-

ory. Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lec-

tures.

[Gal] David Galvin. Ultrafilters, with applications to analysis, social choice and

combinatorics.

[Ges13] Stefan Geschke. Lecture notes on model theory. 2013.

[Gib73] Allan Gibbard. Manipulation of voting schemes: a general result. Econo-

metrica, 41:587–601, 1973.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathe-

matics. Addison-Wesley Publishing Company, Reading, MA, second edition,

1994. A foundation for computer science.

[Grä09] Erich Grädel. Logic and Games. Mathematische Grundlagen der Informatik,

RWTH Aachen. 2009.

[Grä11] Erich Grädel. Back and forth between logic and games. In Lectures in

game theory for computer scientists, pages 99–145. Cambridge Univ. Press,

Cambridge, 2011.

[GT13] Gili Golan and Boaz Tsaban. Hindman’s coloring theorem in arbitrary semi-

groups. 2013. cite arxiv:1303.3600.

[HCB73] Verner E. Hoggatt, Jr., Nanette Cox, and Marjorie Bicknell. A primer for

the Fibonacci numbers. XII. Fibonacci Quart., 11(3):317–331, 1973.

[Hin74] Neil Hindman. Finite sums from sequences within cells of a partition of N.

J. Combinatorial Theory Ser. A, 17:1–11, 1974.

[Hin05] Neil Hindman. Algebra in the Stone-Čech compactification and its applica-

tions to Ramsey theory. Sci. Math. Jpn., 62(2):321–329, 2005.



Bibliography 126

[Hod97] Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cam-

bridge, 1997.

[HS12] Neil Hindman and Dona Strauss. Algebra in the Stone-Čech compactification.

de Gruyter Textbook. Walter de Gruyter & Co., Berlin, 2012. Theory and

applications, Second revised and extended edition.

[Jec78] T.J. Jech. Set theory. Pure and Applied Mathematics. Elsevier Science, 1978.

[Kan08] A. Kanamori. The Higher Infinite: Large Cardinals in Set Theory from Their

Beginnings. Springer Monographs in Mathematics. Springer, 2008.

[Lei02] A. Leibman. Polynomial mappings of groups. Israel J. Math., 129:29–60,

2002.

[Lei12] A. Leibman. A canonical form and the distribution of values of generalized

polynomials. Israel J. Math., 188:131–176, 2012.

[Mar02] D. Marker. Model Theory: An Introduction. Graduate Texts in Mathematics.

Springer, 2002.

[Par07] Paweł Parys. Gry nieskończone. Delta — matematyka, fizyka, astronomia,

informatyka, September 2007.

[Par12] Jonathan R. Partington. An epsilon of room, I: real analysis (pages from

year three of a mathematical blog). Bull. Lond. Math. Soc., 44(1):203–205,

2012.

[Ren01] Philip J. Reny. Arrow’s theorem and the Gibbard-Satterthwaite theorem: a

unified approach. Econom. Lett., 70(1):99–105, 2001.

[Rob65] A. Robinson. Introduction to Model Theory and to the Metamathematics

of Algebras. Studies in logic and the foundations of mathematics. North-

Holland, 1965.

[Ros09] Christian Rosendal. Automatic continuity of group homomorphisms. Bull.

Symbolic Logic, 15(2):184–214, 2009.

[Sár78a] A. Sárkőzy. On difference sets of sequences of integers. I. Acta Math. Acad.

Sci. Hungar., 31(1–2):125–149, 1978.

[Sár78b] A. Sárközy. On difference sets of sequences of integers. II. Ann. Univ. Sci.

Budapest. Eötvös Sect. Math., 21:45–53 (1979), 1978.

[Sár78c] A. Sárközy. On difference sets of sequences of integers. III. Acta Math. Acad.

Sci. Hungar., 31(3-4):355–386, 1978.



Bibliography 127

[Sch07] Christian Schnell. Idempotent ultrafilters and polynomial recurrence. 2007.

cite arxiv:0711.0484Comment: 25 pages.

[Tao] Terence Tao. Arrow’s theorem.

[Tar30] Alfred Tarski. Une contribution à la théorie de la mesure. Fundamenta

Mathematicae, 15(1):42–50, 1930.

[Zec72] E. Zeckendorf. Représentation des nombres naturels par une somme de nom-

bres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41:179–

182, 1972.

[Zir12] Heinrich-Gregor Zirnstein. Formulating Szemerédi’s theorem in terms of

ultrafilters. 2012.

[ZK12] Pavel Zorin-Kranich. A nilpotent ip polynomial multiple recurrence theorem.

2012. cite arxiv:1206.0287Comment: 28 pages, v2: definition of polynomial

and proof of Theorem 2.5 changed, minor corrections.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	1 Preliminaries
	1.1 Set theory: filters and ultrafilters
	1.2 Topology: ultrafilters as a topological space
	1.3 Algebraic structure of filters and ultrafilters
	1.4 Finitely additive measures

	2 Combinatorial applications.
	2.1 Ramsey theorem
	2.2 IP-sets and idempotent ultrafilters
	2.3 C-sets and minimal idempotent ultrafilters

	3 Applications in ergodic theory.
	3.1 Polynomials and discrete derivative
	3.2 Polynomial maps to the torus
	3.3 Almost polynomials
	3.4 Integer almost polynomials
	3.5 Dynamical applications
	3.6 Some classical results

	4 Applications in voting & model theory
	4.1 Voting & Arrow's theorem
	4.2 Ultrapowers
	4.3 Axiom of Determinacy and Axiom of Choice

	Bibliography
	Index

