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Abstract. We show how we can apply ultrapower methods to density prob-
lems in additive/combinatorial number theory.

1. Introduction and Background Information

In the past decade, the methods from nonstandard analysis have been success-
fully applied to density problems to obtain many results in additive/combinatorial
number theory (cf. [BJ, Ji1, Ji2, Ji3, Ji4, Ji5, Ji6, Ji7, Ji8, JK]). Since a
nonstandard universe can be constructed by taking an ultrapower of the standard
universe, some of the methods used in these papers can also been developed “alge-
braically” through ultrapower methods without requiring too much knowledge from
mathematical logic. In this article, we introduce some of these results through ul-
trapower methods. In particular, we present results related to Kneser’s Theorem
and Plünnecke’s Theorem.

Let N be the set of all non-negative integers. To measure the size of a finite set
A ⊆ N, one can count the number of elements in A, known as the cardinality of A
and denoted by |A|. If a is the least element in A and b is the greatest element in
A, one can also measure the density of A relative to [a, b] by the ratio |A|

b−a+1 . When
A is infinite, the cardinality of A is no longer useful for distinguishing the size of
A from other infinite sets. But the density of a finite set can be extended to the
density of A as the asymptotic trend of the densities of A∩[an, bn] where [an, bn] is a
sequence of finite intervals of non-negative integers with limn→∞(bn−an) = ∞. We
can compare the “sizes” of two infinite subsets of N by comparing their densities.

Let a, b ∈ N. We will denote [a, b] exclusively for the interval of integers between
a and b including a and b. The following commonly used densities are under our
consideration. Let A ⊆ N. For a, b ∈ N let A(a, b) = |A ∩ [a, b]| and A(b) =
A(1, b). The Shnirel’man density σ(A), the lower asymptotic density d(A), the
upper asymptotic density d(A), and the upper Banach density BD(A) of A are
defined by

σ(A) = inf
n≥1

A(n)
n

,
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d(A) = lim inf
n→∞

A(n)
n

,

d(A) = lim sup
n→∞

A(n)
n

, and

BD(A) = lim
n→∞

sup
k∈N

A(k, k + n− 1)
n

.

Clearly, these densities have the following order by their magnitude.

0 ≤ σ(A) ≤ d(A) ≤ d(A) ≤ BD(A) ≤ 1

for every A ⊆ N. The order of these densities by their popularity among many
number theorists seems to be opposite of their magnitudes. Upper Banach density
is especially unfamiliar to some number theorists. However, the concept of upper
Banach density bears the most resemblance among these densities to the concept
of a probability measure space. For example, in [Fu, Lemma 3.17] Furstenberg
established a correspondence principle between upper Banach density and proba-
bility measure and used it to prove many interesting number theoretic results. The
author has also developed a general scheme, which establishes a connection between
upper Banach density and Shnirel’man density/lower asymptotic density through
Loeb probability measure spaces, which enable us to generate many new theorems
about upper Banach density (cf. [Ji2]).

Shnirel’man density is probably the most popular density among many number
theorists. There have been many important classical theorems about Shnirel’man
density.

1.1. Kneser’s Theorem. Shnirel’man in 1930 proved a theorem that for any
A,B ⊆ N, if 0 ∈ A and 1 ∈ B, then

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B)

where A + B = {a + b : a ∈ A and b ∈ B} (cf. [HR, Theorem 1 on page 3] or
[Na1, Theorem 7.5 on page 193]). Let P be the set of all prime numbers and
A = P ∪ {0, 1}. By the theorem above Shnirel’man showed that there is a positive
integer h such that σ(hA) = 1 where

hA = A + A + · · ·+ A︸ ︷︷ ︸
h

.

This result is the first significant advancement on the famous Goldbach Conjecture.
It shows that there is a fixed positive integer h such that every positive integer
greater than 1 is the sum of at most h prime numbers.

Mann in 1942 improved Shnirel’man’s Theorem by showing that if 0 ∈ A ∩B,
then σ(A + B) ≥ min{1, σ(A) + σ(B)} (cf. [HR, Theorem 3 on page 5]). Mann’s
theorem was included in Khinchin’s little book “Three pearls of number theory” as
one of the three pearls (cf. [Kh]).

It is often the case that after a theorem about Shnirel’man density is proven,
people want to know whether it can be generalized to a theorem about lower asymp-
totic density. However, one cannot replace σ by d in either Shnirel’man’s Theorem
or in Mann’s Theorem. Let 2k2 < g and A = [0, k − 1] + {gn : n ∈ N}. A is the
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union of k arithmetic progressions with a common difference g. Clearly, d(A) = k
g

and

d(A + A) =
2k − 1

g
= 2d(A)− 1

g
< 2d(A)−

(
k

g

)2

= 2d(A)− d(A)2 < 2d(A) ≤ 1.

However, this counterexample is essentially the only reason why σ cannot be re-
placed by d in Shnirel’man’s Theorem or in Mann’s Theorem. In 1953 Kneser
proved the following theorem.

Theorem 1.1 (M. Kneser, 1953). Let A,B ⊆ N such that d(A + B) < d(A) +
d(B), then there exist positive integer d and G ⊆ [0, d− 1] such that

(1) d(A + B) ≥ d(A) + d(B)− 1
d ,

(2) A + B ⊆ G + {dn : n ∈ N}, and
(3) (G + {dn : n ∈ N}) \ (A + B) is finite.

The proof of Theorem 1.1 can be found in [HR, page 51–75]1. It is not difficult
to prove that Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2. Let A,B ⊆ N such that d(A + B) < d(A) + d(B). Then there
exist positive integer d and sets F, F ′ ⊆ [0, d− 1] such that

(1) A ⊆ F + {dn : n ∈ N}, B ⊆ F ′ + {dn : n ∈ N}, and
(2) d(A) + d(B) > |F |+|F ′|−1

d .

Theorem 1.2 clearly shows that if d(A+B) < d(A) +d(B), then each of A and
B must be large subsets of the union of arithmetic progressions with a common
difference d. This formulation of Kneser’s Theorem is in the same style as in the so
called Freiman’s inverse problem for finite sets, which says that if A + B are small,
then A and B must have some arithmetic structure (cf. [Na2]).

We will present theorems about upper Banach density parallel to Kneser’s
Theorem in §2 and §3.

1.2. Plünnecke’s Theorem. A set B ⊆ N is called an essential component
if σ(A + B) > σ(A) whenever A ⊆ N and 0 < σ(A) < 1. Since the early time
of the last century people have been interested in finding which set B ⊆ N can
be an essential component (cf. [HR]). By Shnirel’man’s Theorem [HR, page 3] it
can easily be seen that if 0 ∈ B and σ(B) > 0, then B is an essential component.
However, even if σ(B) = 0, B can still be an essential component. A set B ⊆ N is
called a basis of order h if hB = N. Let h > 1. Note that B is a basis of order h iff
σ(hB) = 1. If B is a basis of some finite order, then B is an essential component
although such B may have Shnirel’man density 0. For example, B = {n2 : n ∈ N}
is a basis of order 4 by Lagrange’s Theorem and σ(B) = 0. In 1937 Erdös proved
that if B is a basis of order h, then

(1.1) σ(A + B) ≥ σ(A) +
1

2h
·σ(A) (1− σ(A)) .

A short time later, Landau noticed that in Erdös’ proof h can be replaced by average
order h∗ (cf. [HR, page 10]). Let B ⊆ N be a basis of order h. For each m ∈ N let

1Kneser’s Theorem actually deals with the sum of multiple sets. We state only the version
for the sum of two sets here for simplicity.
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hB(m) = min{h′ ∈ N : m ∈ h′B}. The average order h∗ of B is defined by

h∗ = sup
n≥1

1
n

n∑
m=1

hB(m).

It is easy to see that h∗ ≤ h ≤ 2h∗ (cf. [HR, page 12]). In 1938 Rohrbach proved
a theorem for lower asymptotic density parallel to Erdös–Landau’s result. A set
B ⊆ N is called an asymptotic basis of order h if hB contains all sufficiently large
positive integers. The average asymptotic order h∗ of an asymptotic basis is defined
by

h∗ = lim sup
n→∞

1
n

n∑
m=1

hB(m)

where hB(m) is defined to be 0 if m 6∈ hB. Rohrbach proved (cf. [HR, page 45])
that if B is an asymptotic basis of average asymptotic order h∗, then

(1.2) d(A + B) ≥ d(A) +
1

2h∗
·d(A) (1− d(A)) .

In 1970 Plünnecke obtained the following significant improvement of Erdös–
Landau’s result (cf. [Pl] or [Na2, page 225]).

Theorem 1.3 (Plünnecke, 1970). If B is a basis of order h, then for every
A ⊆ N

(1.3) σ(A + B) ≥ σ(A)1−
1
h .

Since it is easy to show that x1− 1
h ≥ x+ 1

h·x(1−x) for any h > 0 and 0 ≤ x ≤ 1
by elementary calculus, Plünnecke’s Theorem implies (1.1) even when 1

2h is replaced
by 1

h . Since the average order h∗ of a basis B is less than or equal to 2 times the
order h of B, Plünnecke’s Theorem also implies (1.1) when h is replaced by h∗.

However, we cannot replace σ by d and replace the order h by the average
asymptotic order h∗ in (1.3) as Rohrbach did in (1.2) to Erdös Theorem (1.1).
For example, let A = {1 + 3n : n ∈ N} and B = {i + 3n : i = 0, 1 and n ∈ N}.
Then A + B = {i + 3n : i = 1, 2 and n ∈ N}, σ(A) = d(A) = 1

3 and σ(A + B) =
d(A + B) = 2

3 . It is easy to check that B is a basis of order h = 2, average order
h∗ = 3

2 , and average asymptotic order h∗∗ = 4
3 . Note that

d(A)1−
1

h∗∗ =
(

1
3

) 1
4

> σ(A)1−
1

h∗ = d(A)1−
1

h∗

=
(

1
3

) 1
3

>
2
3

= σ(A + B) = d(A + B).

We will discuss the generalization of Plünnecke’s Theorem to other densities in
§2 and §3.

2. Level One Applications

In this section we will introduce ultrapower methods and develop an scheme,
which allows us to obtain a theorem about upper Banach density parallel to every
existing theorem about Shnirel’man density or lower asymptotic density without
making too much effort.
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2.1. Ultrapower of R.

Definition 2.1. A collection F of subsets of N is called a filter if the following
are true:

(1) ∅ 6∈ F and N ∈ F ,
(2) A ∩B ∈ F for any A,B ∈ F ,
(3) A ∈ F and A ⊆ B imply B ∈ F for any A,B ⊆ N.

The filter F is called a non-principal ultrafilter if
(4) {n} 6∈ F for each n ∈ N,
(5) for every A ⊆ N, either A ∈ F or N \A ∈ F .

The existence of a non-principal ultrafilter on N is guaranteed by the axiom of
choice. From now on we fix a non-principal ultrafilter F on N. We assume that
the reader knows the basic properties of ultrafilters. For example, we assume the
reader knows that the intersection of finitely many sets Ai ∈ F is again in F and
every cofinite subset of N is in F .

Definition 2.2. Given any f, g ∈ RN, let
(1) f ∼ g iff {n : f(n) = g(n)} ∈ F ,
(2) [f ] = {g ∈ RN : g ∼ f}, and
(3) ∗R = RN/F = {[f ] : f ∈ RN}.

It is easy to check that“∼” defined in (1) above is an equivalence relation.
Hence [f ] is an equivalence class in (2) above and ∗R is the set of all equivalence
classes. For each A ⊆ R let ∗A = AN/F = {[f ] : f ∈ AN}. A set B ⊆ ∗R is
called internal if B is an ultraproduct of a sequence of sets Bn ∈ R, i.e., B =
Πn∈NBn/F = {[f ] : f ∈ RN and f(n) ∈ Bn for every n ∈ N}. For each a ∈ R let
fa be the constant function with value a. If we identify each a ∈ R with [fa] ∈ ∗R,
we can view R as a subset of ∗R. We can extend ≤, +, ·, etc. from R to ∗R.

Definition 2.3. Given any [f ], [g] ∈ ∗R, let
(1) [f ] ≤ [g] iff {n : f(n) ≤ g(n)} ∈ F ,
(2) [f ] + [g] = [f + g], and
(3) [f ]·[g] = [f ·g]

where f + g and f · g are ordinary addition and multiplication of two functions. By
the same idea we can extend any relation or function on R to a relation or function
on ∗R. For example, if F (x1, x2, . . . , xk) is a k–dimensional function from Rk to R,
then we can extend F to a function from ∗Rk to ∗R by letting F ([g1], [g2], . . . , [gk]) be
the equivalence class [f̄ ] of the function f̄ where f̄(n) = F (g1(n), g2(n), . . . , gk(n)).
Note that if B is the ultraproduct of a sequence of finite sets Bn ⊆ R, then the
cardinality of B is defined by |B| = [f ] where f(n) = |Bn|.

We can also extend the boolean operations among subsets of R to internal
subsets of ∗R.

Definition 2.4. Let A = Πn∈NAn/F and B = Πn∈NBn/F be two internal
subsets of ∗R and [f ] ∈ ∗R. Define

(1) [f ] ∈ A if {n ∈ N : f(n) ∈ An} ∈ F ,
(2) A ⊆ B if {n ∈ N : An ⊆ Bn} ∈ F ,
(3) A ∩B = Πn∈N(An ∩Bn)/F ,
(4) A ∪B = Πn∈N(An ∪Bn)/F , and
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(5) A \B = Πn∈N(An \Bn)/F .

Proposition 2.5. The relation ≤ is a linear order on ∗R.

Proof. Let [f ], [g] ∈ ∗R. Then either {n ∈ N : f(n) ≤ g(n)} ∈ F or
{n ∈ N : f(n) > g(n)} ∈ F by (5) of Definition 2.1. Hence either [f ] ≤ [g] or
[f ] > [g] by (1) of Definition 2.3. �

Proposition 2.6. If [f ], [g] ∈ ∗Z such that [f ] ≤ [g] ≤ [f ] + k for some k ∈ N
(k is the equivalence class of a constant function with value k), then there is m ∈ N
such that m ≤ k and [g] = [f ] + m.

Proof. Let
X = {n ∈ N : f(n) ≤ g(n) ≤ f(n) + k}

= {n ∈ N : f(n) ≤ g(n)} ∩ {n ∈ N : g(n) ≤ f(n) + k} ∈ F .

Since X is the union of k + 1 sets Xi = {n ∈ N : g(n) = f(n) + i} for i = 0, 1, . . . , k,
then one of these Xi’s must be in F because otherwise X would not be in F . Let
m ∈ N with m ≤ k such that Xm ∈ F . This shows that [g] = [f ] + m. �

Proposition 2.7. If A,B ⊆ R, then ∗(A + B) = ∗A + ∗B.

Proof. Let [f ] ∈ ∗(A + B). For each n ∈ N choose an ∈ A and bn ∈ B such
that an + bn = f(n). Define g1(n) = an and g2(n) = bn. Then f = g1 + g2. Hence
[f ] = [g1] + [g2] ∈ ∗A + ∗B. For each [g1] + [g2] ∈ ∗A + ∗B let f(n) = g1(n) + g2(n).
Then {n : f(n) ∈ A + B} ∈ F . Hence [g1] + [g2] = [f ] ∈ ∗(A + B). �

From Proposition 2.6 it is not hard to check that ( ∗Z; ≤, +, ·, 0, 1) is a discrete
ordered ring containing (Z; ≤, +, ·, 0, 1) as a subring. By Proposition 2.6 again we
have that if [f ] ∈ ∗N and [f ] 6= k for any k ∈ N, then [f ] > k for every k ∈ N. We
call [f ] ∈ ∗N \ N a hyperfinite integer. For example, if Id is the identity function
Id(n) = n for every n ∈ N, then [Id] is a hyperfinite integer. For each [f ] ∈ ∗Z,
the map k 7→ [f ] + k is an order–isomorphic embedding from Z onto [f ] + Z ⊆ ∗Z.
Therefore, for a set A ⊆ N and [f ] ∈ ∗N we can define the densities of ∗A on [f ]+N.

2.2. Densities in a (possibly remote) copy of N.

Definition 2.8. Let A ⊆ N and [f ] ∈ ∗N. The Shnirel’man density of ∗A in
[f ] + N is defined by

σ[f ](∗A) = inf
i∈N,i≥1

∗A([f ] + 1, [f ] + i)
i

and the lower asymptotic density of ∗A in [f ] + N is defined by

d[f ](
∗A) = lim inf

i∈N & i→∞

∗A([f ] + 1, [f ] + i)
i

.

Recall that ∗A([f ], [g]) =
∣∣∏

n∈N(A ∩ [f(n), g(n)])/F
∣∣ = [h] where h(n) = A(f(n), g(n))

for any [f ], [g] ∈ ∗N. Note that σ[f ](∗A) = σ(A) and d[f ](
∗A) = d(A) if [f ] = 0.

If 0 ≤ [g] − [f ] ∈ N, then ∗A([f ], [g]) is also in N. The next theorem, although
straightforward, is the main tool in this section.

Theorem 2.9. Let A ⊆ N and α ∈ R. Then the following are equivalent.
(1) BD(A) ≥ α.
(2) There is [f ] ∈ ∗N such that σ[f ](∗A) ≥ α.
(3) There is [f ] ∈ ∗N such that d[f ](

∗A) ≥ α.
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Proof. We first prove that (1) implies (2). Let [an, bn] ⊆ N be such that

lim
n→∞

(bn − an) = ∞ and lim
n→∞

A(an, bn)
bn − an + 1

= BD(A) ≥ α.

We intend to find {ck, dk ∈ N : k ∈ N} such that

lim
k→∞

(dk − ck) = ∞ and
A(ck + 1, ck + i)

i
> α− 1

k

for every i ∈ [1, dk − ck], which will imply that σ[f ](∗A) ≥ α where f is the function
with f(k) = ck.

For positive integer m, k ∈ N let

lm,k = max
{

x ∈ N : ∃c ∈ [am, bm]∀i ∈ [1, x]
(

A(c + 1, c + i)
i

> α− 1
k

)}
.

Claim For every positive integer k, the sequence {lm,k : m ∈ N} is upper
unbounded in N.

Proof of Claim Suppose the claim is not true. We derive a contradiction.
Let k0 be a positive integer such that lm,k0 ’s are bounded by a positive integer
L ∈ N. Let m be large enough so that

A(am, bm)
bm − am + 1

> α− 1
2k0

and
L

bm − am + 1
<

1
2k0

.

We define a finite sequence am − 1 = d0 < d1 < · · · < dt ≤ bm such that

A(di + 1, di+1)
di+1 − di

≤ α− 1
k0

and bm − dt ≤ L.

Suppose we have found di with bm − di > L. Let

S =
{

x ∈ [di + 1, bm] :
A(di + 1, x)

x− di
≤ α− 1

k0

}
.

S 6= ∅ because lm,k0 < L. Let di+1 = max S. By induction we can define di’s until
the last term dt > bm − L. Since

A(am, bm)
bm − am + 1

≤
∑t−1

i=0 A(di + 1, di+1) + A(dt + 1, bm)
bm − am + 1

≤
(

α− 1
k0

) ∑t−1
i=0(di+1 − di)
bm − am + 1

+
L

bm − am + 1

≤ α− 1
k0

+
1

2k0
= α− 1

2k0
,

which contradicts the assumption that A(am,bm)
bm−am+1 > α − 1

2k0
. This completes the

proof of the claim.

By the claim we can choose a positive integer mk for each positive integer k
such that limk→∞ lmk,k = ∞ (dk = ck + lmk,k is the number mentioned in the
beginning of this proof). Let f(k) = ck be such that

A(ck + 1, ck + i)
i

> α− 1
k
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for every i ∈ [1, lmk,k]. We need to show that σ[f ](∗A) ≥ α. Given i ∈ N with i ≥ 1.
Since A(f(k) + 1, f(k) + i) for all k ∈ N has at most i + 1 possible values and

A(f(k) + 1, f(k) + i)
i

> α− 1
k

whenever k is large enough such that i < lmk,k, then there is Ki ∈ N such that

A(f(k) + 1, f(k) + i)
i

≥ α

for every k > Ki. Hence{
k ∈ N :

A(f(k) + 1, f(k) + i)
i

≥ α

}
∈ F .

This shows that
∗A([f ] + 1, [f ] + i)

i
≥ α

is true for any positive integer i ∈ N. Therefore, σ[f ](∗A) ≥ α.

It is trivial that (2) implies (3).

We now show that (3) implies (1). To prove BD(A) ≥ α it suffices to show that
for any positive integer k ∈ N there exists an interval [a, b] ⊆ N such that b− a > k
and

A(a, b)
b− a + 1

> α− 1
k

.

Fix a positive integer k. Since d[f ](
∗A) ≥ α, then there is a positive integer m > k

such that
∗A([f ] + 1, [f ] + m)

m
> α− 1

k
.

This implies that

S =
{

n ∈ N :
A(f(n) + 1, f(n) + m)

m
> α− 1

k

}
∈ F .

In particular, S 6= ∅. Let n ∈ S, a = f(n) + 1, and b = f(n) +m. The interval [a, b]
is what we are looking for. This completes the proof of the theorem �

Theorem 2.9 is a bridge connecting upper Banach density with Shnirel’man
density and lower asymptotic density through ultrapower methods. By this con-
nection we have found many theorems about upper Banach density, each of which
is parallel to an existing theorem about Shnirel’man density or lower asymptotic
density (cf. [Ji2, Ji3]). Next we derive two theorems about upper Banach density
to demonstrate the idea.

2.3. When Kneser and Plünnecke meet Banach. The first theorem ap-
peared in [Ji2] and is parallel to Plünnecke’s Theorem.

Definition 2.10. Let B ⊆ N. B is called a piecewise basis of order h if there
exists a sequence {ck : k ∈ N} of positive integers such that

h·(B ∩ [ck, ck + k]) ⊇ [hck, hck + k].
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Note that if B is a basis of order h, then B is a piecewise basis of order at most
h because we can choose ck = 0. Note also that h·(B ∩ [ck, ck + k]) ⊇ [hck, hck + k]
is equivalent to

h·((B ∩ [ck, ck + k])− ck) ⊇ [0, k].

Theorem 2.11. Let A,B ⊆ N. If B is a piecewise basis of order h, then

BD(A + B) ≥ BD(A)1−
1
h .

Proof. Let {ck : k ∈ N} be the sequence associated with B in Definition 2.10.
Let g(k) = ck and Id be the identity function on N. Then we have that

h·(∗B ∩ [[g], [g] + [Id]]) ⊇ [h[g], h[g] + [Id]].

In particular, we have h · ((∗B ∩ ([g] + N)) − [g]) ⊇ N. This shows that the set
(∗B ∩ ([g] + N))− [g] is a basis of order h.

Let BD(A) = α. By Theorem 2.9 there is [f ] ∈ ∗N such that σ[f ](∗A) = α.
This is equivalent to the condition that σ((∗A ∩ ([f ] + N))− [f ]) = α.

By Plünnecke’s Theorem we have that

σ[f ]+[g](∗(A + B)) ≥ σ(((∗A + ∗B) ∩ ([f ] + [g] + N))− ([f ] + [g]))

≥ σ(((∗A ∩ ([f ] + N))− [f ]) + ((∗B ∩ ([g] + N))− [g])) ≥ α1− 1
h .

By Theorem 2.9 again we have BD(A + B) ≥ α1− 1
h . This completes the proof. �

The second theorem appeared in [Ji3] and is parallel to Kneser’s Theorem.

Theorem 2.12. Let A,B ⊆ N. If BD(A + B) < BD(A) + BD(B), then there
exists a positive integer d, a set G ⊆ [0, d−1], and a sequence {[ak, bk] ⊆ N : k ∈ N}
of intervals such that

(1) BD(A + B) ≥ |G|
d ≥ BD(A) + BD(B)− 1

d ,
(2) limk→∞(bk − ak) = ∞, and
(3) (A + B) ∩ [ak, bk] ⊇ (ak + G + {dn : n ∈ N}) ∩ [ak, bk].

Proof. Let BD(A) = α and BD(B) = β. By Theorem 2.9 there are [f ], [g] ∈
∗N such that d[f ](

∗A) = α and d[g](
∗B) = β. By Theorem 2.9 again, if d[f ]+[g](

∗A +
∗B) ≥ α + β, then BD(A + B) ≥ α + β, contradicting the assumption, so we have
that d[f ]+[g](

∗A+ ∗B) < α +β. By Kneser’s Theorem we can find a positive integer
d and a set G ⊆ [0, d− 1] such that

d[f ]+[g](
∗(A + B)) = d[f ]+[g](

∗A + ∗B)

≥ d(((∗A− [f ]) ∩ N) + ((∗B − [g]) ∩ N))

=
|G|
d

≥ α + β − 1
d
,

which implies BD(A + B) ≥ |G|
d ≥ α + β − 1

d , and

(∗A + ∗B) ∩ ([f ] + [g] + N) ⊇ (∗A ∩ ([f ] + N)) + (∗B ∩ ([g] + N))
⊇ ((∗A ∩ ([f ] + N)) + (∗B ∩ ([g] + N))) ∩ ([f ] + [g] + m + N)
= ([f ] + [g] + G + {dn : n ∈ N}) ∩ ([f ] + [g] + m + N)

for some m ∈ N. Let k ∈ N. Since

(∗A + ∗B) ∩ [[f ] + [g] + m, [f ] + [g] + m + k]
⊇ ([f ] + [g] + G + {dn : n ∈ N}) ∩ [[f ] + [g] + m, [f ] + [g] + m + k],
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there exists n ∈ N such that

(A + B) ∩ [f(n) + g(n) + m, f(n) + g(n) + m + k]
⊇ (f(n) + g(n) + G + {dn : n ∈ N}) ∩ [f(n) + g(n) + m, f(n) + g(n) + m + k].

Let ak = f(n) + g(n) + m and bk = f(n) + g(n) + m + k. Clearly, the sequence
{[ak, bk] : k ∈ N} is the sequence we desired. This completes the proof. �

3. Level Two Applications

In §2 we developed a general way of deriving a theorem about upper Banach
density parallel to each existing theorem about Shnirel’man density or lower as-
ymptotic density via Theorem 2.9. However, a simple application of Theorem 2.9
often results in a theorem, which in some sense is not optimal. For example in
Theorem 2.12 the structure of A + B is characterized only on a small portion of N.
The characterization of the structure of A+B can be made on a much larger set. In
Theorem 2.11 the definition of a piecewise basis seems artificial. In this section we
will discuss whether Theorem 1.3 can be generalized to lower asymptotic density,
upper asymptotic density, and upper Banach density. The theorem about upper
Banach density is in fact a significant improvement of Theorem 2.11. The proofs
of the results in this section can be found in [Ji7] and [Ji8].

Although the ultrapower method introduced in §2 works fine, it is more con-
venient to work under the full strength of nonstandard analysis. In the ultrapower
method, one might view [f ] not as a number but as a function (more precisely, as
an equivalence class containing f). But from model theoretic point of view [f ] is
just a single point in the extension ∗R of R. People probably do not consider a
real number as a sequence of rational numbers when working on real analysis prob-
lems although the Cauchy definition of a real is an equivalence class of a Cauchy
sequence of rational numbers. If the reader is interested in mathematical logic, the
 Los’ Theorem should also be a great help.

For constructing a nonstandard universe we first take R as a set of atoms.
Then let V0 = R, Vn+1 = Vn ∪ P(Vn), and V =

⋃N̄
n=0 Vn, where P is power

set operator, for some sufficiently large positive integer N̄ . We call (V,∈) the
standard universe. The standard universe is large enough to contain every possible
mathematical object involved in a standard mathematical argument. For example
≤ on R is a set of ordered pairs. Hence ≤ is an element in V3. The nonstandard
universe ∗V is the ultrapower of V modulo F . For each [f ], [g] ∈ ∗V define [f ] ∈ [g]
if the set {n ∈ N : f(n) ∈ g(n)} is in F . Let i : V 7→ ∗V be such that i(a) = [fa]
where fa is the constant function on N with value a.  Los’ Theorem says that for
any first–order formula ϕ(x1, x2, . . . , xk) in the language of one binary relation ∈
and any [f (1)], [f (2)], . . . , [f (k)] ∈ ∗V , ϕ([f (1)], [f (2)], . . . , [f (k)]) is true in ∗V if and
only if

{n ∈ N : ϕ(f (1)(n), f (2)(n), . . . , f (k)(n)) is true in V } ∈ F .

 Los’ Theorem implies the famous transfer principle, which says that for any first–
order formula ϕ(x1, x2, . . . , xk) in the language of one binary relation ∈ and for
any a1, a2, . . . , an ∈ V the sentence ϕ(a1, a2, . . . , ak) is true in (V,∈) if and only if
ϕ([fa1 ], [fa2 ], . . . , [fak

]) is true in (∗V,∈).
The proofs in [Ji7] and [Ji8] heavily use nonstandard analysis techniques. We

do not intend to include those proofs here. Instead we will explain the general ideas
of the proofs.
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3.1. Kneser meets Banach again. The following theorem improves Theo-
rem 2.12. The proof of the following theorem can be found in [Ji7].

Theorem 3.1. Let A,B ⊆ N be such that BD(A) = α, BD(B) = β, and
BD(A + B) < α + β. Then there are positive g ∈ N and G ⊆ [0, g − 1] such that

(1) BD(A + B) ≥ α + β − 1
g ,

(2) A + B ⊆ G + gN,
(3) if

{[
a
(i)
n , b

(i)
n

]
: n ∈ N

}
for i = 1, 2 are two sequences of intervals such that

lim
n→∞

(
b(i)
n − a(i)

n

)
= ∞,

lim
n→∞

A
(
a
(1)
n , b

(1)
n

)
b
(1)
n − a

(1)
n + 1

= α, lim
n→∞

B
(
a
(2)
n , b

(2)
n

)
b
(2)
n − a

(2)
n + 1

= β,

and

0 < lim inf
n→∞

b
(1)
n − a

(1)
n

b
(2)
n − a

(2)
n

≤ lim sup
n→∞

b
(1)
n − a

(1)
n

b
(2)
n − a

(2)
n

< ∞,

then there exist
[
c
(i)
n , d

(i)
n

]
⊆

[
a
(i)
n , b

(i)
n

]
for each n ∈ N and i = 1, 2 such

that

lim
n→∞

d
(i)
n − c(i)

b
(i)
n − a

(i)
n

= 1

and

(A + B) ∩
[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
= (G + gN) ∩

[
c(1)
n + c(2)

n , d(1)
n + d(2)

n

]
.

Remark 3.2. (1) The condition

0 < lim inf
n→∞

b
(1)
n − a

(1)
n

b
(2)
n − a

(2)
n

≤ lim sup
n→∞

b
(1)
n − a

(1)
n

b
(2)
n − a

(2)
n

< ∞,

in (3) of Theorem 3.1 is necessary because otherwise one can choose

A =
∞⋃

n=1

([
2(2n)2 , 1.5× 2(2n)2 − 2(2n−1)2+1

]
∪

[
1.5× 2(2n)2 + 2(2n−1)2+1, 2× 2(2n)2

])
,

B =
∞⋃

n=1

([
2(2n+1)2 , 1.5× 2(2n+1)2 − 2(2n)2+1

]
∪

[
1.5× 2(2n+1)2 + 2(2n)2+1, 2× 2(2n+1)2

])
.

Then BD(A) = α = BD(B) = β = 1, which trivially implies BD(A+B) <

BD(A) + BD(B). On the other hand, let a
(1)
n = 2(2n)2 , b

(1)
n = 2 × 2(2n)2 ,

a
(2)
n = 2(2n+1)2 , and b

(2)
n = 2 × 2(2n+1)2 . Then all conditions of Theorem

3.1 except the one mentioned above are true. However, the structure
described in the last line of (3) in Theorem 3.1 cannot be true because
(A + B) ∩

[
a
(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
has large gaps in the middle of the

interval.
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(2) Let A achieve its upper Banach density on a sequence of intervals
[
a
(1)
n , b

(1)
n

]
and B achieve its upper Banach density on a sequence of intervals

[
a
(2)
n , b

(2)
n

]
.

We probably shouldn’t hope to characterize the structure of A+B outside
of the intervals

[
a
(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
because the upper Banach densi-

ties of A and B would not change if we delete all elements of A outside
of

[
a
(1)
n , b

(1)
n

]
and delete all elements of B outside of

[
a
(2)
n , b

(2)
n

]
. On the

other hand, we cannot hope to replace c(i), d(i) by a(i), b(i) in the last line
of Theorem 3.1 by the same reason as in the Kneser’s Theorem where the
structure of A + B is characterized not in N but in N \ [0,m] for some
m ∈ N. This is why in Theorem 3.1 the structure of A+B is characterized
on

[
c
(1)
n + c

(2)
n , d

(1)
n + d

(2)
n

]
instead.

(3) The proof of Theorem 3.1 is much more complicated than the proof of
Theorem 2.12. In order to prove Theorem 3.1 one should improve Theorem
2.9 first. In fact BD(A) ≥ α implies d[f ](

∗A) ≥ α for many f ’s.

Let [f ] < [g] be in ∗Z such that [g] − [f ] is a hyperfinite integer. For each
internal subset C of [[f ], [g]] the cardinality of C is an element in ∗N. Define
µ(C) = |C|

[g]−[f ]+1 . Then 0 ≤ µ(C) ≤ 1 and µ(C) ∈ ∗R. Note that for every r ∈ ∗R,
0 ≤ r ≤ 1 the set Sr of all standard reals s ∈ R with s < r has the least upper
bound β in R. It is not hard to see that |r − β| < 1

n for every n ∈ N. We say that
r and β are infinitesimally close. Note also that such β is unique. We call β the
standard part of r and denote st(r) = β. Hence st◦µ maps every internal subset
C ⊆ [[f ], [g]] to a standard real number between 0 and 1. In fact st◦µ is a finitely
additive probability measure on the algebra of all internal subsets of [[f ], [g]]. For
any X ⊆ [[f ], [g]] we can use st◦µ to define lower measure and upper measure of
X and call X measurable if the lower measure and upper measure of X coincide.
By measure–completion process st◦µ can be extended to a countably additive,
complete, atom-less probability measure µL on the σ–algebra of all measurable
subsets of [[f ], [g]]. This probability space is called Loeb space. With the idea of
Loeb space together with Birkhoff Ergodic Theorem we can improve Theorem 2.9
in the following theorem (cf. [Ji2]).

Theorem 3.3. Let A ⊆ N be such that BD(A) = α > 0. Suppose [an, bn] ⊆ N
such that

lim
n→∞

(bn − an) = ∞ and lim
n→∞

A(an, bn)
bn − an + 1

= α.

Let [f ] be a hyperfinite integer. Then [a[f ], b[f ]] is an interval of hyperfinite length
and for µL–almost all x ∈ [a[f ], b[f ]] we have dx(∗A) = α where µL is the Loeb
probability measure on [a[f ], b[f ]]. Note that a[f ] is the equivalence class [g] where
g(n) = af(n).

By combining Theorem 3.3 and Kneser’s Theorem we can pin down the struc-
ture of A + B in the interval

[
a
(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
for each hyperfinite integer

n. It takes a small trick to show that the structures of A + B in the intervals[
a
(1)
n + a

(2)
n , b

(1)
n + b

(2)
n

]
for all hyperfinite integers n are actually coherent. Hence

we can now characterize the structure of A+B in the union of all these hyperfinite
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intervals. Finally, by the transfer principle we pull down the nonstandard result to
the standard world and obtain Theorem 3.1.

3.2. Plünnecke meets Banach again. It is not hard to show that if B is a
basis of order h, then d(A + B) ≥ d(A)1−

1
h . However, d(A + B) ≥ d(A)1−

1
h for B

being an asymptotic basis of order h, although true, is not a direct consequence of
Theorem 1.3. It is in fact a corollary of Theorem 3.4 which we will present below.

Recall that in Theorem 1.3 we cannot replace σ by d and replace a basis B
of order h by an asymptotic basis of average asymptotic order h∗. What kind of
generalization of Theorem 1.3 to lower asymptotic density can we have?

Let B ⊆ N. The set B is called a lower asymptotic basis of order h if

d(hB) = 1,

the set B is called an upper asymptotic basis of order h if

d(hB) = 1,

and the set B is called an upper Banach basis of order h if

BD(hB) = 1.

Recall that if h > 1, then B is a basis of order h iff σ(hB) = 1. Hence the style
of our definition of the three asymptotic bases above is consistent with that of B
being a basis. Note that if B is an asymptotic basis of asymptotic order h0 and of
average asymptotic order h1, then B is a lower asymptotic basis of order h2 with
h1 ≤ h2 ≤ h. Note that if B is a piecewise basis of piecewise order h0, then B is
an upper Banach basis of order h1 ≤ h0.

Let P again be the set of all prime numbers. P is not a basis because P does
not contain 0 and 1. If A = P ∪{0, 1}, then A is a basis of order h for some h ∈ N.
However, the order h may be large (h = 7 by a results of Remera). By Vinogradov
Three-Prime Theorem P is an asymptotic basis of asymptotic order order 4. By a
result in [Es] P is a lower asymptotic basis of order 3.2 Of course, P would be an
asymptotic basis of asymptotic order 3 if the famous Goldbach Conjecture for the
sum of two prime numbers has a positive answer. This makes Theorem 3.4 below
interesting.

The three theorems below are the results of effort for generalizing Plünnecke’s
Theorem to the three asymptotic densities.

Theorem 3.4. Let A,B ⊆ N and B be a lower asymptotic basis of order h.
Then

d(A + B) ≥ d(A)1−
1
h .

Theorem 3.5. There are A,B ⊆ N with d(A) = 1
2 and B an upper asymptotic

basis of order 2 such that
d(A + B) = d(A).

Theorem 3.6. Let A,B ⊆ N and B be a upper Banach basis of order h. Then

BD(A + B) ≥ BD(A)1−
1
h .

2This result was discovered independently by Nikolai Chudakov, Johannes van der Corput,
and Theodor Estermann at about the same time.
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As a corollary of Theorem 3.4, we have that for any set A ⊆ N, d(A + P ) ≥
d(A)2/3 where P is the set of all prime numbers. It is interesting to see whether
the lower bound d(A)2/3 of d(A + P ) in this corollary can be improved.

It is not a surprise that the behavior of upper asymptotic density is different
from the behavior of lower asymptotic density or the behavior of upper Banach
density. We have discovered many instances of that phenomenon.

Theorem 3.6 is a significant improvement of Theorem 2.11 because a piecewise
basis of piecewise order h is clearly an upper Banach basis of order at most h
and the definition of upper Banach basis seems more natural than the definition of
piecewise basis.

The proof of Theorem 3.5 does not involve nonstandard methods. The upper
asymptotic basis B for Theorem 3.5 constructed in [Ji7] is a modification of the
thin basis constructed by Cassels (cf. [HR, Theorem 12 on page 39]).

The reader can see that the proof of Theorem 2.11 does not get into Plünnecke’s
original idea of Plünnecke’s graph, which was used to obtain a powerful inequality.
It is that Plünnecke’s inequality, which leads to Theorem 1.3. The proof of Theorem
3.4 and Theorem 3.6 combines the strength of Plünnecke’s inequality and nonstan-
dard methods. In the proof of Theorem 3.4, we apply Plünnecke’s inequality to
the segments of ∗A in a hyperfinite interval [0, n]. Since the set An = ∗A ∩ [0, n] is
hyperfinite, it is easy for us to make small adjustments in order to fit the condition
required by Plünnecke’s inequality. Because of this, a would–be long ε–δ argument
becomes a very straightforward argument.

The proof of Theorem 3.6 requires the use of Theorem 3.3. Let BD(A) = α.
Theorem 3.3 shows that there are arbitrarily long intervals [a, b] such that the set
∗A ∩ [a, b] for each such interval [a, b] is homogeneously distributed. Now Theorem
3.6 follows from this homogeneity and Plünnecke’s inequality.
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