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0. Introduction.

This survey is an expanded version and elaboration of the material pre-
sented by the author at the Workshop on Algebraic and Number Theo-
retic Aspects of Ergodic Theory which was held in April 1994 as part of
the 1993/1994 Warwick Symposium on Dynamics of Z™-actions and their
connections with Commutative Algebra, Number Theory and Statistical Me-
chanics. The leitmotif of this paper is: Ramsey theory and ergodic theory of
multiple recurrence are two beautiful, tightly intertwined and mutually per-
petuating disciplines. The scope of the survey is mostly limited to Ramsey-
theoretical and ergodic questions about Z™-partly because of the proclaimed
goals of the Warwick Symposium and partly because of the author’s hope
that Z"-related combinatorics, number theory and ergodic theory can serve
as an ideal lure through which the author’s missionary zeal will reach as
wide an audience of potential adherents to the subject as possible.

To compensate for the selective neglect of details and for the lack of
full generality in some of the proofs, which were imposed by natural time
and space limitations, a significant effort was spent on accentuation and
motivation of ideas which lead to conjectures and techniques on which the
proofs of conjectures hinge.

Here now is a brief description of the content of the five sections consti-
tuting the body of this survey. In Section 1 three main principles of Ramsey
theory are introduced and their connection with the ergodic theory of mul-
tiple recurrence is emphasized. This section contains a lot of discussion and
very few proofs. The goal in this section is to help create in the reader a
feeling of what Ergodic Ramsey Theory is all about.

Section 2 is devoted to a multifaceted treatment of a special case of the
polynomial ergodic Szemerédi theorem recently obtained in [BL1] (Theo-
rem 1.19 of Section 1). Different approaches are discussed and brought to
(hopefully) a convincing level of detail.

In Section 3 the somewhat esoteric, but fascinating and very useful ob-
ject BN, the Stone-Cech compactification of N, is introduced and discussed
in some detail. An ultrafilter proof of the celebrated Hindman’s theorem is
given and some applications of SN and Hindman’s theorem to topological
dynamics, especially to distal systems, are discussed. This section con-
cludes with a formulation and discussion of an ultrafilter refinement of the
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Furstenberg-Sarkozy theorem on recurrence along polynomials, and a proof
of a special case of this refinement.

Section 4 is devoted to ramifications of results brought in previous sec-
tions. Most of the discussion is devoted to polynomial ergodic theorems
along IP-sets. In addition, the role of a polynomial refinement of the com-
binatorial Hales-Jewett theorem is emphasized. The flow of this discussion
naturally leads to some open problems which are collected and commented
on in Section 5.

I was fortunate to be a graduate student at the Hebrew University of
Jerusalem at the time of the inception and early development of Ergodic
Ramsey Theory. It is both my duty and pleasure to acknowledge the in-
fluence of and express my gratitude to Izzy Katznelson, Benji Weiss, and
especially my Ph.D. thesis advisor, Hillel Furstenberg.

I wish to express my indebtedness to my friend and co-author Neil Hind-
man for many useful discussions of ultrafilter lore.

I also owe a large debt to Randall McCutcheon, whose numerous and
most pertinent suggestions for improvements of presentation greatly facili-
tated the preparation of this survey.

In addition, my thanks go to Boris Begun and Paul Larick for their
useful remarks on a preliminary version of this paper.

Finally, I would like to thank the organizers and hosts of the Sympo-
sium and the editors of these Proceedings, Bill Parry, Mark Pollicott, Klaus
Schmidt, Caroline Series, and Peter Walters for creating a great atmosphere
and for their efforts to promote and advance the beautiful science of ergodic
theory.

1. Three main principles of Ramsey theory and its connection
with the ergodic theory of multiple recurrence.

A mathematician, like a painter
or a poet, is a maker of patterns.

—G.H. Hardy, [Ha], p. 84.

Van der Waerden’s Theorem, one of Khintchine’s “Three Pearls of Num-
ber Theory” ([K1]), states that whenever the natural numbers are finitely
partitioned (or, as it is customary to say, finitely colored), one of the cells
of the partition contains arbitrarily long arithmetic progressions. One can
reformulate van der Waerden’s theorem in the following, “finitistic” form:

Theorem 1.1. For any natural numbers £ and r there exists N =
N(k,r) such that whenever m > N and {1,---,m} = J,_, C;, one of C;,

1 =1,---,r contains a k-term arithmetic progression.

Exercise 1. Show the equivalence of van der Waerden’s theorem and
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Theorem 1.1.

Van der Waerden’s theorem belongs to the vast variety of results which
form the body of Ramsey theory and which have the following general form:
If V is an infinite, “highly organized” structure (a semi-group, a vector
space, a complete graph, etc.) then for any finite coloring of V' there exist
arbitrarily large (and sometimes even infinite) highly organized monochro-
matic substructures. In other words, the high level of organization cannot
be destroyed by partitioning into finitely many pieces—one of these pieces
will still be highly organized. To fit van der Waerden’s theorem into this
framework, let us call a subset of Z a.p.-rich if it contains arbitrarily long
arithmetic progressions. Then van der Waerden’s theorem can be reformu-
lated in the following way:

Theorem 1.2. If § C Z is an a.p.-rich set and, for some r € N,
S ==, Ci, then one of Cj, i = 1,---,r is a.p.-rich.

(Since Z is a.p.-rich, van der Waerden’s theorem is obviously a special
case of Theorem 1.2. On the other hand, it is not hard to derive Theorem
1.2 from Theorem 1.1.)

We cannot resist the temptation to bring here two more equivalent forms
of van der Waerden’s theorem, each revealing still another of its facets.

Theorem 1.3. For any finite partition of Z, one of the cells of the
partition contains an affine image of any finite set. (An affine image of a
set F' C Z is any set of the form a + bF = {a + bz : z € F}.)

Exercise 2. Show the equivalence of Theorems 1.3 and 1.1.

Theorem 1.4 (A special case of a theorem due to Furstenberg and
Weiss, [FW1]). Suppose k € N and € > 0. For any continuous self-mapping
of a compact metric space (X, p), there exists z € X and n € N such that
p(T"z,z) <e i=1,---k.

Theorem 1.3 shows that van der Waerden’s theorem is actually a ge-
ometric rather than number theoretic fact. On the other hand, Theorem
1.4 establishes the seminal connection between partition theorems of van
der Waerden type with topological dynamics—the link which proved to be
extremely useful.

Another example of “unbreakable” structure is given by Hindman’s finite
sums theorem ([H2]). To formulate Hindman’s theorem let us (following
notation in [FW1]) call a set S C N an IP-set if it consists of an infinite
sequence ()52, C N together with all finite sums of the form z, =
>on ca Tn, Where a ranges over the finite non-empty subsets of N.

Theorem 1.5 (Hindman). If £ C N is an IP-set, then for any finite
coloring E = |J;_, C;, one of C;, i =1,---,r contains an IP-set.
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We shall return to Hindman’s theorem in the discussions of Section
3. We refer the reader to [GRS] for many more examples illustrating the
first principle of Ramsey theory—the preservation of structure under finite
partitions.

After being convinced of the validity of this first principle of Ramsey
theory, one is led to the next natural question: why is this so? What
exactly is responsible for this stubborn tendency of highly organized infinite
structures to preserve their (rightly interpreted) replicas in at least one
cell of an arbitrary finite partition? The answer is, and this is the second
principle of Ramsey theory, that there is always an appropriate notion of
largeness which is behind the scenes and such that any large set contains the
sought-after highly organized sub-structures. The only other requirement
that the notion of largeness should satisfy is that if A is large and A =
U;Il C;, then one of C;, 1 =1, --,r is also large. It is the mathematician’s
task when dealing with this or that result of partition Ramsey theory to
guess what the appropriate notion of largeness responsible for the truth of
the proposition is. It is the almost intentional vagueness of the approach
which allows one to obtain stronger and stronger theorems by modifying
and playing with different notions of largeness. To illustrate this second
principle of Ramsey theory we shall now give some examples.

Given a set A C N, define its upper density d(A) by

d(A) = limsup Antl ”’NH.
N—oo0 N

If the limit (rather than lim sup) exists, we say that A has density, and
denote it by d(A). Being of positive upper density is obviously a notion of
largeness and it is natural to ask (as P. Erdés and P. Turdn did in [ET])
whether this notion of largeness is responsible for the validity of van der
Waerden’s theorem. Namely, is it true that any set A C N of positive
upper density is a.p.-rich?

The question turned out to be very hard. After some partial results
were obtained in [Ro] and [Szl]|, Szemerédi [Sz2] settled the Erdos-Turan
conjecture affirmatively, thus providing a convenient sufficient condition for
a set to be a.p.-rich.

Theorem 1.6 (Szemerédi, [Sz2]). Any set £ C N having positive upper
density is a.p.-rich.

Exercise 3. Derive from Theorem 1.6 the following finitistic version of
it:

For any € > 0 and any k£ € N there exists N = N(e, k) such that if
m > N and A C {1,2,---,m} satisfies % > ¢, then A contains a k-term
arithmetic progression.
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It follows from Exercise 3 that in the formulation of Theorem 1.6 a
somewhat weaker notion of largeness would do, namely, the notion of upper
Banach density. Given a set E C Z define its upper Banach density d*(F)
by
\[EN{M,M+1,---,N}|
 N-Mo—oo N-M+1 '

It is the notion of positive upper Banach density and its natural exten-
sions to Z¢ and, indeed, to any countable amenable group which naturally
participate in many questions and results of density Ramsey theory.

It is easy to check that for any £ C Z and any t € Z the set £ —t :=
{z—t : x € E} satisfies d*(F—t) = d*(F). This shift-invariance of the upper
Banach density hints that there is a genuine measure preserving system
behind any set E C Z with d*(E) > 0. This is indeed so (see below). On the
other hand, the notion of upper Banach density does not provide the right
notion of largeness for results like Hindman’s theorem. For example, the set
E = 2N+1is large in the sense that d*(E) = 1 but obviously cannot contain
any IP-set, or even any triple of the form {z,y, z+y} (see also Exercise 8 in
Section 3). We shall see in Section 3 that a notion of largeness relevant for
Hindman’s theorem is provided by idempotent ultrafilters in SN, the Stone-
Cech compactification of N. This notion of largeness will also have a mild
form of shift invariance which will allow us to prove Hindman’s theorem by
repeated utilization of a kind of Poincaré recurrence theorem adapted to
the situation at hand.

Ergodic Ramsey Theory started with the publication of [F1], in which
Furstenberg derived Szemerédi’s theorem from a beautiful, far reaching ex-
tension of the classical Poincaré recurrence theorem, which corresponds to
the case k =1 in the following:

Theorem 1.7 (Furstenberg, [F1]). Let (X, B, u,T) be a probability
measure preserving system. For any & € N and for any A € B with u(A4) > 0
there exists n € N such that

pANT"ANT 2" AN---NT " A) > 0.

In order to derive Szemerédi’s Theorem 1.6, Furstenberg introduced a
correspondence principle, which provides the link between density Ramsey
theory and ergodic theory.

Theorem 1.8 Furstenberg’s correspondence principle. Given a set E C
Z with d*(E) > 0 there exists a probability measure preserving system
(X,B,1,T) and a set A € B, u(A) = d*(FE), such that for any k¥ € N and
any ni,---ng € Z one has:

d*(EN(E—=n)N---N(E—=mng)) > pu(ANT ™ AN---N T~ A).
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Since the set F contains a progression {z,z+n,---,x+ kn} if and only
if EN(E—n)N---N(E —kn) # 0, it is clear that Furstenberg’s multiple
recurrence Theorem 1.7 together with the correspondence principle imply
Szemerédi’s theorem. We remark that as a matter of fact, Theorem 1.7
follows from Szemerédi’s theorem using fairly elementary arguments. Alter-
natively one can utilize the following refinement of the Poincaré recurrence
theorem.

Theorem 1.9 ([B1]). For any probability measure preserving system
(X,B,1,T) and any A € B with u(A) > 0 there exists a sequence E =
(nm)$9_, whose density exists and satisfies d(E) > pu(A) such that for any
m e N

pANT™AN---NT™"mA) > 0.

Van der Waerden’s theorem has a natural multidimensional extension
which is hinted at by the geometric formulation (Theorem 1.3).

Theorem 1.10 Multidimensional van der Waerden theorem (Gallai-
Griinwald). For any finite coloring of Z%, Z¢ = Ui_, Ci, one of C;, i =
1,---,7r contains an affine image of any finite subset F C Z?. In other
words, there exists 4, 1 < i < r, such that for any finite F' C Z¢, there exists
u € Z and a € N such that u+aF = {u+azx:2x € F} C C;.

Remark. An attribution of Theorem 1.10 to G. Griinwald is made in
[Ra], p. 123. As far as we know, Griinwald never published his proof. He
later changed his name to Gallai, to whom the result is attributed in [GRS].

In accordance with the second principle of Ramsey theory one should
expect that Theorem 1.10 has a density version. This is indeed so and
was proved in [FK1]. The multidimensional Szemerédi theorem established
by Furstenberg and Katznelson there was the first in a chain of strong
combinatorial results ([FK2|, [FK4], [BL1]) which were achieved by means
of ergodic theory and which so far have no conventional combinatorial proof.

Let us say that a set S C Z* has positive upper Banach density if for

some sequence of parallelepipeds II,, = [ag), bg)] X - X [agk),b%k)] C ZF,

n € N, Withbg) —aq(f) — 00,1 =1,---,k one has:
|S NI, |
||

for some € > 0.

The natural question now is whether it is true that any set of posi-
tive upper Banach density in Z* contains an affine image of any finite set
F C Z*. Furstenberg and Katznelson answered this question affirmatively
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by deducing the answer from the following generalization of Furstenberg’s
multiple recurrence theorem.

Theorem 1.11 ([FK1], Theorem A). Let (X, B, 1) be a measure space
with u(X) < oo, let Ty, - - -, Ty, be commuting measure preserving transfor-
mations of X and let A € B with p(A) > 0. Then

N-1
. . ]- —n —n —n
lim inf — E p(Ty"ANT,"AN---NT,"A) > 0.

N—oo
n=0

Corollary 1.12 ([FK1], Theorem B). Let S C Z* be a subset with
positive upper Banach density and let F C ZF be a finite configuration.
Then there exists a positive integer n and a vector u € Z* such that u+nF C

S.

For the derivation of Corollary 1.12 from Theorem 1.11, the reader is
referred to [F2], where the correspondence principle is spelled out for Z*.

The third and last principle of Ramsey theory which we want to discuss
in this section is the following: the sought-after configurations always to
be found in large sets are abundant. Abundance in our context means not
only that the parameters describing the configurations form large sets in the
space of parameters, but also that these parameters are nicely spread in all
kinds of families of subsets of integers. Let us consider some examples. Take,
for instance, Szemerédi’s theorem. Let E C Z with d*(F) > 0. For fixed k
the progressions {z,x + d,---,z + kd} C E are naturally parametrized by
pairs (z,d). Let us call a point z € E a (d, k)-starter if {z,z +d,---,z +
kd} C E and a non-(d, k)-starter otherwise. One can show that for any k,
“almost every” point of F is a (d, k)-starter for some d. In other words, for
any fixed k, the set of (d, k)-starters in E has upper Banach density equal
to d*(E).

Exercise 4. Show that the set of non-(d,2)-starters of a set £ C Z
with d*(E) > 0 may be infinite.

Let us turn now to a much more interesting set of those d which appear
as differences of arithmetic progressions in . One of the ways of measuring
how well “spread” a subset of integers is, would be to see whether it has a
nonempty intersection with different families of subsets of integers (analogy:
a set S C [0,1] is dense if for any 0 < a < b <1, SN (a,b) # (). We shall
need a few definitions. Given a countable abelian group G, a set S C G
is called syndetic if for some finite set ' C G one has: S+ F ={z+y:
x € S,y € F} = G. Tt is easy to see that a set S C Z is syndetic if and
only if it has bounded gaps, namely intersects non-trivially any big enough
interval. We note that any syndetic set S C Z is a.p.-rich. Indeed, as finitely
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many shifts of S cover Z completely, by van der Waerden’s theorem one of
these shifts is a.p.-rich, and as the property of a.p.-richness is clearly shift
invariant, we see that S itself must have this property.

Following the terminology introduced in [F2], given a family S of subsets
of Z let us call a set E C Z an S*-set if forany S € S, ENS # . In
particular, a set £ C Z is an IP*-set if E has non-trivial intersection with
any IP-set. It is not hard to see that any IP* set is syndetic. Indeed, if a set
E was an IP*-set but not syndetic, its complement would contain a union
of intervals [ay,, by] with b, — a,, — 00. One can easily show that any such
union of intervals contains an IP-set which leads to contradiction with the
assumed IP*-ness of E.

Exercise 5. Show that for any finite measure preserving system (X, 3,
u,T) and any A € B with u(A) > 0, the set {n : u(ANT"A) > 0} is an
IP*-set.

On the other hand, it is easy to see that not every syndetic set is an
IP*-set: take, for example, the odd integers.

Now, IP*-sets are large in a few different senses. Besides having positive
lower density (the lower density of a set S is defined as lim inf ISF"[lNiNll)

7
N—oo

they, for example, have a finite intersection property.

Lemma 1.13. If 51,55, ---,S; are IP*-sets then ﬂle S; is also an
IP*-set.

Proof. It is enough to prove the result for k¥ = 2. Let F be an IP-
set. Consider the following partition of E: E = (E N S1) U (EN S§). By
Hindman’s theorem at least one of E NSy, ENS{ contains an IP-set E;.
Since S; is an IP*-set, E;1 N S; # 0, hence E; C ENS;. Also Ss is an
IP*-set, hence E1 NSy # (), which implies that EN(S1NSs) # 0. As E was
an arbitrary IP-set, the lemma is proved.

O
Given E C Z with d*(E) > 0 let

Ry (E)={d€Z:{z,x+d, -, 2+ kd} C E for some z € Z}.

The question of how well spread the sets Ri(E) are in Z is interesting
already for £ = 1. The illustrative results about sets R;(E) which we
collect here are special cases of sometimes very far reaching generalizations.
Notice that Ri(F) = E— E ={z —y: z,y € E}. It follows immediately
from Exercise 5 via Furstenberg’s correspondence principle that Ry (F) is an
IP*-set. We remark that this result has also a simple completely elementary
proof: given an IP-set, generated, say, by ni,ns, - -, one considers the sets
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E;=E—(ni+---+mn;),i=1,2,--- and observes that since d*(E) > 0 we
have, for some 1 <i < j < d*(lE) + 1,

d*(E; N E;) = d*(Em (E = (nip1 +---+nj))) > 0.

This implies that the set of differences £ — E contains the element n;; +
---+n; from our IP-set.

We sketch now a curious application of this circle of ideas to the theory
of almost periodic functions. For the sake of simplicity we shall deal only
with functions on Z, remarking that easy modifications of these arguments
would apply to almost periodic functions on an arbitrary topological group.
Recall that, according to H. Bohr ([Bol]), a function f:Z — C is called
almost periodic if for any € > 0 the set of “e-periods”,

E, f)={he€Z: |f(x+h)— f(z)| <eforall z}

is syndetic. Later Bogoliouboff, [Bo2], and Fgluner, [Fg] showed that the
condition of syndeticity in the definition may be replaced by the weaker
condition of positive upper Banach density. This result is contained in the
following proposition:

Theorem 1.14. For a function f:Z — C the following conditions are
equivalent:

(i) For any € > 0 the set E(e, f) has positive upper Banach density.

(ii) For any € > 0 the set E(e, f) is syndetic.

(iii) For any € > 0 the set E(e, f) is an IP*-set.

Proof. It is enough to show that (i)—(iii). But this follows immediately
from two facts:

(1) E(%af) _E(gaf) - E(G,f)
(2) If d*(E) > 0 then E — E is an IP*-get.

O
As a byproduct one obtains the following fact, which is not obvious from

Bohr’s definition (but is obvious from some other equivalent definitions of
almost periodicity).

Corollary 1.15. If f, g are almost periodic functions then f + g is also
an almost periodic function.

Proof. Observe that E(%, f)NE(S,g) C E(e, f+g). The result follows
from Lemma 1.13.
U
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Following Furstenberg ([F3]) let us call a set R C Z a set of recurrence
if for any invertible finite measure preserving system (X, B, u,T) and any
A € B with p(A) > 0 there exists n € R, n # 0, with u(ANT™A) > 0.

Exercise 6. Show that the following are sets of recurrence:
(i) Any E C Z with d*(E) = 1.

(ii) aN = {an : n € N}, for any 0 # a € Z.

(iii) E — E, for any infinite set £ C Z.

(iv) Any IP-set.

(v) Any set of the form (J;2,{an,2an,---,na,}, a, € N.

Denote by R the family of all sets of recurrence in Z. According to
our adopted conventions, a set F is R* if it intersects nontrivially any set
of recurrence. Similarly to IP-sets, sets of recurrence possess the Ramsey
property: if a set of recurrence R is finitely partitioned, R = [J;_; C;, then
one of C;, = 1,---,r is itself a set of recurrence. To see this, assume that
this is not true. So for a set of recurrence R and some partition R = |J;_, C;
one can find measure preserving systems (X;, B;, u;, T;) and sets A; € By,
i =1,---,r, with p;(A;) > 0, such that u;(A; NT*A;) = 0 for all n € C;.
Let (X, B, u,T) be the product system of (X;, B;, pi, T;), ¢ = 1,---,r and
take A = A; x---x A, € B1 ®---® B,. Since R is a set of recurrence,
there exists n € R such that u(ANT"A) > 0, where g = p1 X -+ X iy,
T =T x---x T,. This implies that for ¢ = 1,---,7, p;(4; NT*A;) > 0
which is a contradiction. The discussion above together with the fact that
for any E C Z with d*(F) > 0 the set E— E is an R*-set imply the following
combinatorial fact (cf. [F2], p. 75).

Theorem 1.16. Given sets E; C Z with d*(E;) > 0,3 =1,---,k, the
set D= (Fy— E1)N(Ey — E3)N---N(Ex — E) is R*. In particular, D is
IP* and hence syndetic.

The following fact, due independently to Furstenberg ([F2]) and Sarkozy
([S]), provides an example of a set of recurrence of a quite different nature
than those of Exercise 6.

Theorem 1.17. Assume that p(t) € Q[t] with p(Z) C Z, degp(t) > 0,
and p(0) = 0. The the set {p(n) : n € N} is a set of recurrence.

For more examples and further discussion of sets of recurrence the reader
is referred to [F3|, [B1], [B2], [BHa|, [Fo], and [M]. We comment now on
some extensions of these results to multiple recurrence.

Given a finite invertible measure preserving system (X, B, u,T) and a
set A € B with u(A) > 0 consider the set

Ry(Ay={neZ: p(ANT"AN---NT*"A) > 0}.
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According to the third principle of Ramsey theory, the sets Ry(A) should
be “well spread” in Z. They are. The fact that Ri(A) is syndetic was con-
tained already in the pioneering paper of Furstenberg, [F1]: he established
Theorem 1.7 by actually showing that

N-1
1 o n e e e kn
Nh—nl\l/llgfc;oN—M _EM,u(AﬂT AN---NT*A) > 0.

The next question to ask about the sets Ry(A) is whether they are always
IP*-sets. This turned out to be true and is a special case of a deep and
highly nontrivial “IP-Szemerédi theorem” due to Furstenberg and Katznel-
son, [FK2]. We give a formulation of a more general fact than IP*-ness of
Ry (A) which still is quite a special case of the main theorem in [FK2].

Theorem 1.18 ([FK2]). For any finite measure space (X, B, u), any k €
N, any commuting invertible measure preserving transformations 77, - - -, T
of (X, B, ) and any A € B with p(A) > 0 the set

{n:p(ANTIAN---NTFA) > 0}

is IP*.

Another desirable refinement of Furstenberg’s Szemerédi theorem is hinted
upon by Theorem 1.17, an equivalent form of which is that for any invert-
ible measure preserving system (X,B,u,T), any A € B with p(A4) > 0,
and any polynomial p(t) € Qt] with p(Z) C Z and p(0) = 0, the set
Ri(A) = {n € Z : u(ANT™A) > 0} intersects non-trivially the set
p(N) = {p(n) : n € N}. Is it true, for example, that the sets

Ry(A)={ne€Z: uy(AnTrAN---nTFA) > 0}

also have such an intersection property? Or, even more ambitiously, does
a joint extension of Theorems 1.11 and 1.17 hold? Namely, given any k&
polynomials p;(t) € Q[t] with p;(Z) C Z and p;(0) = 0,4 =1,---,k and
any k commuting invertible measure preserving transformations 77, -« -, T}
of a probability measure space (X, B, u), is it true that for any A € B with
w(A) > 0 one has

N-1
.. 1 p1(n) Dk (1)
1}\Irri>lo%f_ E_O;J,(AﬂTll An---NT " A) > 07

It turns out that the answers to these questions are positive and that a
stronger, more general result holds.
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Theorem 1.19 (Polynomial Szemerédi theorem, [BL1]). Let (X, B, u)
be a probability space, let T1, - - -, T; be commuting invertible measure pre-
serving transformations of X, let p; ;(n) be polynomials with rational coef-
ficients, 1 <4 < k, 1 < j <'t, satisfying p; ;(0) = 0 and p; ;(Z) C Z. Let
A € B with p(A) > 0. Then

1}£i£f%jzs (Am(]r[lTplﬂ<”)) (HT’“’”(")) ) > 0.

As a corollary we have:

Theorem 1.20. Let P:Z" — Z', r,l € N be a polynomial mapping
satisfying P(0) = 0, let F C Z" be a finite set and let S C Z! be a set of
positive upper Banach density. Then for some n € N and u € Z! one has

u+ P(nF) = {u+ P(nz1,nz9, -, nx,) : (x1,---,3,) € F} C 8.

The proof of Theorem 1.19 in [BL1] is, in a sense, a polynomialization
of the proof of Furstenberg’s and Katznelson’s multidimensional Szemerédi
theorem (Theorem 1.11). We shall try to convey some of the flavor of the
proof of Theorem 1.19 in the next section, where we shall treat a special
case of it. See also [BM1] where a concise proof of the following refinement
of a special case of Theorem 1.19 is given.

Theorem 1.21. Suppose that (X,B,u,T) is an invertible measure
preserving system, k € N, A € B with u(A) > 0 and p;(z) € Q[z] with
pi(Z) C Z and p;(0) =0, 1 <7 < k. Then

1
lim inf

N-1
p1(n) Dk (1)
Jiminf —— ;/I,u(AﬂT AN---NTPM 4) >

Motivated by the third principle of Ramsey theory, (and by Theorem
1.21), one should expect that Theorem 1.19 has an IP-refinement, similar
to the way in which Theorem 1.18 refines Theorem 1.11. This again turns
out to be true ([BM2]) and will be discussed in more detail in Section 4.
Notice that even in the case of single recurrence along polynomials, it is not
obvious at all whether, say, the set {n : (ANT™ A) > 0} is an IP*-set. (It
is. See Theorem 3.11. )

2. Special case of polynomial Szemerédi theorem: single recurrence.

In this section we shall discuss in detail the following special case of
Theorem 1.19, which corresponds to the case k = 1.
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Theorem 2.1. Suppose t € N. For any ¢ invertible commuting measure
preserving transformations Ty, Ts, - - - T; of a probability space (X, B, i), for
any A € B with u(A) > 0, and for any polynomials p;(z) € Q[z],i =1,---,t
satisfying p;(Z) C Z and p;(0) = 0 one has:

| V-1

liminf " p(AN o pen) e 4y 5 .
n=0

Before embarking on the proof we wish to make some remarks and formulate

the facts that will be instrumental to the proof.

The first remark that we want to make is that Theorem 2.1, being a
result about single recurrence, is Hilbertian in nature in the sense that it
follows from (more general) facts shared by all unitary Z!-actions, rather
than specifically those induced by measure preserving transformations. One,
and from some point of view natural way of proving Theorem 2.1 would be
to employ the spectral theorem for unitary Zt-actions. This is done for t = 1
in [F2] and [F3] and the extension for general ¢ € N goes through with no
problems. Unfortunately, the spectral theorem is of no use when one has
to deal with multiple recurrence. That is why we prefer to use a “softer”,
spectral theorem-free approach, which, on the one hand, looks more in-
volved, but on the other hand is more easily susceptible to generalization
and refinement.

The main idea which will govern our approach is that in order to prove
this or that sort of ergodic theorem, one looks for a suitable splitting of
the underlying Hilbert space into orthogonal invariant subspaces on which
the behavior of the studied unitary action along, say, polynomials can be
well understood and controlled. Consider, for example, the classical mean
ergodic theorem of von Neumann for a unitary operator U on a Hilbert
space . The (almost trivial) splitting in this case is H = Hiny D Herg,
where

Hinv:{fE%:Uf:f}a and

Herg = {f € H : there exists g € H with f =g —Ug}

=
_ | n
—{fen: | D vt —on
n=0

The Z-action generated by U is trivial on the subspace H;,, of invariant
elements, whereas it is easily manageable on the ergodic subspace Herg.

This splitting is too trivial to help with ergodic theorems along poly-
nomials, but it hints that if one enlarges H;,, just a little bit (and at the
same time appropriately shrinks #H.,,) the situation will be suitable for a
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polynomial ergodic theorem. Indeed, consider the splitting H,.q: ® Hiot.ergs
where

Hyat = {f € H : there exists i € N with Utf = f}, and
| N1
MHiot.erg ={f € H: for alli € N, ”N Z Uu™f| — 0}.

n=0

Exercise 7. Show that H = H,at ® Hiot.erg- Attempt not to use the
spectral theorem. Show that

Hioterg = {f € H: foralli € N,‘

‘—>0}.

(This fact is related to N. Wiener’s speculations about “observable past”
and “unattainable future”. See [W], Section 1.4.)

1 N-1 .
N Z U—znf
n=0

Let p(z) € Q[z] with p(Z) C Z and degp(x) > 0. Let us show how the
splitting H = Hyqt ® Htot.erg allows one to establish the existence of the
limit

| N1

lim — p(n) £
n=0

If f belongs to the rational spectrum subspace H,qt, there is almost nothing

to prove: indeed, it is enough to check the case when for some 2, U'f = f.

If, say, p(n) = n? and i = 6, then

2 3 4
- iZUnf:<I+2U+6U +2U )f.

On the other hand, on the totally ergodic subspace Hiot.erg, the following
theorem applies and does the job.

Theorem 2.2 (van der Corput trick). If (u,)nen is a bounded sequence
in a Hilbert space ‘H and if for any h € N

1N
3 G =0
n:

then ||+ ijzl un || — 0.
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Proof. Notice that for any € > 0 and any H € N, if N is large enough
one has

1 N N H-1
v Xy 2 2 v <

But

11 N H-1 9 1 N 1 H-1 9
limsup | g7 35 3 wnen | <limswp 37 |57 3
n=1 h=0 n=1 h=0

N—>oo

1 = B
= limsup — N Z B Z (Unghy s Unthy) < T’

N—oo ne1 b1, ha=0

where B = sup,, ||u,||?. Since H was arbitrary, we are done.
]

Remark. The classical van der Corput difference theorem in the theory
of uniform distribution says that if (z,),en is a sequence of real numbers
such that for any h € N the sequence (Tnin — Tn)neN is uniformly dis-
tributed mod 1 then the sequence (z,)nen is also uniformly distributed
mod 1. It is easy to see that this result follows from the Hilbertian van
der Corput trick, applied to the 1-dimensional Hilbert space C. Indeed, by
Weyl’s criterion, a sequence (Z,)neN is uniformly distributed mod 1 if and
only if for any m € Z \ {0},

e27rzma:n = 0.

2| =
i1

Writing u{™ = €2™men we see that the assumption of van der Corput’s

difference theorem is that for any m € Z \ {0},

N

D)

Hence, + 3 (™ — 0, which gives the uniform distribution of (, )nen-

Now, if f € H¢ot.erg, then an induction on the degree of the polynomial
p(z) reduces the situation to the classical von Neumann theorem. Indeed,
if d, = degp(z) > 1, then writing u,, = UP(™) £ we have:

(Unshy Un) = (UPOFR) £ p() £y — (pnth)=p(n) £ £y,
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Notice that for any h € N the degree of p(n + h) — p(n) equals d, — 1.
Since weak convergence follows from strong convergence, we have by the
induction hypothesis:

N N

1 1
i _ — T = (n+h)—p(n) —
lim N E (Upty Up) = A}lm N E (ur pPf )y =0,

N—oo —00
n=1 n=1

and Theorem 2.2 implies that H % Zﬁ’zl Up("’)fH — 0.

Let us explain now how the splitting H = H,qt ® Hiot.erg can be used
to establish the existence of the limit

N-1
. ]- 1\n 2(T t\n
lim > O g

N—-o
n=0

for t > 1. Take for simplicity ¢ = 2 (it will be clear from the discussion that
the proof for general ¢ is completely analogous). Let Uy, Uz be commuting
unitary operators generating a unitary Z2-action on a Hilbert space .

Consider the splittings H = Hﬁi)t & HY ¢ = 1,2 which correspond

a tot.erg’
to Uy and Us. We have the decomposition into invariant subspaces H =

Hyr @ Hyt ® Hyp ® Hyp, where Hpp = H N7, e = HO Ay

tot.erg»
Hir = Hgi_erg ﬂ?—[,(,i)t, and Hy = Hgi_erg ﬂ’ng.ery. For f € H we have the
corresponding decomposition f = fr, + frt + fir + f1r, where fog € Hap,
a, B € {r,t}. Now, in each of the subspaces H,, Hr¢, and H;,., the problem
of establishing the existence of limy_, o0 4 S n ' U? "M P £ s reducible
to the case of Z-actions, already discussed above. Consider, for example,

f € Hypr. Since f € Hﬁi)t we can assume without loss of generality that for

some a € N, Usf = f. Notice that

1 N-1
lim — " Up'ug s

N—oo
n=0

exists if each of

N-1
.1 pi(antr)ppa(antr) o
A}l_r)nooﬁz_:oUl Ut f; r=0,1,---,a—1

exists. As U} (antr) f does not depend on n (since we assumed that U f =
f), we see that in this case (i.e. on the invariant subspace #g.) the problem
is reduced to that of the Z-action generated by U;.
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It remains to show the existence of the limit in question on H;;. Let
f € Hy- First of all, assume without loss of generality that there do not exist
non-zero a,b € Z and g € Hy, g # 0, with UfU%g = g (the set of such g €
‘H: comprises a U; and Us-invariant subspace on which the situation again
reduces to Z-actions). Under this assumption, one shows that the limit is
zero. The result follows by induction on d = max{degp;(z),degpa(z)}.
For d = 1 one has p1(n) = cin, pa(n) = con where at least one of ¢y, ¢y is
non-zero. In this case we are done by von Neumann’s ergodic theorem. If
d > 1 then, as before, van der Corput’s trick reduces the case to d — 1.

The case of general t > 1 is treated in a similar fashion. We have 2!
invariant subspaces; on all but one of them at least one of the generators
Ui, ---,U; has rational spectrum. On these 2¢ — 1 spaces the situation is
naturally reduced to that of a Z™-action, n < t. On the remaining subspace,
call it ‘H;, on which all of Uy, ---,U; are totally ergodic, one disposes first
with the potential degeneration caused by “linear dependence” between
Uy, ---,U;; again, on any subspace of H; where such a dependence exists,
the situation reduces to that of a lower-dimensional unitary action. Finally,
if no degeneration occurs, one shows that the limit is zero by induction on
maxi<i<t degp;(x) with the help of the van der Corput trick.

To establish Theorem 2.1, it suffices to show that for the unitary Z*-
action induced by measure preserving transformations T3, ¢ = 1,---,{ on
H = L?(X, B, 1) and for the characteristic function f = 14, where u(A4) > 0,
the limit

N-1
Jim = > m(ANTY (M)pa(n) . ppe(m) 4
n=0
1 N-1
= lim - S (u™up..up®y, g
n=0

is positive.

Here is one possible way to see this (we will offer below another proof
of the positivity of the limit). Let L2(X,B,pu) = H = HU) & HE) 0o
1 =1,2,---1, be the splittings corresponding to the unitary operators U;,
i =1,2,-+-,t, defined by (U;f)(z) := f(Tiz), f € L*>(X,B,u). We have
then a natural splitting of A into 2! invariant subspaces each having the

form
He = ( ﬂ 1(:215) n ( ﬂ %g?t-eTg)’
e 1€{1,2,--,t}\C

where C' is any of the 2¢ subsets of {1,2,---,t}. Let f = ch{l,z,---,t} fc
be the corresponding orthonormal decomposition of f =14.
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We claim that without loss of generality one can assume that the poly-
nomials pi(n),---,p(n) all have distinct (and positive) degrees. Indeed
one can always arrive at such a situation by regrouplng and, p0331b1y, col-
lapsing some of the Uj. (Example UZ" +3nU5" Uy " = = UP° U, where
U, =UUSU; Y, Uy, = URU; L)

Now, if the polynomials p;(n), - -, pi(n) have pairwise distinct positive
degrees, then one can check, by carefully examining the effect of the van
der Corput trick, that on each of the subspaces H¢o, C a proper subset of

{1,2,---,t}, the limit in question is zero, so that
L N1
Jim =Y (AN TP ) R y)

n=0
L V-1

= Jim 5 2P v )
n=0
L N1

= Jim_ 5 > O o E ),
n=0

where f = f1,2,..43y = Pf and P is the projection onto the subspace
ﬂzzl H = Usezt Ha, where the (potentially containing constants only)

rat

subspaces Hgq, a = (a1,---,a;) € Z* are defined by
Ho={feH Uf=Ff i=1,---,t}.

Now, since f = 14 > 0, and since f # 0, one has f > 0, f #Z 0. Indeed,
f minimizes the distance from ﬂ:zl Hf@t to f and max{f,0} would do at
least as well in minimizing this distance (cf. [F2], Lemma 4.23). By the
same token, for any a € Z!, the projection f, of f = 14 onto H, satisfies
fa >0, fo Z 0. Since the limit in question is strictly positive for any such
fa (and since the subspaces H, span ﬂ:zl Hg?t) we are done.

We shall consider now still another, and from the author’s point of view,
most important splitting theorem. An appropriate generalization of this
splitting plays a significant role in the proofs of Theorems 1.11 and 1.19.
Again, the splitting which we are going to introduce follows easily from the
spectral theorem, but may be proved without resorting to it. A form of it
appears for the first time in [KN].

Theorem 2.3. For any unitary Z-action (U™),cz on a Hilbert space
‘H one has a decomposition H = H. D Hym, Where

H.={f € H: the orbit (U"f),ez is precompact in norm topology},
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N-1
1 n
Huwm ={fE€H: forallgE’H,NT;)KU f,9)] — 0}

Remark. One can show that the space H,. of compact elements coin-
cides with the span of the eigenvectors of U:

H. =span{f € H : there exists A € C with Uf = Af}.

The orthocomplement of H., the space H..m on which U acts in a weakly
maxing manner can be characterized as follows:

Huwm = {f € H : there exists S C N,d(S) =1

such that for allg € #, lim (U"f,g) = 0}.

n—oo,neS

(This terminology comes from measurable ergodic theory where one nor-
mally deals with operators induced by measure preserving transformations.)

Let us show now how the splitting H = H. ® Hym allows one to prove
the existence of the limit in Theorem 2.1. Consider first of all the case
t = 1. Since Hym C Hiot.erg and since on Hipt.erg, as we saw above, the
van der Corput trick, together with von Neumann’s ergodic theorem, does
the job, we have to care only about the space H.. One possibility is to use
the characterization of H. given in the remark above. Upon momentary
reflection the reader will agree that without loss of generality one has to
consider only

= o
: n
i, 2 U,
n=0

where f satisfies Uf = Af, A € C, |A| = 1. Since the situation on H,,;
was already discussed above, assume additionally that f € H. \ Hrat, i-€.,
assume that for no integer £ # 0 is A¥ = 1. Then, by Weyl’s theorem on
equidistribution of polynomials mod 1 one gets limpy_, % 271272—01 A7) =
and we are done. The extension of the proof to the case of general ¢ > 0
is done in complete similarity to the proof above in which the splitting
H = Hrat D %tot.erg was utilized.

Having in mind generalizations in the direction of multiple recurrence we
want to indicate now still another approach which, while utilizing the same
splitting H = H.DHwm, 1s “soft” enough to be susceptible to generalization.
This is the gain; the loss is that, unlike the approaches discussed above, this
approach leads only to results like

N
| p1(n) pp2(n) Pt (n)
lﬂlo%f_ E_l,u(AﬂTl1 T2 - T,V A) >0



20 ERGODIC THEORY OF Z2-ACTIONS

instead of
T
Jim =y pAn T Tt g) > o
n=1
Theorem 2.4. Assume that Uy, ---,U; are commuting unitary opera-

tors on a Hilbert space H. Let p;(x) € Q[z] with p;(Z) C Z and p;(0) = 0,
i=1,---,t. If for any f € H and for any i, ¢ = 1,-- -, ¢ the orbit (U f)nez
is precompact in the strong topology, then for any ¢ > 0 the set

{nez: |upup ™. up ™ - fll <)

is IP* and hence syndetic.

In the proof of Theorem 2.4 we shall utilize the Gallai-Griinwald theorem
(Theorem 1.10) in the following refined form, which can be derived from
Theorem 3.2 in [FW1] as well as from the Hales-Jewett theorem (see Exercise
16 in Section 4). See also theorem 2.18 in [F2].

Theorem 2.5. If Z! = |JI_, C; is an r-coloring of Z*, then one of C,
1=1,---,r contains a “t-cube” of the form

K(n17n27"'7nt;h)
Z{(’n,l+61h,n2+62h,"',nt+€th):61' € {0,1},i=1,2,---,t}.

The set of h € Z such that for some (n1,ne, - - -, ny) the t-cube K(nq,nq,---,
n¢; h) is contained in one of the C; is an TP*-set.

Proof of Theorem 2.4. For f € H, let X be the closure in the
strong topology of H of the orbit (U7 U3 -+ U™ f)(n,,...mny)ezt- It is easy
to see that one can assume without loss of generality that p;(z) € Z[x], i =
1,2,---,t. By the increasing if needed the number of commuting operators
involved, we may and will assume that the polynomials p;(n), i =1,---,t,
have the form p;(n) = n%, b; > 1. (For example, if p;(n) = 5n% — 17n3, we
would rewrite Ufl(") as T™ S™° where T = Uy, S =U;'".) Given e > 0,

let
€

€O=—F—""""
iy 20+

and let (g;)7_; be an €p-net in the (compact metric) space X. For each i,
i=1,2,---,t consider the r-coloring of Z% defined by

ninsg ...nbi

Xi(nlﬁn27 o "nbi) = mln{] : ||U7, f - gj” < 60}'
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By Theorem 2.5, for each i there exist y;-monochrome b;-cubes K (n{", n{?,

-,n,()?; h;). Let S;, i = 1,2,---,t be the sets of “sizes” h of such mono-
chrome cubes:
S; = {h : there exists (ny,---,np,) € Z%
with K (n,---,np,;h) x; — monochrome}.
Again by Theorem 2.5 the sets S; are IP* and by Lemma 1.13 the set

S =(i_,S; is also an TP*-set.
We shall utilize the following identity:

b
EDSNED SRS | £ § ()
a=0 AC{1,2,--,b},|A|=a i€A  igA
(For example, for b = 3 one has:

h,3 = (n1 + h)(’ng —+ h)(n3 —+ h) — nl(ng + h)(’n3 + h)
— (Tl,l —+ h)ng(ng + h) - (7’1,1 + h)(nz + h)ng + nlng(ng —+ h)
+ nl(n2 -+ h)n3 -+ (n1 -+ h)n2n3 - n1n2n3.)

Notice that for any b the sum of coefficients

> EZ e

a=0 AC{1,2,
A=

equals zero and the number of them equals 2°.

Since for every two vertices v’ = (vy,---,v.), v = (v{,---,vy) of a
monochrome b;-cube K (ngz), > n,()z), h) one has
U 'U 'U U”U” U”
1v2° b; 1Y2 b
||U f U lf” S 2607

it follows from the identity above that for any h € S;, 1 =1,2,---,t
TP f = £l < 2% e

It is clear then that for any h € ﬂle S; one has:

(RN f||<Z2”“ =«
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This finishes the proof of Theorem 2.4.
O

Let us show now how Theorem 2.4 can be used for a proof of Theorem
2.1. Asbefore, let U;, i = 1,2, - -, t be unitary operators on H = L?(X, B, i)
defined by (U f)(z) = f(Tix).

Let H = 'ng) &) 'ngn be the corresponding splittings. For each B C
{1,2,---,t} we have the Uy, - - -, Up-invariant subspace

s = (N HO) 0 (N H):

i€EB

Then H = ®BC{1,2,~~~,t} Hp. For the same reasons as before we shall assume
without loss of generality that on each Hp no degeneration caused by “linear
dependence” between Uy, Us,, - - -, U; occurs.

Let f = 14 and consider the corresponding decomposition

f: Z f37

BC{1,2,---,t}

where fp € Hp.
Taking into account that for distinct B the spaces Hp are mutually
orthogonal, we have:

u(AN TP P gy = (5 g MyE ™) P g

= > s uupE® g ® ),
BC{1,2,-,t}

One can show with the help of the van der Corput trick that under our
assumptions, for any B # ()

N-1

. ]- 1N 2(N t(n
Jim 5 X UV -0 1) =0,

so that
N—1

- pL(r)ppa(n) | ppe(n)
l}&l&fﬁzou(AHTll 5% - T, A)
n=

N-1
P | ~ .
=lim inf N Z {f, Ufl(")Ug’?(") . .Uft(n)f>’

N—>oo
n=0

where f is the component of f in the subspace 02:1 ’H((f).
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a

the function f satisfies f > 0, f Z 0. Also, by Theorem 2.4, for any € > 0
the set

As with the component f € ﬂ$=1 ’Hﬁi)t above, and for the same reasons,

Se={neZ: |ur™ur™...urmi_ f| <
is syndetic. Therefore, if € is small enough, we shall have
N—1

| (1) s (n o
lgri)loréfﬁ nz_;)'u,(AﬂT{) ( )sz ( )'"Ttp( )A)
= ]
=lim inf — (f, []{’1(”)(]5’2(”)._.U]got(n)f>
N—ooo N —

| & rrp1(n)yrpa(n) pe(n) £
>lminf = > (fUPTURT 0P f) > 0.
n€eS.N[0,N—1]

3. Discourse on SN and some of its applications.

In this section we shall address among other things the question of what
the density version of Hindman’s theorem (Theorem 1.5) is. It will turn out,
somewhat surprisingly, that, appropriately formulated, Hindman’s theorem
is its own density version! First of all, recall from Section 1 that positive
upper Banach density does not provide us with the right notion of largeness
for Hindman’s theorem. One of the reasons that upper Banach density
seems to have nothing to do with Hindman’s theorem is that it, unlike
Szemerédi’s theorem, which deals with shift-invariant configurations, deals
with configurations which are not shift-invariant. On the other hand, any
set of positive upper Banach density contains plenty of configurations of the

form
t+ FS(w;)j-, =t+{Za:j : D#acC {1,2,---,71,}}.
JjEa
Here “plenty” means, in particular, that if E C Z with d*(£) > 0, then for
any n, there are zq,---,x, such that
d*{t:t+ FS(z;)j_; C E} > 0.

This result has a very simple proof which we shall describe now. Let E C Z,
d*(E) > 0. As observed above (see the speculations following the proof of
Lemma 1.13), there exists z; with 1 < x; < WlE) + 1 satisfying d* (E N

(E — z1)) > 0. Repeating this argument with the set EN (E — 1) leads to
finding x5 > z; with

& ((Em (B —a)n((EN (8 - 1)) - u))
=d*(EN(E—z1)N(E —22) N (E — (214 22))) > 0.
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It is clear that after n — 2 additional steps we will arrive at

d*(Em N (E—a:)) > 0.
e€FS(z;),

Any t belonging to this intersection will satisfy ¢ + F'S(z;)7_; C E and we
are done.

Being as simple as it is, the result proved just now is a strengthening of a
key lemma needed by D. Hilbert in his famous paper [H1] where he showed
among other things that if f(x,y) € Z[z, y] is an irreducible polynomial then
for some zy € Z the polynomial of one variable f(zg,y) is also irreducible.
The interesting thing is that although Hilbert’s lemma is weaker than the
density version of it just proved, namely he shows that for any finite coloring
N = [J;_, C; and for any n, one of C;, ¢ = 1,-- -, 7 has the property that for
some z, j = 1,2,---,n and for infinitely many ¢ one has t+FS(z;)7_, C C;,
his proof is two pages long. Another interesting thing is that the proof we
have indicated contains in embryo the main idea behind the proof of the
much stronger Hindman’s theorem that we are going to pass to now. Before
starting, we want to formulate an Exercise which shows that it is hopeless
to look for infinite configurations of the form ¢+ F'S(z;)32, in arbitrary sets
of positive upper density.

Exercise 8. Show that for any ¢ > 0 there exists a set ¥ C N with
d(E) > 1 — € and such that E does not contain a subset of the form ¢ +
FS(zj)32,. (The reader may try first to produce E with d*(E) > 1 —e.
This is much simpler.)

Though the original proof of Hindman’s theorem in [H2] (as well as that
in [Ba]) was combinatorial in nature, the real key to understanding Hind-
man’s theorem lies in SN-the Stone-Cech compactification of N. More
precisely, it is the algebraic structure of SN, naturally inherited from ad-
dition in N, that is behind a proof of Hindman’s theorem which we want
to present in this section. We shall also indicate in this section some other
applications of SN.

Since according to the author’s experience most mathematicians (unless
they are logicians or set-theoretical topologists) are not overly knowledge-
able about or thrilled by SN in general and its algebraic structure in par-
ticular, we shall start with some generalities. For more details the reader
is encouraged to consult, say [GJ], [C], or Sections 6-9 in [H3]. It was the
paper [H3] which convinced the author of the effectiveness of ultrafilters in
solving Ramsey-theoretical questions and indeed in the ergodic theory of
multiple recurrence.

We take SN, the Stone-Cech compactification of N to be the set of
ultrafilters on N. Recall that a filter p on N is a set of subsets of N satisfying
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(i) 0 & p,

(i) A € p and A C B implies B € p, and

(iii) A € p and B € p implies AN B € p.

A filter is an ultrafilter if, in addition, it satisfies

(iv)if r € N and N = A; U Ay U---U A, then A; € p for some 1,
1< <.
In other words, an ultrafilter is a maximal filter. An alternative way of
looking at ultrafilters (and actually the one that we shall adopt) is to identify
each ultrafilter p € SN with a finitely additive, {0, 1}-valued probability
measure /i, on the power set P(IN). The measure y, is naturally defined by
the condition yu,(A) =1 if and only if A € p. Without saying so explicitly,
we will always think of ultrafilters as such measures, but will prefer to write
A € pinstead of p,,(A) = 1. It is their {0, 1}-valuedness and finite additivity
(as well as abundance of ultrafilters with diversified properties) which makes
ultrafilters so suitable for Ramsey theory: the property of being a member
of an ultrafilter fits nicely into the notion of largeness which the second
principle of Ramsey theory encourages us to look for.

Any element n € N is naturally identified with an ultrafilter {A C N :
n € A}. Such (and only such) ultrafilters are called principal. A natural
question which the shrewd reader may ask at this point is: are there any less
dull examples of ultrafilters? The answer is yes ... modulo Zorn’s Lemma,
which the reader is kindly encouraged to accept. The reader is also asked
not to attempt to produce a non-principal ultrafilter without the use of
Zorn’s Lemma (it will not work). See the discussion on pp. 161-162 of
[CN].

Suppose that C is a family of subsets of N which has the finite intersec-
tion property. Then there is some p € SN such that C € p for each C € C.
Indeed, let

C = {B C P(N) : B has the finite intersection property and C C B}.

Clearly, C # (0 (since C € C). Also, the union of any chain in C is a member
of C. By Zorn’s Lemma there is a maximal member p of C, which is actually
maximal with respect to the finite intersection property and hence a member
of BN. To see that non-principal ultrafilters exist take for example

C={ACN:A°=N\ A is finite }.

Clearly C has the finite intersection property, so there is an ultrafilter p €
BN such that C' € p for all C' € C. It is easy to see that such p cannot be
principal.

For another example, take D = {A C N : d(A) = 1}. Again, D clearly
satisfies the finite intersection property. If p is any ultrafilter for which
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D C p, then any member of p has positive upper density. (If d(4) = 0, then
A®= (N\ A) € D.) These examples hint that the space SN is quite large.
It is indeed: the cardinality of SN equals that of P(P(N)) ([GJ], 6.10 (a)).

Now a few words about topology in AN. Given A C N, let A = {p €
BN : A € p}. Theset G = {A: A C N} forms a basis for the open sets (and
a basis for the closed sets). To see that G is indeed a basis for a topology
on AN observe that if A, B C N, then AN B = AN B. Also, N = AN and
hence Uzg A = BN. (Notice also that AU B = AU B.) The crucial fact
for us is that, with this topology, SN satisfies the following.

Theorem 3.1. SN is a compact Hausdorff space.

Proof. Let K be a cover of BN by sets belonging to the base G = {A :
A C N}. Let C € P(N) be such that X = {A: A € C}. Assume that K has
no finite subcover. Consider the family D = {A¢: A € C}. There are two
possibilites (each leading to a contradiction):

(i) D has the finite intersection property. Then, as shown above, there
exists an ultrafilter p such that A¢ € p for each A° € D. Since p is an
ultrafilter, A¢ € p if and only if A € p. On the other hand, since K covers
BN, for some element A of the cover p € A, or equivalently A € p, a
contradiction. (ii) D does not have the finite intersection property. Then
for some A;,---, A, € C one has (),_; A = 0, or J;_; A4; = N, which
implies that |J;_, A; = AN. Again, this is a contradiction, as we assumed
that K has no finite subcover.

As for the Hausdorff property, notice that if p,q € BN are distinct
ultrafilters then since each of them is maximal with respect to the finite
intersection property, neither of them is contained in the other. If A € p\ ¢,
then A€ € ¢\ p, which means that A and A€ are disjoint neighborhoods of
p and q.

O

Remark. Being a nice compact Hausdorff space, SN is in many respects
quite a strange object. We mentioned already that its cardinality is that
of ’P(’P(N)). It follows that SN is not metrizable, as otherwise, being a
compact and hence separable metric space, it would have cardinality not
exceeding that of P(IN). Another curious feature of SN is that any infinite
closed subset of SN contains a copy of all of SN.

Since N = N, it is natural to attempt to extend the operation of addi-
tion from (the densely embedded) N to SN. Since ultrafilters are measures
(principal ultrafilters being just the point measures corresponding to the
elements of N), it comes as no surprise that the extension we look for takes
the form of a convolution. What is surprising, however, is that the algebraic
structure of SN was explicitly introduced only about 35 years ago (in [CY]).
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In the following definition, A — n (where A C N, n € N) is the set of all m
for which m +n € A. For p,q € N, define

p+g={ACN:{neN:(A—n)€p}eq}.

Exercise 9. Check that for principal ultrafilters the operation + cor-
responds to addition in N.

Remarks. 1. Despite the somewhat repelling phrasing of the opera-
tion just introduced in set-theoretical terms, the perspicacious reader will
notice the direct analogy between this definition and the usual formulas for
convolution of measures u, v on a locally compact group G (cf. [HR], 19.11):

o v(A4) = /G v(a1A) du(z) = /G WAy du(y).

2. Before checking the correctness of the definition, a word of warning;:
the introduced operation + (which will turn out to be well defined and
associative) is badly noncommutative. This seems to contradict our intu-
ition since (N, +) is commutative and in the case of o-additive measures
on abelian semi-groups convolution is commutative. The explanation: our
ultrafilters, being only finitely additive measures, do not obey the Fubini
theorem, which is behind the commutativity of the usual convolution.

Let us show that p+gq is an ultrafilter. Clearly () € p+q. Let A, B € p+q.
This means that {n e N: (A—n) €p} €qand {ne N: (B —n) € p} €q.
Since p and ¢ are ultrafilters, we have:

{neN:(ANB)—ne€p}
={neN:(A-n)ep}nN{neN:(B—-n)€p}eq

Assume now that A C N, A € p 4+ q. We want to show that A° € p+ q.
Since A & p + ¢, we know that {n € N : (A —n) € p} € ¢, or, equivalently,
{n € N: (A —n) € p}¢ € q. But this is true precisely when {n € N :
(A° — n) € p} € q, which is the same as A° € p + ¢. It follows that
p+q € BN.

Let us now check associativity of the operation +. Let A C N and
p,q,7 € BN. One has:

Aep+(g+r)e{neN:(A—n)epteqg+r
s{meN: ({neN:(A-n)ept—-m)eq}er
o{meN:{fneN:(A-m—-n)ep}eq}er
s{meN:(A-m)ep+qlers Ac(pt+q) +r.
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Theorem 3.2. For any fixed p € SN the function A\,(¢) =p+ ¢ isa
continuous self map of SN.

Proof. Let ¢ € SN and let U be a neighborhood of A,(¢g). We will show
that there exists a neighborhood B of ¢ such that for any r € B, Ap(r) €U.
Let A C N be such that A\y(¢q) =p+¢q€ ACU. Then A € p+q. Let us
show that the set

B={neN:(A—-n)e€p}

will do for our purposes. Indeed, by the definition of p + ¢, B € g, or, in
other words, ¢ € B. If 7 € B then B = {n € N : (A —n) € p} € r. This
means that A € p+7 = A,(r), or \,(r) € A€ U.

O

With the operation +, SN becomes, in view of Theorem 3.2, a compact
left topological semigroup. Such semigroups are known to have idempotents,
which is the last preliminary result that we need for the proof of Hindman’s
theorem. For compact topological semigroups (i.e. with an operation which
is continuous in both variables), this result is due to Numakura, [N]; for left
topological semigroups the result is due to Ellis, [E1].

Theorem 3.3. If (G, *) is a compact left topological semigroup (i.e.
for any z € G the function A\;(y) = z * y is continuous) then G has an
idempotent.

Proof. Let
G={ACG:A+#0,Ais compact, Ax A={z*xy:z,y€ A} C A}.

Since G € G, G # (). By Zorn’s Lemma, there exists a minimal element
AegG. Ifz € A, then = x A is compact and satisfies

(x+xA)*(zxA)C(xxA)x(AxA) C(zxA)x ACxx(A*xA) CzxA

Hence zx A € G. But x * A C Ax A C A, which implies that x * A = A.
Thus x € x * A, which implies that z = z x y for some y € A. Now consider
B={z€ A:x%z=ux}. The set B is closed (since B = \;1({z})), and we
have just shown that B is non-empty. If 21,29 € B then z1 20 € AxAC A
and 2 x (21 %22) = (T *21)*x20 =x %29 =x. So B€ G. But B C A and
hence B = A. So z € B which gives  x z = .

O

For a fixed p € SN we shall call a set C' C N p-big if C' € p. Clearly,
being a member of an ultrafilter is a notion of largeness in the sense discussed
in Section 1. The notion of largeness induced by idempotent ultrafilters is
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special (and promising) in that it inherently has a shift-invariance property.
Indeed, if p € SN with p + p = p then

Aeps Aep+pe{neN:(A—n)€p}ep.

A way of interpreting this is that if p is an idempotent ultrafilter, then A is
p-big if and only if for p-many n € N the shifted set (A — n) is p-big. Or,
still somewhat differently: A C N is p-big if for p-almost all n € N the set
(A—n) is p-big. This is the reason why specialists in ultrafilters called such
idempotent ultrafilters “almost shift invariant” in the early seventies (even
before the existence of such ultrafilters was established).

Exercise 10. Let p € SN with p+p = p.
(i) Show that p cannot be a principal ultrafilter.
(ii) Show that for any a € N, aN € p.

Each idempotent ultrafilter p € SN induces a “measure preserving dy-
namical system” with the phase space N, o-algebra P(N), measure p, and
“time” being the “p-preserving” N-action induced by the shift. The two pe-
culiarites about such a measure-preserving system are that the phase space
is countable and that the “invariant measure” is only finitely additive and
is preserved by our action not for all but for almost all instances of “time”.
Notice that the “Poincaré recurrence theorem” trivially holds: If A € p
then, since there are p-many n for which (A —n) € p, one has, for any such
n, AN (A —n) € p. We are now in position to prove Hindman’s theorem
which we rephrase slightly as follows.

Theorem 3.4. Let p € SN be an idempotent and let N = (JI_; C;.
If C = C; is p-big, then there exists an infinite sequence (z;)32, C C such
that
FS((z;)32,) = {Zxa 0#aCN, |a < oo} c C.

jEa

Proof. Let p € SN be an idempotent ultrafilter. Assume that N =
U;_, Ci and choose i € {1,---,7} such that C = C; € p. Since C € p
and p+p = p, one has Ry = {n € N : (C —n) € p} € p. Choose any
z1 € RiNC €p. Then 21 € C and A; = CN(C — z1) € p. Consider

Ry={neN:4;—n=((CN(C—=z1)—n) €p}ep.
Choose any x5 € RoN A1 € p. Since p is an idempotent, it is a non-principal

ultrafilter and its members are infinite sets. This allows us always to assume
in the course of this proof that an element chosen from a member of p lies
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outside of any chosen finite set. In particular, we may assume that x5 > ;.
Notice that

29 € A1 =CN(C—1x1) = {x1,22, 21 + 22} = FS(a;j)?:l cC.
Now, since x5 € Ra,
A2:A1ﬂ(A1—.’172):Cﬂ(C—.’I71)ﬂ(Cﬂ(C—.’ITl)—CEz)

=CN(C—-z1)N(C —xz2)N(C —x1 — x2) € .

And so on! At the nth step we will have

Ak:Ak_lﬂ(Ak_l—CUk):Cﬂ( ﬂ (C—t)) € p,

teFS(z;)k_,
and defining
Ry={neN:(Ax—n)€plep
and choosing xx4+1 € Rg+1 N Ak, Tp41 > 1 + -+ -+ + 2k, we will have:

Tr41 € m (C - t)7

teFS(z;)k_,

Ak+1:Akﬂ(Ak—fEk+1):Cﬂ( ﬂ

teFS(z;)it]

(C—t)) € p.

The sequence (xj);?‘;l thus created has the property that for any n € N,
FS(z)7_; C C. Hence FS(z;)32, C C and we are done.

O

Remarks. 1. The proof of Theorem 3.4 which we have presented here
is essentially due to S. Glaser, who never published it. For an account of
the story behind the discovery of Glaser’s proof, see [H5].

2. Theorem 3.4 tells us that a notion of largeness which is behind
Hindman’s theorem is that of being a member of an idempotent ultrafilter.
In a sense, it is the notion. Indeed, though the IP-set F'S(x;)$2; which in
the course of the proof was found inside a p-big set C is not necessarily itself
p-big, one can show that for any IP-set S there exists an idempotent p such
that S is p-big. One can say that Hindman’s theorem is the density version
of itself!
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One can show that SN has 2¢ idempotents, where c¢ is the power of
continuum (this follows from the fact that SN has 2¢ disjoint closed sub-
semigroups. See for example [D]). One can expect that some of these idem-
potents are good not only for Hindman’s theorem but, say, for van der
Waerden’s theorem too. As we remarked above, any IP-set is a member of
an idempotent. Since there are “thin” IP-sets that do not contain length 3
arithmetic progressions (take for example F'S(5")5%,), it is clear that not
every idempotent may reveal something about van der Waerden’s theorem.
But, there is an important and natural class of idempotents, namely mini-
mal ones, which do (this became clear after Furstenberg and Katznelson put
to use in [FK3] the minimal idempotents in Ellis’ enveloping semigroup-an
object similar in many ways to SN). An idempotent p € SN is called min-
imal if it belongs to a minimal right ideal in SN. One can show that any
minimal right ideal in SN has the form ¢ + SN (warning: not every right
ideal has this form).

This terminology fits well with the usual definition of minimality in
topological dynamics. Recall that a topological dynamical system (X,T),
where X is a compact space and T is a continuous self-map of X, is called
minimal if for any € X one has (T"z),en = X. Notice that for each
p € BN the right ideal p + SN is compact (since p + SN is the continuous
image of SN under the continuous function A\,-see Theorem 3.2). Let X, =
p + AN and define T: X, - X, by Te = 2+ 1, x € X, (here 1 is the
principal ultrafilter of sets containing the integer 1). It is not hard to show
that the ideal p+ AN is minimal if and only if the dynamical system (X, T’)
is minimal.

One can also show that any minimal idempotent p € SN has the prop-
erty that if C' € p then C is piecewise syndetic, namely the intersection of a
syndetic set with a union of intervals [a,,, b,], where b,, — a,, — oc.

Exercise 11. (i) Show that a set S C N is piecewise syndetic if and
only if there exist ¢1,:--,tx € N such that d*(UfZl(S —t;)) =1
(ii) Derive from (i) that any piecewise syndetic set is a.p.-rich.

Theorem 3.5. If N = | J|_, C; then one of C;, i = 1,---, 7 is a.p.-rich
and contains an IP-set.

Proof. Take any minimal idempotent p € SN. If C; € p then by
Theorem 3.4, C; contains an IP-set. Also, since p is minimal, C; is piecewise
syndetic and hence a.p.-rich.

O
The combinatorial results mentioned in this section so far can be ob-

tained also by methods of topological dynamics introduced in [FW1] and
further developed in [F2] and [FK3]. As a matter of fact, one can show
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([BH1]) that so-called central sets, which are defined dynamically and which
are shown in [F2] to be combinatorially rich, are exactly the members of
minimal idempotents in SN. The following is an example of a result for
whose proof the space of ultrafilters seems better suited.

Theorem 3.6 ([BH1]). For any finite coloring of N, one of the cells
contains arbitrarily long arithmetic progressions, arbitrarily long geometric
progressions, an additive IP-set, and a multiplicative IP-set.

A multiplicative TP-set is, in analogy with the additive case, any infinite
sequence together with all finite products of its distinct elements. The rea-
son that SN is an appropriate tool for proving the foregoing result lies with
the fact that it has also another semigroup structure—the one inherited from
the usual multiplication in N, and is a left topological compact semigroup
with respect to this structure, too. In particular, there are (many) multi-
plicative idempotents, and in complete analogy to the proof of Theorem 3.4
one can show that any member of a multiplicative idempotent contains a
multiplicative IP-set. It follows that for any finite coloring N = (J_, C;,
there exists a monochromatic additive IP-set and a monochromatic mul-
tiplicative IP-set, but not necessarily of the same color. It was shown by
Hindman in [H4] that a single C;, ¢ = 1,---,r always contains both an
additive and a multiplicative [P-set. This as well as the other assertions
of Theorem 3.6 are consequences of the following result combining the two
structures in N.

Theorem 3.7 ([BH1|, Corollary 5.5). For any finite partition N =
U;Zl C;,oneof C;,2=1,---,r, is a member of a minimal additive idempo-
tent and also a member of a minimal multiplicative idempotent.

It would be interesting to find a dynamical proof of Theorem 3.6.

The discussion above shows that ultrafilters are a convenient tool in
partition Ramsey theory. We shall try to explain now why idempotent ul-
trafilters (and IP-sets which are intrinsically related to them) are helpful
in topological dynamics and ergodic theory, and through this, in density
Ramsey theory. This discussion will continue into the next section where
we shall touch upon issues of multiple recurrence and further refinements
of the polynomial Szemerédi theorem. Throughout this section we shall be
concerned with single recurrence (both topological and measure theoreti-
cal). Since we are mainly concerned with Z and Z* actions we shall confine
ourselves to dealing exclusively with the additive structure of SN.

Let X be a topological space and let p € SN. Given a sequence (T, )neN
we shall write p-lim,, ., = y if for every neighborhood U of y one has
{n:z, € U} € p. It is easy to see that p-lim, =, exists and is unique in
any compact Hausdorff space.

The following is a special case of 6.10 in [BH1].
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Theorem 3.8. Let X be a compact Hausdorff space, let p,q € SN and
let (z,)nen be a sequence in X. Then

q+p-limz, = p-limg-limz .
reN teN seN

In particular if p is an idempotent and p = ¢, one has

p-limz, = p-limp-limzs,.
reN teN seN

Proof. Recall that
g+p={ACN:{neN:(A—-n)€q}ecp}.

Let x = g+p-lim, . 2. It will suffice for us to show that for any neighbor-
hood U of z, we have that for p-many ¢, ¢-lim .y 244+ € U. Fix such a U.
We have {r: z, € U} € ¢+ p, so that

{t:{s:z,eU}—teq}={t: {s:z,0:. €U} €q} €p.

This implies, in particular, that for p-many ¢, ¢-lim o st € U.
O

Here is a simple application of Theorem 3.8. Recall that a continuous
self-map of a compact metric space X is called distal if

1I;f1 d(T"z, T"y) =0 = x = y.

The innocent looking fact that distal transformations are invertible is not
transparent from the definition. Using Theorem 3.8 we can prove this as
follows.

Let T: X — X be a distal transformation of a compact metric space X.
Since a distal map is clearly injective we need only show that it is onto.
Fix an idempotent p € SN. We shall show something stonger, namely that
for any z € X p-lim,cn T™2 = z and hence 2 = T'(p-lim,, .5 7™ 'x). Let
y = p-lim,, . T"z. By Theorem 3.8 one has

p-lim Ty = p-lim T (p-lim T*z)
neN neN keN
= plimp-lim 7" %z = p-lim T"z = y.
neN keN neN

Since T is distal, the relations p-lim,.nT"2z = y = p-lim, . T"y imply
xr =1vy. We are done.
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The conventional proof of the fact that distal transformations are invert-
ible goes by way of the Ellis enveloping semigroup (see for example [Br], p.
60, or [E2]), which is typically non-metrizable. Our proof uses SN, which
is also non-metrizable, but a modification of the proof using the notion of
IP-convergence (which will be explained below) in place of p-limits can serve
to place this fact entirely within the scope of metric spaces.

Recall that a point « € X is uniformly recurrent with respect to T: X —
X if for any neighborhood U of x the set {n : T"x € U} is syndetic. It is
well known that if z is a uniformly recurrent point then the orbit closure
(T™x)nen is a minimal T-invariant subset of X. It is not hard to show (see
6.9 in [BH1]) that if p € BN is a minimal idempotent, and p-lim, . T"y = ¥
then y is a uniformly recurrent point. It follows that in a distal system every
point is uniformly recurrent. This in its turn implies by a routine argument
(see for instance Thm. 1.17 in [F2]) that any distal system is semisimple,
namely, the disjoint union of minimal subsets.

Let us indicate now how one can modify proofs involving limits along
idempotent ultrafilters so that there will be no reference to non-metrizable
spaces. The notation that we will introduce will also be used in the next
section.

Let F denote the family of non-empty finite subsets of N. Following
the notation in [F2] and [FK2], let us call any sequence indexed by F an F-
sequence. Notice that an IP-set in Z is nothing but an F-sequence (ng)acr
with the property that n, + ng = nqug whenever a N3 = 0. For o, 8 € F
we shall write a < # if maxa < min S.

If a collection of sets a; € F, ¢« € N has the property o; < i1,
1=1,2,---, then the set

f(l)z{Uai:,BE]:}

1€

is called an IP-ring. Note that the mapping ¢: F — F1) (B) = Uiep @i
is bijective and structure preserving.

Since elements of F() are naturally indexed by elements of F, any
sequence indexed by F() may itself be viewed as an F-sequence. The
following exercise is an equivalent form of Hindman’s theorem.

Exercise 12. If F = |J,_, C;, then one of C;, i = 1,---,7 contains an
[P-ring.

Let (24)aer be an F-sequence in a topological space X, let x € X, and
let (1) be an IP-ring. One writes

IP-lim 2z, =2
acFM)



ERGODIC RAMSEY THEORY 35

if for any neighborhood U of  there exists oy € F) such that for any
a € FO) with a > ay one has z, € U.

The following theorem is Theorem 8.14 in [F2] and is proved by a diago-
nal procedure with the help of Hindman’s theorem as formulated in Exercise
12.

Theorem 3.9. If (z,)acr is an F-sequence with values in a compact
space X, then there exists z € X and an IP-ring F(!) such that

IP-lim =z, = z.
aceF1)

The following result is a special case of Lemma 8.15 in [F2].

Theorem 3.10. Let T be a continuous self map of a compact metric
space X and let (n4)aecr C N be an IP-set. Then for any z € X there
exists an TP-ring F(!) and a point y € X such that

IP-lim T"ex =IP-lim T"~y =y.

acF M) acF@)
We leave it now safely to the reader to verify that the proof of the invertibil-
ity of distal transformations given above can be rewritten in the language
of IP-limits with no significant changes.

As we shall see in the next section, besides being more constructive,
IP-limits allow refined formulations and non-trivial strengthenings of poly-
nomial ergodic theorems. On the other hand, limits along idempotent ul-
trafilters, when applicable, have the advantage of there being no need to
constantly be passing to convergent subsequences, thereby making the state-
ments and proofs cleaner and more albebraic.

We shall conclude this section by presenting an ultrafilter proof of a
special case of the following refinement of the Furstenberg-Sarkozy theorem,
Theorem 1.17. (At the same time this refinement is a special case of a
more general theorem proved in [BFM] which will be discussed in the next
section.)

Theorem 3.11. Assume that p(t) € Q[t] with p(Z) C Z and p(0) = 0.
Then for any invertible probability measure preserving system (X, B, u, T),
any A € B, u(A) > 0, and any IP-set (ng)acr C N, there exists an IP-ring
FU) c F such that

A P(na) 2
IP-lim pu(ANTP"'A) 2 u(A4)*.

In particular, if deg p(n) > 0 then {p(n) : n € (ny)acx} is a set of recurrence
for any IP-set (ng)acr-
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In a situation similar to that of Section 2, Theorem 3.11 follows from a
Hilbertian result which we now formulate in the language of ultrafilters:

Theorem 3.12. Let ¢(¢) € QJt] with ¢(Z) C Z and ¢(0) = 0. Let U be a
unitary operator on a Hilbert space H. Let p € SN be an idempotent. Then,
letting p-lim,, Ui f = P, f, where the limit is in the weak topology, P,
is an orthogonal projection onto a subspace of H.

To see that Theorem 3.11 follows from Theorem 3.12, take H = L?(X, B,
u), and take U to be the unitary operator induced by T', that is, (Ug)(z) :=
g(Tz), and let f = 14. One then has

plim p(ANTIM A) = plim@UIA™ f, f) = (Bof, f)
neN neN

= (Bpfs pf){1,1) 2 (Bpf, 1)° = (£, 1) = (14,1)° = (u(4))".
We leave to the reader to justify the replacement of p-lim,, ¢ p(ANT4™) A)
by

-li a(n)
Iafé}l(%l p(ANTH™A).

(Hint: any member of any idempotent contains an IP-set, and any IP-set is
a member of some idempotent.)

Proof of Theorem 3.12 (for g(n) = n?). As the reader (after reading
Section 2) may guess, the proof boils down to finding an appropriate split-
ting of H. This guess is true but the situation is more complicated when
compared with the one which was encountered in Section 2. As we saw in
Section 2, when one is interested in studying limits of the form

the splitting H = H.® Hm works for all q(t) € Z[t]. Our case here is more
delicate. It may occur, for example, that for some f € H, p-lim, . U*" f =
f weakly for all @ € N but p-lim,, .y U™ f = 0 weakly.

It follows that the splittings which enable one to distinguish between
different kinds of asymptotic behaviour of U™ along p € SN may depend
on the polynomial ¢(n). To convey the gist of the proof we shall utilize a
splitting which allows one to prove the theorem for g(n) = n? (and indeed
for any other quadratic polynomial). Recall that any ball of fixed radius is
compact in the weak topology, which will assure the existence of the weak

p-limits that we shall deal v2vith in the course of the proof.
Let P, f = p-lim,.nU™ f, f € H. Put

H, ={f € H: there exists a € N with p-limUe f = f}.
neN
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Notice that since [|[U*" f|| = || f||, the relation p-lim, . U f = f may be
thought of as valid in the sense of both strong and weak convergence. It is
not hard to see that the orthocomplement of H,., which we shall denote by
H.n, may be described as follows:

Hp ={f €H: foralla e N, p-limU* f = 0 weakly }.
neN

Let us start by showing that P, f = 0 for f € H,,. To this end we shall
need the following IP-version of the van der Corput trick:

If (xn)nen C H is a bounded sequence and if for any h € N we have

p-im(zp 1, Tn) = 0,
neN
then p-lim,cn(2n, g) = 0 for any g € H.
The proof of this is almost trivial: without loss of generality consider
g € span(z,)nen and use the hypotheses. The fact that for f € H,,,

p-lim, o U f = 0 weakly follows routinely now with the help of the IP
van der Corput trick.

Let us consider now the space H,. As ||P,f|| < ||f]| for all f € H, in
order to show that P, is a projection, all we have left to establish is that

P2f = P,f for all f € H,. Since H, = J,cn Ha, where the potentially
trivial spaces H,, a € N, are defined by

Ho ={f €H :plimU f = [},
neN

we may assume without loss of generality that for some a € N,

plimU® f = f.
neN

Notice that this implies that for any b dividing a one also has

p-limU f = f
neN

(since the convergence in this case is strong as well as weak). We shall
need to make use of Exercise 10 (ii), which enables us to take p-limits along
those n € N which are divisible by any prescribed integer. This will be
expressed by the notation p-lim,cn 4,,- We also remark that since for any

m with a|m, p-lim, . U™ f = f, for any such m we have p-lim,, U"2f =
p-lim,, o U tmn f
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We now may write

P2f = plimU™ (p-limU™ f) = plim U™ (plimU™ f)

meN neN meN,a|m neEN

= plim U™ (plimU™ 2™ f) p-lim p-lim U+ f
meN,a|lm neN meN neN

= plimU™ f = P,f.
neN

(We have used at one stage weak continuity of the operator U m2, and at
another stage Theorem 3.8.) This finishes the proof in the case g(n) = n?.

4. IP-polynomials, recurrence, and polynomial
Hales-Jewett theorem.

The results discussed in the previous sections, especially Theorems 1.18,
1.19, 1.21, and 3.11 indicate that there are two types of subsets of Z which
stand out as being related to particularly nice refinements of ergodic theo-
rems pertaining to single and multiple recurrence: IP-sets and polynomial
sets, namely sets of the form p(Z) = {p(n) : n € Z}, where p(n) € Qn],
p(Z) C Z, and p(0) = 0. As regards IP-sets, these may be viewed as kinds
of generalized additive subsemigroups of Z. It is so since given an IP-set
(Ta)aer generated by the sequence (z7)72,; C Z (where F is the set of non-
empty finite subsets of N and z, := ) jea i, @ € F), the commutative
and associative partial operation defined by the formula z,+z3 = z4ug has
only one flaw: it is only valid when aoN 3 = (). However, since one generally
deals in treatments such as ours with limits of expressions in which the pa-
rameter (in this case @ € F) goes to infinity, this limitation turns out not
to hinder us, particularly in light of the fact that in IP ergodic theory one
deals with IP-convergence rather than with the Cesaro convergence typical
of classical ergodic theory.

On the other hand, a fundamental property of polynomials is that after
finitely many applications of the difference operator they become linear.
This often allows one to apply an inductive procedure deducing results for
polynomials of a certain degree from similar results for polynomials of lesser
degree.

The following weakly mixing PET (Polynomial Ergodic Theorem) is
obtained by an application of this procedure. (It is at the same time an
important special case of Theorem 1.19. See also [BM1].) Recall that a
measure preserving system (X, B, u, T') is weakly mixing if the only eigen-
functions are the constants, that is, if f(Tz) = Af(z) for f € L?(X, B, u),
A € C implies that f =const a.e.

Theorem 4.1 ([B4]). Suppose that (X,B,u,T) is a weakly mixing
system and let p; (t) € Q[t], i = 1,2, -- -, k be polynomials satisfying p;(Z) C
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Z, degp;(t) > 0, and deg (pi(t) —pj(t)) >0,1<1i#j<k. Then for any
f1,--+, fr € L°(X, B, ) one has

N
lim H% Z fi (Tpl(")x)f2(Tp2(”)x) - fo (TP (n)x)
n=1

N—oo
k
- I;II/fl d“HL?(X) =0.

Returning to IP-sets, notice that whereas Z has only countably many
additive subsemigroups (and only countably many polynomial subsets of
the form p(Z) with p(t) € QJt]), an IP-set has uncountably many subsets
which are themselves IP-sets. This fact lends additional peculiarity to and
hints at greater diversity of the ergodic phenomena inherent in IP-ergodic
theory.

We want now to address the question as to whether or not there exists
a viable joint framework for ergodic theory along polynomial sets and along
IP-sets. Theorem 3.11, for example, would be in this vein. It turns out, in
fact, that Theorem 3.11 admits of significant strengthening even in the case
of single recurrence. The goal of our present discussion is to provide some
motivation for such a generalization. As we shall see, polynomial images of
IP-sets (namely sets of the form {p(z4,) : @ € F}), which are dealt with in
Theorem 3.11, are only a special case of a much wider family of subsets of
Z which deserve to be called polynomial IP-sets.

Let us return for a moment to usual polynomials belonging to Z[t] (we
leave to the reader the verification of the fact that the whole discussion is
extendable to polynomials from Q[t] taking on integer values on integers).
More specifically, let us examine some of the (numerous) ways of arriving at
quadratic polynomials with zero constant term. One possibility is exempli-
fied by formulas like n2 =1+3+---+ (2n — 1), n € N. Another approach
is to seek solutions to functional equations such as

pla+b+c)—pla+b)—p(b+c)—pla+c)+p(a)+p(b)+p(c) =0, a,b,c € Z.

Still another possibility is to take the “diagonal” of a bilinear form. For
example, if g(n,m) = anm + bn + ¢m, then putting n = m one gets p(n) =
an? + (b + ¢)n.

The latter two approaches make perfect sense for Z-valued functions
of F-variables. Call a function f:F x F — Z bilinear if the F-sequence
obtained by fixing one of the arguments of g satisfies the IP-equation z, +
g = ZTaug, @ N B = 0. Then the “diagonal” p(a) = g(a, @) is a natural
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analog of a quadratic polynomial. One will arrive at the same family of
functions g: F — Z by solving functional equations of the form

glaUBUy) +gla)+g9(B) +g9(v) =g(aUp) +g(BUv)+g(aUy),
a,B,yeF,anB=0,any=0,8N~y=0.

The IP-quadratic functions which one obtains this way include (but
are not limited to) expressions like g(a) = ngky + lama, o € F, where
(Ng)acF, (ka)acF; (la)acr and (my)ocr are IP-sets. A natural subclass of
IP-polynomials may be obtained in the following way. Let q(1,to, - -,tx) €
Z[t1,---,tx] and let (nSj))ag, i = 1,2,---k be IP-sets. Then g(a) =
q(ng}),n&z), .- -,n&k)) is an example of an IP-polynomial. If, say, deg q(t1,
-+, tr) = 2, then g(a) will typically look like

of0) = 3 nm) + Y kY.
=1 =1

For IP-polynomials of the type just described we have the following joint
refinement of Theorems 1.17 and 3.11.

Theorem 4.2 ([BFM]). For any polynomial p(z1,---,zx) € Z[x1,--,

x| satisfying p(0,---,0) = 0, and for any k IP-sets (n&l))aey.—,---,

() aer, the set {p(ny’,---,nl?) : a € F} is a set of recurrence.

While generalizing Theorem 1.17, Theorem 4.2 does not contain as a spe-
cial case the more general Theorem 2.1. To formulate a result which would
contain Theorem 2.1 as well, we need the following definition. Suppose that
T= {T, : w € W} is an indexed family of measure preserving transforma-
tions of a probability space (X, B, 11). One says that T has the R-property if
for any A € B with p(A) > 0 there exists w € W such that u(ANT,1A) > 0.

Theorem 4.2 tells us that the family {Tp(”gxl)""’”&k)) : o € F} has the R-
property. This is a special case of the following.

Theorem 4.3 ([BFM]). Suppose that p;(z1,- -, zk) € Z[z1,- - -, zk] sat-
isfy p;(0,---,0) =0, 1 <4 < m and that (n((;))aey: are IP-sets, 1 <17 < k.

o

Let p&j) = p;(n ,---,n&k)), 1 < 7 < m. Then for any commuting invert-

(i)
ible measure preserving transformations T4, - - -, Tpy, the family {T]}~, T} * :
a € F} has the R-property.

Exercise 13. Derive Theorem 2.1 from Theorem 4.3.

Theorem 4.3 has the following combinatorial corollary, which can be
obtained by applying Furstenberg’s correspondence principle for Z*-actions.
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Theorem 4.4. Suppose that a set £ C Z* has positive upper Banach
density and let p;(x1,---,zk) € Z[z1,- - -, xg] satisfy p;(0,---,0) =0, 1 <
1 < t. Let (ng))ae; be IP-sets in N, 1 <4 < k. Then for some (z1,---,z:),
(y1,--+,yt) € E and « € F one has

z1—y1 =p (P, n{P)
T2 — Y2 = pz(nfxl)a e '7nc(1k))

Ty — Yt = pt(’n’((xl)a oo '7ng¢k))‘

The next natural question is whether Theorem 4.4 is a special case of
a general IP-polynomial Szemerédi theorem, which would bear to Theorem
4.4 the same relation as Theorem 1.19 bears to Theorem 2.1. The answer
is yes and is provided by the following theorem.

To formulate it we need the notion of an IP*-set in Z*. This notion
(which actually can be defined in any semigroup) is introduced in a way
completely analogous to that for Z in Section 1. Given any infinite sequence
G = {g; : i € N} C ZF, the IP-set generated by G is the set T' = {ga }acF,
where go ==, gi- A subset S C Z* is called IP* if for any IP-set I' C ZF
one has SNT # (.

Exercise 14. Check that Lemma 1.13 holds for IP*-sets in Z!.

Theorem 4.5 ([BM2]). Suppose that T7, - - -, T, are commuting invert-
ible measure preserving transformations of a probability space (X, B, u).
Suppose that k,t € N and that we have polynomials p;;(ni, -+, ng) €
Zny,---,ng), 1 <i<r, 1< j<thaving zero constant term. Then for
every A € B with pu(A) > 0 the set

t T

(11 7o) 4) > 0

1 j=

Ra = {(nla"'ank) € Zk ,LL(

(2

is an IP*-set in Z*.
Some of the corollaries of Theorem 4.5 are collected in the following list.
(i) Already the case k = 1 of Theorem 4.5 gives a refinement of the
polynomial Szemerédi theorem (Theorem 1.19 above) as well as a strength-
ened form of its special case, Theorem 1.21. Indeed, Theorem 4.5 says that,
when k£ = 1, the set

Ra={ne€Z:pAnTPITy=™pe™an. .
N Tfu(n)TéJm (n) . Tf"(n)A) > 0}
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is IP*, hence syndetic, hence of positive lower density.

(ii) In addition, Theorem 4.5 enlarges the family of configurations which
can always be found in sets of positive upper Banach density in Z™. For
example, since for any IP-sets (ng))aef, 1 =1,2,---,k, any measure pre-
serving system (X, B, 4, T) and any A € B with u(A) > 0 there exists « € F

such that

k
Dy (D 2y ()

pANT AT AN ... A Tme & 4) >0,
one obtains (via Furstenberg’s correspondence principle) the fact that for
any E C Z with d*(E) > 0 there exists z € Z and « € F such that

{x, T+ n&l), T+ n((ll)n((f), e, T+ ng})ng) x ng“)} C E.

The following theorem gives a more general corollary of Theorem 4.5 (which
includes Theorem 1.20 as a special case).

Theorem 4.6. Let P:Z" — Z! r,l € N be a polynomial mapping
satisfying P(0) = 0, let F' C Z" be a finite set, let S C Z! be a set of
positive upper Banach density and let (ng))ae F,t=1,2,--- 7 be arbitrary
IP-sets. Then for some u € Z! and o € F one has:

{u + P(n&l)xl,ng)xz, .- -,ng)a:r) (21,29, -, Ty) € F} C S.

(iii) The following exercise serves as a good reaffirmation of the third
principle of Ramsey theory.

Exercise 15. Given k£ commuting invertible measure preserving trans-
formations Ty,---, Ty of a probability space (X, B, u), and polynomials
pi(n,m) € Z[n,m] with p;(0,0) = 0, s = 1,2,---,k, and a set A € B
with p(A) > 0, let

Ra={(n,m): ,u(AﬂTfl("’m)Aﬂ---ﬂT,fk(n’m)A) > 0}.

Show that for any polynomials g1, g2 € Z[n] satisfying ¢;(0) = ¢2(0) = 0,
the set {n : (q1(n),g2(n)) € Ra} is an IP*-set in Z.

We want to conclude this section with a brief discussion of the combi-
natorial tool which is instrumental in the proof of Theorem 4.5, namely the
polynomial extension of Hales-Jewett theorem ([HJ]), which was recently
obtained in [BL2]. The by now classical Hales-Jewett theorem which deals
with finite sequences formed from a finite alphabet rather than with integers,
may be regarded as an abstract extension of van der Waerden’s theorem.
To formulate the Hales-Jewett theorem we introduce some definitions.
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Let A be a finite alphabet, A = {ay,---,ar}. The set W, (A) of words
of length n over A can be viewed as an abstract n-dimensional vector space
(over A). Having agreed on such a geometric terminology, we look now for
an appropriate notion of a (combinatorial) line. Since A is not supposed to
have any algebraic structure, the only candidates for combinatorial lines in
W, (A) are sets of n-tuples of elements from A which obey the equations
z; = x; or ; = a, a € A. For example, if A = {1,2,3} and n = 2, there
are 4 lines: {11,22,33}, {11,12,13}, {21,22,23} and {31, 32,33}. Another
way of introducing lines is the following. Let W,,(A,t) be the set of words
of length n from the alphabet A U {t}, where t is a letter not belonging to
A which will serve as a variable. If w(t) € W,,(A,t) is a word in which the
variable ¢ actually occurs, then the set {w(t)}1ea = {w(a1), -, w(ag)} is a
combinatorial line.

Theorem 4.7 ([HJ]). Given any alphabet A = {a1,---,ax} and r € N
there exists N = N(k,r) € N such that if n > N and W, (A) is partitioned
into r classes then at least one of these classes contains a combinatorial line.

Remarks. (i) Taking A = {0,1,2, --,s—1} and interpreting W,,(A4) as
integers to base s having n or less digits in their s-expansion one sees that
in this situation the elements of a combinatorial line form an arithmetic
progression (with difference of the form d = 2?2—01 a;s* where a; = 0 or 1).
Thus van der Waerden’s theorem is a corollary of the Hales-Jewett theorem.

(ii) If one takes A to be a finite field F, then W, (F) = F™ has a
natural structure of an n-dimensional vector space over F. In this case a
combinatorial line is an affine linear one-dimensional subspace of F™.

An interesting feature of the Hales-Jewett theorem (and the one show-
ing that it is, in a sense, the “right” result) is that one can easily derive
from it its multidimensional version. Let t{,---,t,, be m variables and
let Wy, (A;ty,---,t,) be the set of words of length n over the alphabet
AU {ty, -, tp}. If for some n w(ty, -, tm) € Wp(Ajty,---ty) is a word
in which all the variables appear, the result of the substitution

{w(tl, . "’tm)}(tl,---,tm)eAm = {w(ail, e ag,) tap; €A =1,2,- .m}

is called a combinatorial m-space. It easily follows from Theorem 4.7 that
for any r,m € N there exists N = N(k,r,m) such that if n > N and
A = {a1,---,a} is partitioned into r classes then at least one of these
classes contains a combinatorial m-space.

Exercise 16. Derive from the multidimensional (or, rather, multipa-
rameter) version of the Hales-Jewett theorem just described the Gallai-
Griinwald theorem (Theorem 1.10 above). (With a little extra effort one
should also be able to get Theorem 2.5.)
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We are going to formulate now one more version of the Hales-Jewett

theorem. Given an infinite set M and k € N, denote by Pj(fk) (M) the set
of k-tuples of finite (potentially empty) subsets of M and let us call any

k -+ 1)-element subset of P(k) M) of the form
f

{(al,az, o), (@ Uy, e, o), (@1, Uy, - - ag),
"'a(al,az,"',akU’Y)};
where 7 is non-empty and disjoint from «q, - - -, ag, a simpler and denote it
by S(a, g, -, ak;y) (a familiar Euclidian simplex with vertices
($1,° -, 8k), (s1+ h,s9,---, k), (51,82 + hy---,8K),- -+, (81,82, -, Sk + h)
should come to the reader’s mind).

Theorem 4.8. For any k¥ € N and any finite coloring of Pj(fk) (N), there
exists a monochome simplex.

Let us show that Theorem 4.8 follows from Theorem 4.7. Let
X: P_)Ek)(N) — {1a 27 Ty T}

be a finite coloring. Let W = |J;2, W;(A) denote the set of all finite

words over the alphabet A = {0,1,---,k}. Let o:W — P}k)(N) be the
mapping which corresponds to any word w = wiws ---w,, € W a k-tuple
(o1,---,0) € Pj(rk)(N) by the rule:

OziZ{j:'ij’i}, ’i:1,2,---,k.

Notice that this induces a coloring x of W defined by x = x o ¢. By
Theorem 4.7 there exists a x-monochrome combinatorial line {w(t)}tca.-
One easily checks that the y-monochrome image of this line under ¢ forms
a simplex. The following example should make it completely clear. Let
A =1{0,1,2,3,4} and assume that
I = {2t1t213}4c4
= {(2010213), (2111213), (2212213), (2313213), (2414213)}

is a x-monochrome combinatorial line. Letting v = {2,4}, one observes

that ©(2010213) = ({3,6},{1,5},{7},0)
©(2111213) = ({3,6} U~,{1,5},{7},0)
©(2212213) = ({3,6}, {1,5} U+, {7},0).
©(2313213) = ({3,6}, {1,5}, {7} U~,0)
©(2414213) = ({3,6},{1,5},{7},7)
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This gives us a monochrome simplex S({3,6},{1,5}, {7}, 0;~).
Exercise 17. Show that Theorem 4.8 implies Theorem 4.7.

To give the reader a feeling of what the polynomial Hales-Jewett theo-
rem is about we shall bring now two equivalent formulations of one of its
simplest cases, the “quadratic” nature of which is self-evident. The first
formulation is a natural refinement of Theorem 4.8. The second one shows
the connection between the polynomial Hales-Jewett theorem and topolog-
ical dynamics, by means of which the polynomial Hales-Jewett theorem is
proved in [BL2].

Theorem 4.9. For any k£ € N and any finite coloring of P}k)(N x N)
there exists a monochrome simplex of the form

{(a17a27"'7ak)7 (alu (7 X 7)7a27"'1ak)7(a17a2 U (’Y X 'Y);"';ak)?

"',(017042;"'704ku(7X'Y))}a

where v is a finite non-empty subset of N and the Cartesian square vy x y
is disjoint from a;, - - -, -

Theorem 4.10. Let (X, p) be a compact metric space. For some k € N,
let

T(al’ Qg, -, ak) — T(a170t2,-..,ak)’ (a17 g, -, ak) c Pf(‘k) (N X N)
be a family of self-mappings of X satisfying the condition

for any finite sets a;, 8; C N x N satisfying (o; N 3;) = 0,
i=1,---,k, (a1UBy,-arUBL) _ o, o) p(Bis--Br)

Then for any € > 0 and for any z € X there exist a non-empty set v C N
and finite sets a1, -+, ax C N x N such that o;N(yxvy)=0,i=1,2,---, k
and

diam {T(al,a2,~~~,ak)x7T(a1U(7X7),a2,~~~,ak)x’T(al,azu(vxy),---,ak)x’
. 7T(a1,a2,~-~,akU(’yX’y))x} < €.

Before discussing some applications of Theorems 4.9 and 4.10, let us
show their equivalence.
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(4.9) — (4.10). Given the compact space (X, p) together with the family
of its self-mappings

T2 @) (g, -+, ap) € PP (N x N),
a point £ € X and € > 0, let {z1,---,2,} be an §-net in X. This net
naturally defines a coloring x: P}k)(N x N) — {1,2,---,r} by the rule:

X((alu A2, 0, ak)) = min {Z : p(T(al’a2,m’ak)x’ 'T") < g}

Let S(a1,ag, -, ak;7y X v) be a monochrome simplex as guaranteed by
Theorem 4.9. Then clearly,

diam {T(alaa27"'aak)x’ T(alu(’yx’)’)aa?v"',ak)m, T(Q1,O¢2U(’)’X’y)7...’ak)$,

. _T(a1,a2,"',akU(’)’><’y))x} < €.

(4.10) — (4.9) For fixed r, k € N let Q) be the space of all r-colorings
of P{*)(N'x N) (namely, the set of mappings x: Py (N xN) = {1,2,---,r}
equipped with the metric

p(x1, X2) = inf{ ! ‘X((Oq, : ",ak)) = X2((011, : ",Olk)) for any

N+1°
(1, ) € {1,2,---,N} x {1,2,---,N}}.

Clearly, (Qf«k), p) is a compact metric space. Note that p(x1,x2) < 1 if and
only if x1(0) = x2(0). Define mappings

Tlevar ). W) QR (ay, g, -, ax) € PP (N x N)
by
(T2 o)y ) (By, Ba,++, Br) = X ((01 U Br, 2 U Ba, -+, g U Br)).
Applying Theorem 4.10 for ¢ = 1 and given r-coloring x, we get (a1, -, ak)

€ P;k) (N xN) and a finite non-empty set v C N, such that a; N (yx7y) = 0,
1=1,2,---,k and such that

diam {T(a17a27"'7ak)x’ T(alu(7x7)7a27"'aak)x, T(al,a2U(’)’X’)’),"',ak)X’

.. .T(a17a27"'7aku(7x7))x} < 1.
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By the remark above we get
T(a17027"'7ak)x(®) — T(alu(7X7)7a277ak)X(®)
— T(al,QZU('YX’Y)a"'vak)X(@)
— T(al)a2)"'7aku(7x7))x(®)’
or, equivalently,

X((a17a2’ T '7ak)) = X((al U (7 X 7)aa2a T '7ak))
X((a17a2 U ('Y X '7)7 o '7ak))

= x((a1, 22, -, ar U (v X 7))).

Let us derive now some combinatorial consequences from the “qua-
dratic” Hales-Jewett theorem. Let k,7 € N be given and let yn:N —

{1,2,---,7} be a coloring of N. Induce a coloring x: Pf(k)(N) —{1,2,--,
r} in the following way. First of all, for any finite non-empty set &« C N x N

define
x(@) =xn( > ts).
(t,s)Ea

Notice that if & =y x v, then Z(t’s)@ ts is a perfect square. If o = 0, let
x(a) =1. For any (a1, 0, -, ax) € Pf¥ (N x N) let

xX((a1, @2, -+, ag)) :=xN< doots+2 > stk Y ts).

(t,s)6a1 (taS)EaQ (tas)eak

Let S(aq,---,ak;y X ) be a x-monochrome simplex whose existence is
guaranteed by Theorem 4.10. Then, letting v = Z(t,s)éal ts and ¢? =

Do (t,5)eyx USs We see that
i (0) = xn (0 + 2) = xne(v + 2¢2) = - - = xn (v + k2).

We have obtained the following “quadratic” van der Waerden theorem.

Theorem 4.11. For any k,r € N, if N = (JI_, C; then one of C;,
i=1,2,---,r contains a configuration of the form {v,v +c2,---, v + kc?}.
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Exercise 18. Derive from Theorem 4.9 the following combinatorial
result. For any finite coloring of Z™ there exist (aq,---,a,) € Z" and c € N
so that the configuration

{(al’a2’ .. '701’!1,)7(0’1 + 62, 012’ .- '7an)7

(a17a2+c2a"'7an)7"'7(a17a’27"',an+62)}
is monochromatic.

The general theorem proved in [BL2] allows one to derive many more
combinatorial results as well as results belonging to the realm of topological
dynamics, all of which have intrinsic polynomial features. To get a feeling
how the polynomial Hales-Jewett theorem may be utilized in the course of
a proof of a result pertaining to measurable multiple recurrence, the reader
is referred to [BM1].

We conclude this section by formulating a topological recurrence theo-
rem which is, in a sense, the most general “commutative topological qua-
dratic” recurrence result.

Theorem 4.12. Let (X, p) be a compact metric space. For a fixed
k € N, let (Ti(;))(i,j)eNxN, l =1,2,---,k be commuting continuous self-
mappings of X. For any finite nonempty o € N X N define

V= [ 7Y, 1=1,2,--,k
(ij)€a

Then for any € > 0 there exists z € X and non-empty finite v C N, such
that for I =1,2,---, k one has

p(TW(QW:c, x) < €.

5. Some open problems and conjectures.

Our achievements on the theoret-
ical front will be very poor indeed
if...we close our eyes to problems and
can only memorize isolated conclu-
sions or principles...

—Mao Tsetung, “Rectify the Party’s
style of work”, [Mao], p. 212.

A mathematical discipline is alive and well if it has many exciting open
problems of different levels of difficulty. This section’s goal is to show that
this is the case with Ergodic Ramsey Theory.
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To warm up we shall start with some results and problems related to
single recurrence. The following result ([K2]) is usually called Khintchine’s
recurrence theorem (cf. [Pal, p. 22; [Pe|, p. 37).

Theorem 5.1. For any invertible probability measure preserving sys-
tem (X,B,u,T), e > 0, and any A € B theset {n € Z : y(ANT"A) >
wn(A)? — €} is syndetic.

One possible way of proving Theorem 5.1 is to use the uniform version
of von Neumann’s ergodic theorem: if U is a unitary operator acting on a
Hilbert space H, then for any f € H

N-1

1
lim S UM =Puuf =f",

N-M—soco N—M
n=M

where the convergence is in norm and F;,, is the orthogonal projection onto
the subspace of U-invariant elements.

Noting that (f*, f) = (f*, f*) and taking H = L?(X, B, ), (Ug)(z) :=
g(Tx), g € L*(X,B, 1), and f = 14 one has

;N1
N—lli\/.fni)oo N-M Z pANT"A)
n=M
;N
n=M
=(F5 1) = (5 PO > (P55 10)° = (1) = w(A)?

The following alternative way of proving Theorem 5.1 is more elementary
and has two additional advantages: it enables one to prove a stronger fact,
namely the IP*-ness of the set {n € Z : u(ANT"A) > u(A)? — ¢} and is
easily adjustable to measure preserving actions of arbitrary (semi)groups.

Note first that if Ax, kK = 1,2, --- are sets in a probability measure space
such that u(Ag) > a > 0 for all £ € N then for any € > 0 there exist i < j
such that u(A4; N A;j) > a® — e. Indeed, if this would not be the case, the
following inequality would be contradictive for sufficiently large n:

n2a? < (/ilAi>2S/(ilAi)2:i“(Ai)+2 Z p(A; NA))

1<i<j<n

(ct. [G)).
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To show that {n € Z : u(ANT™A) > u(A)?—e} is an IP*-set, let (n;)52,
be an arbitrary sequence of integers and let Ay = T™+ Tk A k € N. By
the above remark, there exist ¢ < j such that

0,2—6 S ,LL(AZHAJ) — /,L(Tn1+"'+niAﬂT"1+"'+njA) — /L(AﬂT"i+1+"'+nJ'A)_
This shows that
{neZ:w(ANT"A) > p(A)? — ey NFS(ni)2, # 0

and we are done. We remark also that the IP*-ness of the set {n € Z :
w(ANT™A) > u(A)? —e} is equivalent to the “linear” case of Theorem 3.11.

Since in mixing measure preserving systems for any A € B one has
lim,, 00 p(ANT™A) = u(A)?2, we see that in a sense, Khintchine’s recurrence
theorem is the best possible. We have however the following.

Question 1. Is it true that for any invertible mixing measure preserving
system (X, B, p, T') there exists A € B with u(A) > 0 such that for all n # 0,
(AN TrA) < p(A)?? How about the reverse inequality pu(A N TmA) >
pu(A)*?

Definition 5.1. A set R C Z is called a set of nice recurrence if for
any invertible probability measure preserving system (X, B, u,T) and any
A € B one has limsup,, , . ,cp H(ANT™A) > p(A)>.

Exercise 19. Check that all the sets of recurrence mentioned in Sections
1 through 4 are sets of nice recurrence.

A natural question arises whether any set of recurrence at all is actually
a set of nice recurrence. Forrest showed in [Fo| that this is not always so.
See also [M] for a shorter proof.

We saw in Section 1 that sets of recurrence have the Ramsey property: if
R is a set of recurrence and R = |J;_, C; then at least one of Cj, i =1,---,r
is itself a set of recurrence.

Question 2. Do sets of nice recurrence possess the Ramsey property?

A natural necessary condition for a set R C Z \ {0} to be a set of
recurrence is that for any a € Z, a # 0, RN aZ # (. In particular, the
set {2"3% : n,k € N} is not a set of recurrence. But what if one restricts
oneself to some special classes of systems?

Question 3. Is it true that for any invertible weakly mixing system
(X,B,u,T) and any A € B with u(A) > 0 there exist n,k € N such that

p(ANT2"3" 4) > 07

Some sets of recurrence have an additional property that the ergodic
averages along these sets exhibit regular behavior. For example, we saw in
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Section 2 that for any ¢(t) € Z[t] and for any unitary operator U: H — H
the norm limit limpy_, % ij:l U1 f exists for every f € H. The fol-
lowing theorem, due to Bourgain, shows that much more delicate pointwise
convergence also holds along the polynomial sets.

Theorem 5.2 ([Bo3]). For any measure preserving system (X, B, u, T'),
for any polynomial ¢(t) € Z[t] and for any f € LP(X, B, 1), where p > 1,
limy o0 2 Zfzv:l f(T9™)z) exists almost everywhere.

Question 4. Does Theorem 5.2 hold true for any f € LY(X, B, u)?

Another interesting question related to ergodic averages along polyno-
mials is concerned with uniquely ergodic systems. A topological dynamical
system (X,T), where X is a compact metric space and T is a continuous
self mapping of X is called uniquely ergodic if there is a unique T-invariant
probability measure on the og-algebra of Borel sets in X. The following well
known result appeared for the first time in [KB]:

Theorem 5.3. A topological system (X, T) is uniquely ergodic if and
only if for any f € C(X) and any z € X one has

N-—-1
liw_ - > £(070) = [ £ an
=0

Nooco N
n—=

where y is the unique T-invariant Borel measure.

Question 5. Assume that a topological dynamical system (X,T) is
uniquely ergodic and let p(t) € Z[t] and f € C(X). Is it true that for all
but a first category set of points z € X limy_,00 & Zg;ol f(TPMz) exists?

The next question that we would like to pose is concerned with the pos-
sibility of extending results like Theorem 4.2 and 4.3 to polynomial expres-
sions involving infinitely many commuting operators. We shall formulate
it for a special “quadratic” case which is a measure theoretic analogue of
Theorem 4.12 for k¥ = 1. Recall that an indexed family {7}, : w € W} of
measure preserving transformations of a probability measure space (X, B, y)
is said to have the R-property if for any A € B with u(A) > 0 there exists
w € W such that u(ANT,tA) > 0.

Question 6. Let (Tj;)( jjenxn be commuting measure preserving
transformations of a probability measure space (X, B, u). For any finite
non-empty set « C N x N let T, = H(i’j)@l T;;. Is it true that the family
of measure preserving transformations

{Tyx~: 0 #~ CN,~ finite}
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has the R-property?
We move on now to questions related to multiple recurrence.

Definition 5.2. Let £ € N. A set R C Z is a set of k-recurrence
if for every invertible probability measure preserving system (X, B, u,T)
and any A € B with p(A) > 0 there exists n € R, n # 0, such that
p(ANTrANT?AN---NTFA) > 0.

One can show that items (i), (ii), (iv) and (v) of Exercise 6 are examples
of sets of k-recurrence for any k. On the other hand, an example due to
Furstenberg ([F], p. 178) shows that not every infinite set of differences
(item (iii) of Exercise 6) is a set of 2-recurrence (although every such is a
set of 1-recurrence).

Question 7. Given £k € N, k > 2, what is an example of a set of
k-recurrence which is not a set of (k 4+ 1)-recurrence?

Question 8. Given a set of 2-recurrence S, is it true that for any
pair T7,T5 of invertible commuting measure preserving transformations of
a probability measure space (X, B, ) and a set A € B with u(A) > 0 there
exists n € S such that py(ANTPANTEA) > 07 (The answer is very likely
no.) Same question for S a set of k-recurrence for any k.

Question 9. Let k£ € N, let Ty,T5,---,T; be commuting invertible
measure preserving transformations of a probability measure space (X, B, u)
and let p1(t),p2(t),---,px(t) € Z[t]. Is it true that for any fi,---, fx €
L™ (X, B, p)

N
1 " » ]

exists in L?-norm? Almost everywhere?

Remark. The following results describe the status of current knowl-
edge: The answer to the question about L?-convergence is yes in the fol-
lowing cases:

(i) k=2, p1(t) = p2(t) =t ([CL

(ll) k= 2, T1 = Tz, pl(t =

(lll) k= 3, T1 = Tg = T3, pl(t) = at, p2
([CL2], [FW2]).

The answer to the question about almost everywhere convergence is yes
for k =2, Ty = Ty, p1(t) = at, pa2(t) = bt, a,b € Z ([Bo4]).

Question 10. Let £ € N. Assume that (X, B, 4, T) is a totally ergodic
system (i.e. (X,B,p,T*) is ergodic for any k # 0). Is it true that for

t) = bt, ps(t) = ct, a,b,c € Z

—~
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any set of polynomials p;(t) € Z[t], i = 1,2,-- -, k having pairwise distinct
(non-zero) degrees, and any fq,---, fr € L°(X, B, ) one has:

N
lim H% Z FUTP ™ ) fo (TP ) .. o (TP )
n=1

N—>oo
k
- H/fidﬁ"Hm(X,B,u) =07
=1

Remark. It is shown in [FW2] that the answer is yes when k = 2,
p1(t) =t, p2(t) = t2. See also Theorem 4.1.

We now formulate a few problems related to partition Ramsey theory. A
unifying property that many configurations of interest (such as arithmetic
progressions or sets of the form FS(z;)7_;) have is that they constitute
sets of solutions of (not necessarily linear) diophantine equations or systems
thereof. A system of diophantine equations is called partition regular if for
any finite coloring of Z \ {0} (or of N) there is a monochromatic solution.
For example, the following systems of equations are partition regular:

T1+ xr3 = 229 r+y=t
To + T4 = 223 T+z=1u
T3+ x5 = 214 z+y=v
T4+ x6 = 225 r+y+z=w

A general theorem due to Rado gives necessary and sufficient conditions
for a system of linear equations to be partition regular (cf. [Ra], [GRS] or
[F2]). The results involving polynomials brought forth in Sections 1-4 hint
that there are some nonlinear equations that are partition regular too. For
example, the equation z — y = p(z) is partition regular for any p(t) € Z[t],
p(0) = 0. To see this, fix p(¢) and let N = |Ji_, C; be an arbitrary partition.
Arguing as in [B2] one can show that one of the cells C;, call it C, has the
property that it contains an IP-set and has positive upper density. Let
{na}acr be an IP-set in C. According to Theorem 3.11, {p(nq)}acr is a
set of recurrence. This together with Furstenberg’s correspondence principle
gives that for some o € F,

3(@ N (C; —p(na))> > 0.

Ify € (CZ- N (Ci — p(na))) then x = y + p(ny) € C;. This establishes the
partition regularity of x—y = p(z). In accordance with the third principle of
Ramsey theory one should expect that there are actually many x, y, z having
the same color and satisfying  — y = p(z). This is indeed so: using the
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fact that {p(na)}acr is a set of nice recurrence one can show, for example,
that for any € > 0 and any partition N = |J;_, C; one of C;, i = 1,2,---,r
satisfies

d({z € C;:d(Cin (Ci—p(2)) > (A(C)* = ¢}) >0

(cf. [B2], see also Theorem 0.4 in [BM1}).

Question 11. Are the following systems of equations partition regular?
(i) 2 +y? = 22

(i) zy=u, z+y =w.

(ili) = — 2y = p(2). p(t) € Z[t], p(0) = 0.

The discussion in this survey so far has concentrated mainly on topolog-
ical and measure preserving Z"-actions. Ergodic Ramsey theory of actions
of more general, especially non-abelian groups is much less developed and
offers many interesting problems.

In complete analogy with the case of the group Z, given a semigroup G
call a set R C G a set of recurrence if for any measure preserving action
(Ty)gec of G on a finite measure space (X, B, ) and for any A € B with
1(A) > 0 there exists g € R, g # e, such that u(AN T, *A) > 0. Different
semigroups have all kinds of peculiar sets of recurrence. For example, one
can show that the set {1+ £ : k € N} is a set of recurrence for the
multiplicative group of positive rationals. Sets of the form {n® : n € N},
where « > 0, are sets of recurrence for (R, +). As a matter of fact, one can
show (see [BBB]) that for any measure preserving R-action (S?);cr on a
probability space (X, B, i) one has for every A € B that

On the other hand one has the following negative result.

Theorem 5.4 ([BBB]). Let (S?);cr be an ergodic measure preserving
flow acting on a probability Lebesgue space (X, B, i). For all but countably
many « > 0 (in particular for all positive o € (Q \ Z)) one can find an
L*-function f for which the averages Zivzl f(58™ z) fail to converge for
a set of x of positive measure.

It is possible that the countable set of “good” « coincides with N.
Such a result would follow from a positive answer to the following number-
theoretical question which we believe is of independent interest.

Question 12. Let us call an increasing sequence {a, : n € N} C R
weakly independent over Q if there exists an increasing sequence (n;)52; C N
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having positive upper density such that the sequence {a,,, : i € N} is linearly
independent over Q. Is it true that for every a > 0, a ¢ N, the sequence
{n® :n € N} is weakly independent over Q7 (It is known that the answer
is yes for all but countably many «.)

Definition 5.3. Given a (semi)group G, a set R C G is called a set of
topological recurrence if for any minimal action (Ty)g4ee of G on a compact
metric space X and for any open, non-empty set U C X there exists g € R,
g # e, such that (UNT,'U) # 0.

Exercise 20. Prove that in an amenable group any set of (measurable)
recurrence is a set of topological recurrence.

An interesting result due to Kriz ([Kr], see also [Fol, [M]) says that in
Z there are sets of topological recurrence which are not sets of measurable
recurrence. While the same kind of result ought to hold in any abelian
group, and while for any amenable group sets of measurable recurrence are,
according to Exercise 20, sets of topological recurrence, the situation for
more general groups is far from clear. We make the following

Conjecture. A group G is amenable if and only if any set of measurable
recurrence R C (G is a set of topological recurrence.

An intriguing question is, what is the right formulation of the Szemerédi
(or van der Waerden) theorem for general group actions. In this connection
we want to mention a very nice noncommutative extension of Theorem 1.19
which was recently obtained by Leibman in [L2]: he was able to show that
the conclusion of Theorem 1.19 holds if one replaces the assumption about
the commutativity of the measure preserving transformations 7; by the
demand that they generate a nilpotent group. He also proved earlier in [L1] a
topological van der Waerden-type theorem of a similar kind. This should be
contrasted with an example due to Furstenberg of a pair of homeomorphisms
Ty, T of a compact metric space X generating a metabelian group such that
no point of X is simultaneously recurrent for Tj,T> (this implies that for
metabelian groups one should look for another formulation of a Szemerédi-
type theorem).

A possible way of extending multiple recurrence theorems to a situation
involving non-commutative groups is to consider a finite family of pairwise
commuting actions of a given group. Results obtained within such frame-
work ought to be called semicommutative. We have the following

Conjecture. Assume that G is an amenable group with a Fglner se-
oo

quence (F,)5% ;. Let (Tg(l))geg,---,(Tg(k))geg be k pairwise commuting
measure preserving actions of G on a measure space (X, B, ) (“pairwise
commuting” means here that for any 1 <17 # 57 < k and any g,h € G one
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has Tg(i)T,Ej) = T,Ej)Tg(i)). Then for any A € B with p(A) > 0 one has:

e 1
lim inf 7 > wANTVANTITD AN nTHTE - T A) > 0.
"l geF,

Remarks. (i) We have formulated the conjecture for amenable groups
for two major reasons. First of all, the conjecture is known to hold true for
k = 2 ([BMZ], see also [BeR]). Second, in case the group G is countable,
a natural analogue of Furstenberg’s correspondence principle, which was
formulated in Section 1, holds and allows one to obtain combinatorial corol-
laries which, should the conjecture turn out to be true for any k, contain
Szemerédi’s theorem as quite a special case.

(ii) The “triangular” expressions

1 1 2 1 2 k
ANTMANTITH AN nTHTE - TR A

appearing in the formulation of the conjecture seem to be the “right” con-
figurations to consider. See the discussion and counterexamples in [BH2]
where a topological analogue of the conjecture is treated (but not fully re-
solved). We suspect that the answer to the following question is, in general,
negative.

Question 13. Given an amenable group G and a Fglner sequence
(Fn)oL,; for G, let (Ty)geq and (S4)gec be two commuting measure pre-
serving actions on a probability space (X, B, ). Is it true that for any A € B
the following limit exists:

D w(TyAN S,A)?
geEFy

i 1
1m ——-
n—00 |Fn|

We want to conclude by formulating a conjecture about a density ver-
sion of the polynomial Hales-Jewett theorem which would extend both the
partition results from [BL2] and the density version of the (“linear”) Hales-
Jewett theorem proved in [FK4]. For ¢,d, N € N let M, 4 v be the set of
g-tuples of subsets of {1,2,---, N}¢:

Mq,d,N: {(ala"'uaq):ai C {1725"'9N}d7 71219277Q}

Conjecture. For any ¢,d € N and € > 0 there exists C = C(q,d,¢€)

such that if N > C and a set S C M, 4 n satisfies |M|S(i N> € then S
q,a,
contains a “simplex” of the form:
{(ala Qg,y -, O‘q); (al U ’Yda Qg, -+, aq)7 (ala Qg U ’Yda T Olq),

...’(a1’a27...,aquyd)}7
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where v C N is a non-empty set and o; Ny¢ =0 foralli =1,2,---,q.

Remark. For d = 1 the conjecture follows from [FK4]. This paper
contains a wealth of related material and is strongly recommended for re-
warding reading.
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