Ingegneria Edile-Architettura e Ingegneria Design Industriale

Test di Geometria

Tempo a disposizione: 20 minuti

3 Giugno 2024

(Cognome)													(No	me)				(Numero di matricola))									

Stabilire se le seguenti proposizioni sono vere o false:

 ${\tt PUNTEGGIO: risposta mancante = 0; \quad risposta esatta = +3; \quad risposta errata = -2}$

1) Se $f, g : \mathbb{R}^n \to \mathbb{R}^n$ sono appl. lineari, allora $\ker(f) \subseteq \ker(g \circ f)$.								
2) Se λ è autovalore della matrice quadrata A allora $2 \cdot \lambda$ è autovalore della matrice $A \cdot A$.								
3) Se $z = 1 - i$ allora $\frac{2z}{z + \overline{z}} = i$.								
4) Siano V_1 e V_2 sottosp. di \mathbb{R}^5 . Se dim (V_1) = dim (V_2) = 2 allora dim $(V_1 \cap V_2)$ = 1.								
5) $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ è autovettore della matrice $A = \begin{pmatrix} 2 & 0 \\ -6 & -1 \end{pmatrix}$.								
6) Se $A \cdot \vec{x} = \vec{b}$ ha sempre soluzione per ogni \vec{b} allora l'appl. lineare associata ad A è suriettiva.								
7) Siano $A = \{3n \mid n \in \mathbb{N}\}$ e $B = \{5n \mid n \in \mathbb{N}\}$. Allora $A \cap B$ è infinito.								
8) Se una matrice quadrata ha tutti autovalori reali allora è diagonalizzabile.								
9) Se la matrice A ha due colonne uguali allora esiste un vettore $v \neq 0$ tale che $A \cdot v = 0$.								
10) I vettori $v_1 = (-3, 1, 0), v_2 = (-2, 1, 1), v_3 = (0, -1, 2)$ e $v_4 = (2, 1, 3)$ formano una base di \mathbb{R}^3 .								
11) Per ogni $z, w \in \mathbb{C}$, il modulo di $z \cdot w$ è la somma del modulo di z col modulo di w .								
12) L'insieme delle soluzioni di un sistema lineare omogeneo è un sottospazio vettoriale.								