$_{
m fila}\,B$

Ingegneria Edile-Architettura

Test di Geometria

15 Febbraio 2017

																										L					
(Cognome)									(Nome)										_	(Numero di matricola)											

PRIMA PARTE

 ${\tt PUNTEGGIO: risposta \ mancante = 0; \quad risposta \ esatta = +3; \quad risposta \ errata = -1.5}$

Stabilire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
1) Se una matrice 2×2 non è diagonalizzabile allora non ha 2 autovalori distinti.		
2) Se $\lambda \in \mathbb{R}$ e $\mathbf{x} \in \mathbb{R}^n$ è soluzione di un sistema lineare omogeneo, allora anche $\lambda \mathbf{x}$ è soluzione.		
3) Se $T:A\to B$ e $S:B\to C$ sono due funzioni suriettive, allora anche $S\circ T$ è suriettiva.		
4) Se $X = \{y^2 \mid y \in \mathbb{N} \cap [-6, 6]\}$ e $Y = \{2x \mid x \in \mathbb{Z}\}$ allora $X \cap Y$ contiene due elementi.		
5) Una matrice 4×4 ha almeno 2 autovalori distinti.		
6) L'intersezione di due sottospazi vettoriali è un sottospazio vettoriale.		
7) $(i+2)^2(i-2)^2$ è un numero reale.		
8) Siano A, B matrici $n \times n$. Se $\det(AB) \neq 0$, allora A è invertibile.		

Attenzione! Riguardo l'Esercizio 4, ricordare che $0 \notin \mathbb{N}$.

ATTENZIONE: La seconda parte del test è sul retro di questo foglio.

SECONDA PARTE

PUNTEGGIO: risposta mancante o errata = 0; risposta esatta = +2.5;

1) Trovare una base del seguente sottospazio di \mathbb{R}^3 :

$$V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 3x_1 + 6x_2 - 7x_3 = 0\}.$$

RISPOSTA:

2) Applicando il metodo di Gauss-Jordan, trovare l'inversa A^{-1} della seguente matrice:

$$A = \begin{pmatrix} 2 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

RISPOSTA:

3) Data la matrice $A=\begin{pmatrix}1&-1&3\\2&4&-3\end{pmatrix}$ trovare la sua inversa destra B che ha tutti zero nella terza riga.

RISPOSTA:

4) Dati il numeri complesso z=1+i (scritto in forma cartesiana) e il numero complesso $w=(\sqrt{2},\frac{\pi}{4})$ (scritto in coordinate polari), calcolare e scrivere sia in forma cartesiana che in coordinate polari il seguente numero:

$$\frac{\overline{z}^{298}}{w^{300}}$$

RISPOSTA: