fila B

Ingegneria Edile-Architettura

Test di Geometria

penalità	totale

1 Settembre 2015 – tempo a disposizione : $60\ \mathrm{minuti}$

	(Cognome)		(Nome)	(Numero di matricola)
Esercizio 1.	PUNTEGGIO : risposta mancant	e = 0: ri	isposta esatta = +3:	risposta errata = -1.5

 $\bf Attenzione:$ per avere la sufficienza è necessario (ma non sufficiente!) totalizzare almeno 8 punti in questo esercizio.

• Dire se le seguenti proposizioni sono vere o false:

Proposizione		Falsa
1) Sia $z \in \mathbb{C}$. Se $\text{Re}(z) = 0$ allora $\text{Re}(e^z) = 0$		X
2) Sia $z \in \mathbb{C}$. Se $z^3 = -1$ e $z \notin \mathbb{R}$ allora $\text{Re}(z) > 0$	X	
3) Siano H, K sottospazi di \mathbb{R}^7 di dimensione 5. Se $\dim(H \cap K) = 3$ allora $\dim(H + K) \leq 6$		X
4) Sia $f: \mathbb{R}^8 \to \mathbb{R}^{11}$ lineare. Se f è iniettiva allora la dimensione dell'immagine di f è 8	X	
f 5) Sia A una matrice $2x2$ che ha un unico autovalore. Allora A non è diagonalizzabile		X
6) Se il vettore v è perpendicolare sia a w_1 che a w_2 allora è v anche perpendicolare a $w_1 - w_2$	X	
7) Sia $A = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N} \text{ t.c.} n = k^2\} \text{ e } B = \{2, 3, 5, 6\}.$ Allora $A \cap B = \emptyset$	X	
8) Lo spazio vettoriale delle matrici 3x2 ha dimensione 5		X

1) Dati i numeri complessi z=-2i e $w=(\pi+2i)^2$, calcolare e scrivere in forma polare il numero seguente:

$$\frac{e^{w-\pi^2}}{\overline{z}}$$

$$\rho = \frac{1}{2e^4} \; ; \; \vartheta = -\frac{3}{2}\pi$$

2) Sia $g: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare definita ponendo f(x, y, z, w) = (y, 3z - w, x - y).

La matrice associata a g rispetto alla base canonica è:

- $\left(\begin{array}{cccc}
 0 & 1 & 0 & 0 \\
 0 & 0 & 3 & -1 \\
 1 & -1 & 0 & 0
 \end{array}\right)$
- 3) Il polinomio caratteristico della matrice $\begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & 1 \\ 3 & 3 & 1 \end{pmatrix} \grave{e} \qquad \qquad -\lambda^3 + 7\lambda \qquad .$
- 4) Data la matrice $A=\left(\begin{array}{cc} -2 & 1\\ 1 & 2\\ 0 & 1\end{array}\right)$, trovare la sua inversa sinistra B che ha tutti zero

nella seconda colonna: $B = \begin{pmatrix} & & \\ & & \end{pmatrix}$

- $B = \left(\begin{array}{ccc} -1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{array} \right)$
- **5)** Date le matrici $C = \begin{pmatrix} 2 & -1 \\ 1 & -2 \\ 0 & 3 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$, $E = \begin{pmatrix} 2 & 1 \\ -1 & 1 \\ 0 & -1 \end{pmatrix}$, calcolare, se

definita, la matrice C^TE-D . Risposta: $\begin{pmatrix} 0 & 1 \\ -1 & -6 \end{pmatrix}$