$_{\mathrm{fila}}\,A$

Ingegneria Edile-Architettura

Test di Geometria

nenalità	totale
penalità	totale

1 Settembre 2015 – tempo a disposizione : $60\ \mathrm{minuti}$

	(Cognome)	(Nome)	(Numero di matricola)
Esercizio 1.	PUNTEGGIO : risposta manca	nte = 0: risposta esatta = $+3$:	risposta errata = -1.5

Attenzione: per avere la sufficienza è necessario (ma non sufficiente!) totalizzare almeno 8 punti in questo esercizio.

• Dire se le seguenti proposizioni sono vere o false:

Proposizione		Falsa
1) Sia $z \in \mathbb{C}$. Se $\operatorname{Re}(e^z) = 0$ allora $\operatorname{Re}(z) = 0$		X
2) Sia $z \in \mathbb{C}$. Se $z^3 = -1$ e $z \notin \mathbb{R}$ allora $\mathrm{Im}(z) > 0$		X
3) Siano H, K sottospazi di \mathbb{R}^5 . Se $\dim(H) = 3$ e $\dim(K) = 4$ allora $\dim(H \cap K) > 1$	X	
4) Sia $f: \mathbb{R}^{11} \to \mathbb{R}^8$ lineare. Se f non è suriettiva allora la dimensione del nucleo è almeno 4		
5) Se A è una matrice diagonalizzabile, allora tutti i suoi autovalori sono $\neq 0$		X
6) Se un vettore v è perpendicolare a $w_1 + w_2$ allora v è perpendicolare a w_1 oppure a w_2		X
7) Se $A = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N} \text{ t.c. } n = 3k+1\} \text{ e } B = \{2,3,5,6\} \text{ allora } A \cap B = \emptyset$	X	
8) Lo spazio vettoriale delle matrici 3x3 ha dimensione 9	X	

1) Dati i numeri complessi z=3i e $w=(2-\pi i)^2,$ calcolare e scrivere in forma polare il seguente numero:

$$\frac{e^{w^2+\pi^2}}{\overline{z}}$$

$$\rho = \frac{e^4}{3} \; ; \; \vartheta = \frac{\pi}{2}$$

2) Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita ponendo f(x,y,z) = (y,3y-z,x-y+z,x).

La matrice associata a f rispetto alla base canonica è:

- $\left(\begin{array}{cccc}
 0 & 1 & 0 \\
 0 & 3 & -1 \\
 1 & -1 & 1 \\
 1 & 0 & 0
 \end{array}\right)$
- 3) Il polinomio caratteristico della matrice $\begin{pmatrix} 2 & 1 & 2 \\ -1 & 1 & -1 \\ 3 & 1 & 3 \end{pmatrix} \grave{e} \qquad \qquad -\lambda^3 + 6\lambda^2 7\lambda$
- 4) Data la matrice $A=\begin{pmatrix}0&1\\1&0\\2&-2\end{pmatrix}$ trovare la sua inversa sinistra B che ha tutti zero nella

seconda colonna: $B = \begin{pmatrix} 2 & 2 \\ & & \end{pmatrix}$

$$B = \left(\begin{array}{rrr} 1 & 0 & 1/2 \\ 1 & 0 & 0 \end{array}\right)$$

5) Date le matrici $C = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$, $D = \begin{pmatrix} 6 & -6 \\ 3 & -3 \end{pmatrix}$, $E = \begin{pmatrix} 2 & 1 & 0 \\ -1 & -1 & 2 \end{pmatrix}$, calco-

lare, se definita, la matrice $CE^T - D$. Risposta: $\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$