	D
fila	D

Esercizio 1.

Ingegneria Edile-Architettura

Test di Geometria

penalità	totale

risposta errata = -1,5

24 Luglio2015 – tempo a disposizione : $60~\mathrm{minuti}$

(Cognome)	(Nome)	(Numero di matricola)

 $\bf Attenzione:$ per avere la sufficienza è necessario (ma non sufficiente!) totalizzare almeno 8 punti in questo esercizio.

PUNTEGGIO : risposta mancante = 0; risposta esatta = +3;

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$1) \ a \neq 0 \Rightarrow \left e^{a+ib} \right \neq 1$		
2) L'unione di una retta e di un piano passanti per l'origine è un sottospazio vettoriale di \mathbb{R}^3		
3) $z \in \mathbb{C}, \ z ^2 = 4, \ \operatorname{Im}(z) = \sqrt{2} \Rightarrow \operatorname{Re}(z) = \sqrt{2}$		
4) Se $A \in \mathcal{M}_n$ è diagonalizzabile, allora il prodotto dei suoi autovalori è $\neq 0$		
5) Siano $S,T:\mathbb{R}^n \to \mathbb{R}^m$ due applicazioni lineari. L'applicazione somma $(S+T)$ è lineare		
6) I vettori $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$ generano \mathbb{R}^2 .		
7) H, K sottospazi di dim. 3 di uno sp. vett. $V, \dim(H \cap K) = 2 \Longrightarrow \dim(V) \geq 5$		
8) $A \in \mathcal{M}_n, \lambda \in \mathbb{R} \Rightarrow \det(\lambda A) = \lambda \det(A)$		

Esercizio 2.

PUNTEGGIO: risposta mancante o errata = 0; risposta esatta = +2;

- 1) Dati i numeri complessi z = 5i 1 e w = 3i + 2, scrivere in forma **cartesiana** il numero $\frac{w^2 2i}{\overline{z} 4}$:
- 2) Si consideri l'applicazione lineare $\varphi: \mathbb{R}^3 \mapsto \mathbb{R}^3$ data da $\varphi(x,y,z) = (x+y+z,x-y+2z,-x+y-z)$. La matrice di φ associata alla base canonica è: ()
 - 3) Il polinomio caratteristico della matrice $\begin{pmatrix} 1 & 0 & -2 \\ 2 & -1 & 3 \\ 3 & 2 & 0 \end{pmatrix}$ è .
 - 4) Data $A = \begin{pmatrix} 1 & 3 & 2 \\ 4 & 2 & 6 \end{pmatrix}$, trovare la sua inversa destra B che ha tutti zero nell'ultima

riga:
$$B = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

5) Date le matrici $C = \begin{pmatrix} 2 & -1 \\ 1 & -2 \\ 0 & 3 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$, $E = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$, calcolare,

se definita, la matrice $CE + ^tD$