Ingegneria Edile-Architettura

Test di Geometria

penalità	totale

29 Giugno 2015 – tempo a disposizione : 60 minuti

 $\bf Attenzione:$ per avere la sufficienza è necessario (ma non sufficiente!) totalizzare almeno 8 punti in questo esercizio.

• Dire se le seguenti proposizioni sono vere o false:

Proposizione		Falsa
1) Sia V uno sp. vett Se $v_1, v_2, v_3 \in V$ generano V allora v_1, v_2, v_3 sono linearmente indipendenti.		
2) $z \in \mathbb{C}, \ z = 5, \ \operatorname{Im}(z) = 2 \Rightarrow \operatorname{Re}(z) = \pm 1$		
3) Siano $f,g:\mathbb{R}\to\mathbb{R}$ due applicazioni lineari. L'applicazione $f\cdot g$ è lineare.		
4) Una matrice con tutti gli autovalori $\neq 0$ è sempre diagonalizzabile.		
5) Il vettore $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ appartiene allo span dei vettori $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ e $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$		
6) Lo sp. vett. di tutte le matrici 2×3 ha dimensione 6.		
7) $z \in \mathbb{C}, \ z \le 0 \Rightarrow e^z \le 1$		
8) Sia $V \subseteq \mathbb{R}^n$ un sottosp. vett di \mathbb{R}^n . Il complementare $\mathbb{R}^n \setminus V$ è un sottosp. vett.		

Esercizio 2. $\boxed{ \text{PUNTEGGIO} : risposta mancante o errata = 0; }$ risposta esatta = +2;

1) Dati i numeri complessi $z=\frac{\pi}{3}+i$ e $w=-1+\frac{\sqrt{3}}{3}i$, scrivere in forma **polare** il numero $\frac{e^{z^2-\frac{\pi^2}{9}}}{3w+4}: \boxed{\rho=; \theta=}$

2) Sia $A = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$ la matrice associata a un'applicazione lineare $T : \mathbb{R}^2 \to \mathbb{R}^2$ rispetto

alla base canonica, e sia $\mathcal{B}=\left\{\left(\begin{array}{c}1\\2\end{array}\right),\left(\begin{array}{c}-2\\-5\end{array}\right)\right\}$ un'altra base di \mathbb{R}^2 . Calcolare la matrice associata a T rispetto alla base \mathcal{B}

3) Al variare del parametro $k \in \mathbb{R}$, si calcoli il determinante della matrice $B_k = \begin{pmatrix} k-5 & -2 & 1 \\ 3k+9 & k+1 & 3 \\ -2k-2 & 0 & -k-1 \end{pmatrix}$.

4) Trovare tutti i valori di k per cui B_k è invertibile.

5) Date le matrici $C = \begin{pmatrix} 2 & 3 \\ 0 & -1 \\ 1 & -2 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 1 & -1 \\ 2 & -1 & 2 \\ -3 & 0 & 0 \end{pmatrix}$, $E = \begin{pmatrix} 0 & 1 & 0 \\ -2 & -1 & 0 \end{pmatrix}$, calcolare, se definita, la matrice ${}^tD-CE$