

Ingegneria Edile-Architettura

Test di Geometria

16 Febbraio 2015 – tempo a disposizione : $60~\mathrm{minuti}$

	(Cognome)		(Nome)	(Numero di matricola)
Esercizio 1.	PUNTEGGIO : ris	posta mancante $= 0;$	risposta esatta = $+3$;	risposta errata = $-1,5$

 $\bf Attenzione:$ per avere la sufficienza è necessario (ma non sufficiente!) totalizzare almeno 8 punti in questo esercizio.

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
1) $z \in \mathbb{C}$, $\operatorname{Re}(z) = 0$, $\operatorname{Im}(z) = i \Rightarrow z = i$		
$2) (1,-1) \in \mathbb{N} \times \mathbb{R}$		
3) Se $f: \mathbb{R}^n \to \mathbb{R}^m$ è un'applicazione lineare e $V \subseteq \mathbb{R}^n$ un sottospazio, allora $\dim(f(V)) = \dim(V)$		
4) $z \in \mathbb{C}, \ z = 1, \ \text{Re}(z) < \frac{1}{2} \Rightarrow (\text{Im}(z))^2 > \frac{3}{4}$		
5) $A \in \mathcal{M}_2$, se A ha un solo autovalore allore A non è diagonalizzabile		
6) Il prodotto scalare tra i vettori $(-1,2,0)$ e $(0,1,-2)$ è uguale a 0		
7) $\mathbb{N} \cup \mathbb{R} = \mathbb{R}$		
8) Se due vettori non nulli sono ortogonali allora sono linearmente indipendenti		

1) Dati i numeri complessi $z = (\pi + 2i)^2$ e w = 2i, scrivere in forma **polare** il numero $\frac{e^{z+4}}{\overline{w}}$:

 $\rho = ; \theta =$

2) Calcolare l'area S del triangolo in \mathbb{R}^2 di vertici $A=(1,2)\,,\ B=(5,-1)\,,\ C=(3,4).$

S =

3) Data $A = \begin{pmatrix} 1 & -3 \\ 0 & 1 \\ 0 & 2 \end{pmatrix}$, calcolare, se definito, il prodotto $B = A \cdot {}^t A$:

 $B = \left(\begin{array}{ccc} & & \\ & & \end{array}\right)$

- 4) L'inversa della matrice $C = \begin{pmatrix} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$ è: $C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- 5) Che tipo di matrici sono $B \in C$ (rispettivamente, nelle parti $3 \in 4$ dell'esercizio)?

B è

C è