$_{\mathrm{fila}}\,A$

Ingegneria Edile-Architettura

Test di Geometria

 ${\bf 27}$ Gennaio ${\bf 2015}$ – tempo a disposizione : 60 minuti

Esercizio 1.	PUNTEGGIO : risposta manca	nte = 0;	risposta esatta = +3;	risposta errata = -1,5
	(Cognome)		(Nome)	(Numero di matricola)

 \bullet Dire se le seguenti proposizioni sono vere o false:

Proposizione		Falsa
1) $f,g:\mathbb{R}\to\mathbb{R}$ funzioni lineari \Rightarrow la funzione prodotto $f\cdot g$, che a $x\in\mathbb{R}$ associa		
il numero $f(x) \cdot g(x) \in \mathbb{R}$, è lineare		
2) $z \in \mathbb{C}, e^z = 1 \Rightarrow \operatorname{Re}(z) = 0$		
3) H, K sottospazi di dim. 2 di uno sp. vett. $V, \dim(H \cap K) = 1 \Longrightarrow \dim(V) \geq 3$		
4) $A \in \mathcal{M}_n$, 0 autovalore di $A \Longrightarrow$ il polinomio caratteristico $p_A(\lambda)$ è multiplo di λ		
5) $A, B \in \mathcal{M}_n \implies (A+B)^2 = A^2 + 2AB + B^2$		
6) $z \in \mathbb{C}$, $\operatorname{Re}(z) > 0 \Rightarrow -\frac{\pi}{2} < \operatorname{arg}(z) < \frac{\pi}{2}$		
$A = \{x \in \mathbb{N} : \exists y \in \mathbb{N} \ 3y = x\}, \ B = \{x \in \mathbb{N} : \exists y \in \mathbb{N} : x = y^2\}$		
7) $27 \in A \cap B$		
8) $(A \cup B) \cap \{x \in \mathbb{N}: x \leq 2\} = \emptyset$		

- 1) Dati i numeri complessi $z=(1-2i)^2$ e $w=-e^{i\frac{\pi}{2}}+3i-2$, scrivere in forma cartesiana il numero $\frac{w^2+1}{\bar{z}}=$
 - **2)** Si consideri l'applicazione lineare $\varphi:\mathbb{R}^{3}\mapsto\mathbb{R}^{3}$ data da $\varphi\left(x,y,z\right)=(x-3y+z,2x-z,x-y-3z).$

La matrice di φ associata alla base canonica è:

3) Data $A = \begin{pmatrix} 1 & 3 \\ 0 & -1 \\ 0 & 1 \end{pmatrix}$, trovare la sua inversa sinistra B che ha tutti zero nella seconda

colonna: $B = \begin{pmatrix} & & \\ & & \end{pmatrix}$

4) Il determinante della matrice $\begin{pmatrix} -2 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \\ 0 & 1 & -1 & -3 \\ 3 & 0 & 1 & 2 \end{pmatrix}$ è

Date le matrici $A = \begin{pmatrix} -2 & 4 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & -2 \end{pmatrix}, \ B = \begin{pmatrix} -3 & -1 \\ 1 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 3 & 1 \\ 2 & 0 \\ -3 & -1 \end{pmatrix},$

- **5)** calcolare, se definito, il prodotto ${}^tA \cdot C$;
- **6)** calcolare, se definito, il prodotto $B \cdot C$.