$_{ m fila}\,B$

Ingegneria Edile-Architettura

.	1.	\sim	
Test	dı.	Geom	etria

penalità	totale

09 Gennaio 2015 – tempo a disposizione : 50 minuti

	(Cognome)		(Nome)	(Numero di matricola)
Esercizio 1.	PUNTEGGIO : risposta manc	ante = 0 ;	risposta esatta = $+2$;	risposta errata = -1

• Dire se le seguenti proposizioni sono vere o false:

Proposizione		Falsa
1) $f:V \to V$ lineare, λ , μ autovalori di $f \Longrightarrow \lambda - \mu$ autovalore di f		X
2) Se $z^4 = 1$ e $z \notin \mathbb{R}$, allora Re $(z) = 1$		X
3) A diagonalizzabile $\implies {}^t A$ diagonalizzabile	X	
$4) e^{iz} \in \mathbb{R} \Rightarrow z \notin \mathbb{R}$		X
5) H, K sottospazi di dim. 3 di \mathbb{R}^9 , $\dim(H \cap K) = 1 \Longrightarrow \dim(H + K) \geq 5$	X	
$6)A \in \mathcal{M}_n, \ \det{(A)} = 0 \Rightarrow A$ ha una riga o una colonna composta da tutti zeri		X
Sia $A_n = \{A \in \mathcal{M}_n : {}^tA = -A\}$ l'insieme delle matrici antisimmetriche		
7) A_n è un sottospazio vettoriale di \mathcal{M}_n		
8) Il prodotto di due matrici simmetriche è una matrice simmetrica		X
Sia $A\subseteq \mathbb{N}$ l'insieme dei numeri pari e $B\subseteq \mathbb{N}$ l'insieme dei numeri dispari. Allora:		
9) $(4,-1) \in A \times B$		X
$\boxed{ \textbf{10)} \ \mathbb{N} \setminus (A \cup B) = \emptyset }$	X	

- 1) Dati i numeri complessi $z=(1+3i)^2$ e $w=3e^{-i\frac{\pi}{2}}+3i-1$, scrivere in forma cartesiana il numero $\frac{\overline{w}}{z}=\boxed{\frac{2}{25}+\frac{3}{50}i}$
 - **2)** Si consideri l'applicazione lineare $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ data da $\varphi(x,y,z) = (x-y,3x,x-2y+2z)$.

La matrice di φ associata alla base canonica è: $\left(\begin{array}{ccc} 1 & -1 & 0 \\ 3 & 0 & 0 \\ 1 & -2 & 2 \end{array} \right)$

- 3) $A = \begin{pmatrix} 1 & 1 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{pmatrix}$
- 4) Il polinomio caratteristico della matrice $\begin{pmatrix} 3 & -2 & 0 \\ -1 & 0 & 2 \\ -1 & 3 & -2 \end{pmatrix} \grave{e} \quad \boxed{-x^3 + x^2 + 14x 10}.$

Date le matrici $A = \begin{pmatrix} -2 & 0 \\ 0 & 1 \\ 3 & -2 \end{pmatrix}, \ B = \begin{pmatrix} -3 & -1 & 0 \\ 1 & 0 & 4 \end{pmatrix}, \ C = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix},$

5) calcolare, se definito, il prodotto $B \cdot A$;

$$\left(\begin{array}{cc}
6 & -1 \\
10 & -8
\end{array}\right)$$

6) calcolare, se definito, il prodotto $C \cdot B$.

$$\left(\begin{array}{ccc}
-8 & -3 & 4 \\
-6 & -2 & 0
\end{array}\right)$$