fila	D	

Ingegneria Edile-Architettura

Test di Geometria

totale

					17	no	ver	nbr	e 2	201	4 -	- te	mp	00 8	a d	isp	osiz	zioi	ne	: 9	0 n	nin	uti							
]	en	alit	à
			((Cogn	ome	:)											(N	lome	e)					(N	um	ero	di n	natr	icola	.)

SCRIVERE I RISULTATI DIRETTAMENTE SUL TESTO, NON VERRANNO CORRETTI ALTRI FOGLI.

Esercizio 1. Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa			
Dati gli insiemi $A=\{0,1,2\},\ B=\{x\in\mathbb{N}:\ 1\leq x\leq 7\ \land\ x$ pari $\},$ esiste una funzione biunivoca $f:A\to B$					
Dati A,B come sopra, si ha che l'elemento $(0,0)$ appartiene a $A\times B$					
Se A è una matrice diagonale e invertibile, allora A^{-1} è diagonale.					
I vettori $\vec{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ in \mathbb{R}^3 formano un angolo ottuso					
I vettori $\vec{v} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$ sono perpendicolari in \mathbb{R}^3					
L'insieme $ \left\{ \vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3: \ ab + 2bc - ac = 0 \right\} $ è un sottospazio vettoriale di \mathbb{R}^3					
L'insieme $ \left\{ \vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3: \ a+3b=2c \right\} $ è un sottospazio vettoriale di \mathbb{R}^3					
Se la matrice dei coefficienti di un sistema lineare 3x3 ha determinante nullo,					
allora il sistema non ha soluzione.					
Dati tre piani Π_1, Π_2, Π_3 in \mathbb{R}^3 , se Π_1 interseca sia Π_2 che Π_3 ,					
allora il sistema dato dalle loro tre equazioni ha almeno una soluzione.					

Esercizio 2. Consideriamo la matrice $A = \begin{pmatrix} -4 & 3 \\ -1 & 1 \\ 0 & 2 \end{pmatrix}$. Trovare la sua inversa sinistra B che ha come

prima colonna
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.

Soluzione.

$$B =$$

Esercizio 3. Calcolare il prodotto AB e le inverse A^{-1} e B^{-1} (se esistono) delle seguenti matrici:

$$A = \begin{pmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & 1/3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 e
$$B = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Soluzione.

Esercizio 4. Trovare l'equazione $y = ax^2 + bx + c$ della parabola che passa per i punti (-1,6), (0,1), (2,9). **Soluzione.**

Esercizio 5. Calcolare l'area S del triangolo in \mathbb{R}^2 di coordinate $A=(1,-2)\,,\ B=(4,1)\,,\ C=(3,6).$ Soluzione. S=

Esercizio 6.

- 1. Al variare del parametro $t \in \mathbb{R}$, calcolare il determinante della matrice $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & t & 1 \\ 1 & -2 & 0 \end{pmatrix}$.
- 2. Per quali valori di t la matrice A è invertibile?
- 3. Verificare per per t = -1 la matrice è invertibile e calcolare A^{-1} .

Soluzione.

1.
$$det(A) =$$

- 2.
- 3.

$$A^{-1} =$$