fila	В

Ingegneria Edile-Architettura

Test di Geometria

totale

17 novembre 2014 – tempo a disposizione : 90 minuti	
	penalità
(Cognome) (Nome)	(Numero di matricola)

SCRIVERE I RISULTATI DIRETTAMENTE SUL TESTO, NON VERRANNO CORRETTI ALTRI FOGLI.

Esercizio 1. Dire se le seguenti proposizioni sono vere o false:

Proposizione		Falsa
Dati gli insiemi $A=\{0,1,2\},\ B=\{x\in\mathbb{N}:\ x$ è divisibile per 7}, si ha $A\cap B=\emptyset$		
Dati A,B come sopra, esiste una funzione iniettiva $f:A\to B$		
Se A è una matrice diagonale e invertibile, allora A^{-1} è diagonale.		
I vettori $\vec{v} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ sono perpendicolari in \mathbb{R}^3		
I vettori $\vec{v} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ sono perpendicolari in \mathbb{R}^3		
L'insieme $\left\{ \vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : a+c+3c=0 \right\}$ è un sottospazio vettoriale di \mathbb{R}^3		
L'insieme $ \left\{ \vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3: \ ab + bc = -2ac \right\} $ è un sottospazio vettoriale di \mathbb{R}^3		
Se la matrice dei coefficienti di un sistema lineare 3x3 ha una riga fatta tutta di zeri,		
allora il sistema ha infinite soluzioni.		
Dati tre piani Π_1, Π_2, Π_3 in \mathbb{R}^3 , se Π_1 interseca sia Π_2 che Π_3 ,		
allora il sistema dato dalle loro tre equazioni ha almeno una soluzione.		

Esercizio 2. Consideriamo la matrice $A = \begin{pmatrix} 2 & 0 & 3 \\ 1 & -5 & 7 \end{pmatrix}$. Trovare la sua inversa destra B che ha tutti zero nell'ultima riga.

Soluzione.

$$B =$$

Esercizio 3. Calcolare il prodotto AB e le inverse A^{-1} e B^{-1} (se esistono) delle seguenti matrici:

$$A = \begin{pmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & 1/3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 e $B = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.

Soluzione.

Esercizio 4. Trovare l'equazione $y = ax^2 + bx + c$ della parabola che passa per i punti (-1, -4), (0, -1), (2, -7). Soluzione.

Esercizio 5. Calcolare l'area S del triangolo in \mathbb{R}^2 di coordinate $A=(1,-2)\,,\ B=(4,1)\,,\ C=(3,6).$ Soluzione. S=

Esercizio 6.

- 1. Al variare del parametro $t \in \mathbb{R}$, calcolare il determinante della matrice $A = \begin{pmatrix} -2 & 0 & 1 \\ 0 & t & 1 \\ 1 & -1 & 0 \end{pmatrix}$.
- 2. Per quali valori di t la matrice A è invertibile?
- 3. Verificare per per t = -1 la matrice è invertibile e calcolare A^{-1} .

Soluzione.

- 1. det(A) =
- 2.
- 3.

$$A^{-1} =$$