Elementi di Teoria degli Insiemi — Prova scritta del 27 Giugno 2025

Tutte le risposte devono essere giustificate

Buon lavoro!

Esercizio 1. Dimostrare le seguenti proprietà:

- 1. Se κ è un cardinale infinito, allora l'esponenziale ordinale $\alpha^{\beta} < \kappa$ per tutti gli ordinali $\alpha, \beta < \kappa$.
- 2. Se κ è un cardinale non numerabile, allora l'esponenziale tra ordinali $\omega^{\kappa} = \kappa$.
- 3. Se κ è un cardinale infinito, allora l'esponenziale tra ordinali $\alpha^{\kappa} = \kappa$ per ogni $\alpha < \kappa$.

Esercizio 2. Siano $\alpha, \beta \neq 0$ ordinali. Dimostrare che le seguenti proprietà sono equivalenti.

- 1. $\alpha + \beta = \beta + \alpha$.
- 2. Esiste γ , esiste $\rho < \omega^{\gamma}$, ed esistono naturali positivi n, m tali che

$$\alpha = \omega^{\gamma} \cdot n + \rho$$
 e $\beta = \omega^{\gamma} \cdot m + \rho$.

Esercizio 3.

- 1. Dimostrare che non esistono funzioni crescenti e illimitate $f:\omega_1\to\aleph_\omega$.
- 2. Dimostrare che se ν è un cardinale e $(\gamma_i \mid i \in \nu)$ è una sequenza di ordinali strettamente crescente, allora $\gamma := \bigcup_{i < \nu} \gamma_i$ ha cofinalità $cof(\nu)$.
- 3. Determinare per quali cardinali infiniti κ il seguente insieme ha cardinalità κ :

$$\Lambda(\kappa) := \{ \nu \text{ cardinale } | \nu < \kappa \text{ e cof}(\nu) = \aleph_0 \}.$$

Esercizio 4. Siano κ un cardinale infinito e α un ordinale infinito. Consideriamo l'insieme

$$\Gamma = \{ f : A \to \kappa \mid A \in V_{\alpha} \}$$

dove V_{α} è l' α -esimo livello nella gerarchia di von Neumann.

- 1. Determinare la cardinalità di Γ quando $\alpha = \omega$.
- 2. Dimostrare che se $\alpha = \beta + 1$ è successore e $\kappa \leq |V_{\alpha}|$ allora $|\Gamma| = |V_{\alpha}|$.
- 3. Nel caso in cui $\lambda > \omega$ è un ordinale limite e $\kappa < |V_{\lambda}|$, determinare la cardinalità di Γ scrivendola in termini della funzione-classe beth. [Suggerimento: Distinguere i due casi $\omega < \lambda < \omega^2$ e $\lambda \ge \omega^2$.]