Elementi di Teoria degli Insiemi — Prova scritta del 4 Giugno 2025

Tutte le risposte devono essere giustificate

Buon lavoro!

Esercizio 1.

- 1. Trovare tutti e soli gli ordinali α tali che $(\omega^2 + \omega) \cdot \alpha = \alpha$.
- 2. Sia $M = (\alpha, \in)$ un modello naturale il cui universo è un ordinale $\alpha \neq 0$. Dimostrare che M soddisfa l'assioma delle parti se e solo se α è limite.
- 3. Se la funzione-classe $F: ORD \to ORD$ è normale (cioè strettamente crescente e continua ai limiti), allora per ogni cardinale infinito regolare ν esiste una classe propria di punti fissi $\alpha = F(\alpha)$ tali che $cof(\alpha) = \nu$.

Soluzione. (1). Gli ordinali con la proprietà richiesta sono tutti e soli gli ordinali multipli di ω^{ω} , cioè della forma $\alpha = \omega^{\omega} \cdot \vartheta$. Per dimostrarlo, usiamo la divisione euclidea per ω^{ω} , e scriviamo $\alpha = \omega^{\omega} \cdot \vartheta + \rho$ dove $\rho < \omega^{\omega}$. Osserviamo che $(\omega^2 + \omega) \cdot \omega^{\omega} = \omega^{\omega}$; infatti $\omega^{\omega} \leq (\omega^2 + \omega) \cdot \omega^{\omega} \leq \omega^3 \cdot \omega^{\omega} = \omega^{3+\omega} = \omega^{\omega}$. Quindi abbiamo:

$$(\omega^2 + \omega) \cdot \alpha = (\omega^2 + \omega) \cdot (\omega^\omega \cdot \vartheta + \rho) = (\omega^2 + \omega) \cdot \omega^\omega \cdot \vartheta + (\omega^2 + \omega) \cdot \rho = \omega^\omega \cdot \vartheta + (\omega^2 + \omega) \cdot \rho.$$

Ricordiamo che vale l'unicità della differenza a destra, cioè $\beta+\gamma=\beta+\gamma'\Leftrightarrow \gamma=\gamma'$. Quindi la quantità di sopra è uguale ad $\alpha=\omega^\omega\cdot\vartheta+\rho$ se e solo se $(\omega^2+\omega)\cdot\rho=\rho$. Per completare la dimostrazione, resta da vedere che quest'ultima uguaglianza vale se e solo se $\rho=0$. Da un lato, l'uguaglianza vale banalmente se $\rho=0$; se invece $\rho\neq 0$, allora esiste $n\in\omega$ con $\omega^n\leq\rho<\omega^{n+1}$, e l'uguaglianza non vale visto che:

$$(\omega^2 + \omega) \cdot \rho \ge (\omega^2 + \omega) \cdot \omega^n \ge \omega^2 \cdot \omega^n = \omega^{n+2} > \omega^{n+1} > \rho.$$

(2). Sia $\alpha = \beta + 1$ un successore, e supponiamo per assurdo che (α, \in) soddisfi l'assioma delle parti. Visto che $\beta \in \alpha$, esisterebbe $\gamma \in \alpha$ tale che $(\alpha, \in) \models "\gamma = \mathcal{P}(\beta)"$, ed avremmo in particolare che $(\alpha, \in) \models "\beta \in \mathcal{P}(\beta) = \gamma"$. Questo è assurdo perché $\beta \in \gamma \in \alpha = \beta + 1$ non è possibile.

Supponiamo ora α limite. Per ogni $\beta \in \alpha$ devo dimostrare che $(\alpha, \in) \models$ " $\exists \gamma \ \gamma = \mathcal{P}(\beta)$ ". Notiamo che per ogni $\delta \in \alpha$ si ha $(\alpha, \in) \models$ " $\delta \subseteq \beta$ " se e solo se $\delta \leq \beta$, e che $\beta + 1 = \{\delta \in \alpha \mid \delta \leq \beta\}$. Poiché α è limite, $\beta + 1 \in \alpha$, e quindi $(\alpha, \in) \models$ " $\beta + 1 = \mathcal{P}(\beta)$ ".

(3). Per ogni ordinale β , definiamo per ricorsione transfinita la sequenza $(\alpha_{\beta,\gamma} \mid \gamma < \nu)$ ponendo:

$$\begin{cases} \alpha_{\beta,0} = \beta \\ \alpha_{\beta,\gamma+1} = F(\alpha_{\beta,\gamma}) + 1 \\ \alpha_{\beta,\lambda} = \bigcup_{\gamma < \lambda} \alpha_{\beta,\gamma} \text{ se } \lambda < \nu \text{ limite.} \end{cases}$$

Allora $\alpha_{\beta} := \bigcup_{\gamma < \nu} \alpha_{\beta,\gamma}$ è un punto fisso della funzione F di cofinalità ν . Infatti, si dimostra facilmente per induzione transfinita che la sequenza $(\alpha_{\beta,\gamma} \mid \gamma < \nu)$ è strettamente crescente, e per la continuità di F si ha che

$$F(\alpha_{\beta}) = F\left(\bigcup_{\gamma < \nu} \alpha_{\beta, \gamma}\right) = \bigcup_{\gamma < \nu} F(\alpha_{\beta, \gamma}) = \bigcup_{\gamma < \nu} F(\alpha_{\beta, \gamma}) + 1 = \bigcup_{\gamma < \nu} \alpha_{\beta, \gamma + 1} = \alpha_{\beta}.$$

Visto che $(\alpha_{\beta,\gamma} \mid \gamma < \nu)$ è crescente e illimitata in α_{β} , si ha $\operatorname{cof}(\alpha_{\beta}) \leq \nu$. Supponiamo per assurdo che $\mu := \operatorname{cof}(\alpha_{\beta}) < \nu$ e prendiamo $(\xi_i \mid i < \mu)$ sequenza illimitata in α_{β} . Se per ogni $i \in \mu$ definiamo $\gamma_i := \min\{\gamma \in \nu \mid \alpha_{\beta,\gamma} > \xi_i\}$ allora è immediato verificare che $(\gamma_i \mid i \in \mu)$ è illimitata in ν , e perciò $\mu \geq \operatorname{cof}(\nu) = \nu$, assurdo.

Esercizio 2.

- 1. Dimostrare che se κ è un limite forte, allora per ogni famiglia di insiemi \mathcal{B} con $|\mathcal{B}| < \kappa$, anche la σ -algebra generata $\langle \mathcal{B} \rangle$ ha cardinalità $|\langle \mathcal{B} \rangle| < \kappa$.
- 2. Determinare tutti e soli i cardinali infiniti κ per i quali vale la seguente proprietà:
 - Per ogni famiglia infinita di insiemi $\mathcal{B} \in V_{\kappa}$, ogni funzione $f : \langle \mathcal{B} \rangle \to \kappa$ appartiene a V_{κ} .

Soluzione. (1). Come abbiamo visto a lezione nel caso dei Boreliani (che sono la σ -algebra generata dagli aperti di \mathbb{R}^n), la σ -algebra generata da una famiglia infinita di insiemi \mathcal{B} si può definire ponendo $\langle \mathcal{B} \rangle := \bigcup_{\alpha < \omega_1} \mathcal{B}_{\alpha}$ dove, per ricorsione transfinita su ω_1 :

$$\begin{cases} \mathcal{B}_0 = \mathcal{B} \\ \mathcal{B}_{\alpha+1} = \mathcal{B}_{\alpha} \cup \{X^c \mid X \in \mathcal{B}_{\alpha}\} \cup \{\bigcup_{n < \omega} X_n \mid X_n \in \mathcal{B}_{\alpha}\} \cup \{\bigcap_{n < \omega} X_n \mid X_n \in \mathcal{B}_{\alpha}\} \\ \mathcal{B}_{\lambda} = \bigcup_{\alpha < \lambda} \mathcal{B}_{\alpha} \quad \text{se } \lambda \text{ è limite.} \end{cases}$$

Per ogni $\alpha < \omega_1$, si dimostra per induzione transfinita che $|\mathcal{B}_{\alpha}| = |\mathcal{B}|^{\aleph_0}$ per ogni $\alpha > 0$, e quindi

$$|\langle \mathcal{B}
angle| = \left| igcup_{lpha < \omega_1} \mathcal{B}_lpha
ight| \leq \sum_{lpha < \omega_1} |\mathcal{B}_lpha| = \max \left\{ \sup_{lpha < \omega_1} |\mathcal{B}_lpha|; leph_1
ight\} = |\mathcal{B}|^{leph_0}.$$

Se κ è un limite forte, da $|\mathcal{B}| < \kappa$ segue che $|\langle \mathcal{B} \rangle| = |\mathcal{B}|^{\aleph_0} \le 2^{|\mathcal{B}|} < \kappa$.

(2). Dimostreremo che κ soddisfa le proprietà richieste se e solo se κ è un cardinale fortemente inaccessibile. Anzitutto notiamo che se $\kappa = \aleph_0$ allora la tesi è vera a vuoto perché non esistono famiglie infinite $\mathcal{B} \in V_{\omega}$. Supponiamo dunque $\kappa > \aleph_0$.

Notiamo che $\mathcal{B} \in V_{\kappa} \Rightarrow \langle \mathcal{B} \rangle \in V_{\kappa}$. Infatti supponiamo $\mathcal{B} \in V_{\kappa}$, quindi $\mathcal{B} \in V_{\alpha}$ per un opportuno $\alpha < \kappa$. Sia $X := \bigcup \mathcal{B}$. È facile verificare che $X \in V_{\alpha}$, e che $\langle \mathcal{B} \rangle \subseteq \mathcal{P}(X) \in V_{\alpha+1}$, e quindi $\langle \mathcal{B} \rangle \in V_{\alpha+1} \subseteq V_{\kappa}$.

Adesso ricordiamo la seguente proprietà generale, che abbiamo visto a lezione, riguardante la gerarchia di von Neumann:

• Sia λ un ordinale limite. Una funzione f appartiene a V_{λ} se e solo se sia dom(f) che Imm(f) appartengono a V_{λ} .

Nel nostro caso, stiamo considerando funzioni $f:\langle\mathcal{B}\rangle\to\kappa$ dove $\mathrm{dom}(f)=\langle\mathcal{B}\rangle\in V_\kappa$, e quindi la condizione di sopra vale se e solo se $\mathrm{Imm}(f)\subseteq\kappa$ è un insieme limitato in κ . Infatti se $\mathrm{Imm}(f)$ è limitata, cioè se $\mathrm{Imm}(f)\subseteq\alpha$ per qualche $\alpha<\kappa$, allora $\mathrm{Imm}(f)\subseteq V_\alpha$ e quindi $\mathrm{Imm}(f)\in V_{\alpha+1}\subseteq V_\kappa$. Viceversa, se l'insieme immagine $\mathrm{Imm}(f)$ fosse illimitato in κ , allora non potrebbe appartenere a V_κ , altrimenti anche $\kappa=\sup_{b\in\mathcal{B}}f(b)=\bigcup\mathrm{Imm}(f)\in V_\kappa$, il che è assurdo.

Segue direttamente dalla definizione di cofinalità che tutte le funzioni $f: \langle \mathcal{B} \rangle \to \kappa$ sono limitate se e solo se $|\langle \mathcal{B} \rangle| = |\mathcal{B}|^{\aleph_0} < \text{cof}(\kappa)$.

Osserviamo inoltre che le possibili cardinalità delle famiglie infinite $\mathcal{B} \in V_k$ sono tutti e soli i cardinali infiniti $\mu < \beth_{\kappa}$. Infatti, se $\mathcal{B} \in V_k$, allora esiste $\alpha < \kappa$ con $\mathcal{B} \subseteq V_{\alpha}$, e quindi $|\mathcal{B}| \le |V_{\alpha}| = \beth_{\alpha} < \beth_{\kappa}$. Viceversa, se $\mu < \beth_{\kappa}$, allora esiste $\alpha < \kappa$ con $\mu < \beth_{\alpha}$; e visto che $|V_{\alpha}| = \beth_{\alpha}$, esiste una famiglia infinita $\mathcal{B} \subseteq V_{\alpha}$ di cardinalità μ .\(^1\) Chiaramente, $\mathcal{B} \subseteq V_{\alpha} \in V_{\kappa} \Rightarrow \mathcal{B} \in V_{\kappa}$.

Mettendo insieme le considerazioni fatte sopra, possiamo concludere che i cardinali infiniti $\kappa > \aleph_0$ che stiamo cercando sono quelli che soddisfano la seguente proprietà:

(†) Per ogni cardinale infinito $\mu < \beth_{\kappa}$, si ha $\mu^{\aleph_0} < cof(\kappa)$.

¹ Ricordiamo che, come visto a lezione, $|V_{\alpha}| = \beth_{\alpha}$ per ogni $\alpha \ge \omega^2$, e qui possiamo supporre senza perdita di generalità che l'ordinale α considerato sia $\alpha \ge \omega^2$.

Resta da verificare che κ soddisfa (†) se e solo se κ è un cardinale fortemente inaccessibile. Ricordiamo che, come visto a lezione, κ è fortemente inaccessibile se e solo se κ è un punto fisso regolare della funzione "beth".

Se κ è inaccessibile, e $\mu < \beth_{\kappa} = \kappa$, allora banalmente $\mu^{\aleph_0} \leq \mu^{\mu} < \kappa = \operatorname{cof}(\kappa)$. Viceversa, se vale (†) allora per ogni $\alpha < \kappa$ abbiamo che $\beth_{\alpha} \leq (\beth_{\alpha})^{\aleph_0} < \operatorname{cof}(\kappa)$ e quindi $\beth_{\kappa} = \bigcup_{\alpha < \kappa} \beth_{\alpha} \leq \operatorname{cof}(\kappa)$. Ma allora $\operatorname{cof}(\kappa) \leq \kappa \leq \beth_{\kappa} \leq \operatorname{cof}(\kappa)$, quindi $\kappa = \beth_{\kappa}$ e $\operatorname{cof}(\kappa) = \kappa$, cioè κ è un punto fisso regolare della funzione "beth".

Esercizio 3. Dimostrare le seguenti proprietà:

- 1. Non esistono funzioni strettamente crescenti $f: \omega_1 + \omega_1 \to \omega_1$.
- 2. Ogni funzione strettamente crescente $f: \omega_1 + \omega_1 \to \omega_1 + \omega_1$ è tale che $f[\omega_1] \subseteq \omega_1$.
- 3. Sia κ un cardinale regolare infinito e sia λ un ordinale limite. Allora esistono funzioni strettamente crescenti e illimitate $f: \kappa \to \lambda$ se e solo se $cof(\lambda) = \kappa$.

Soluzione. (1). Visto che f è iniettiva, l'insieme $\{f(\alpha) \mid \alpha < \omega_1\} \subseteq \omega_1$ ha cardinalità ω_1 , e quindi è illimitato. Non è quindi possibile che f sia crescente in $\omega_1 \in \omega_1 + \omega_1$, cioè che $f(\omega_1) > f(\alpha)$ per ogni $\alpha < \omega_1$.

Un modo alternativo per risolvere è usare la seguente proprietà dimostrata a lezione:

• Se α è un ordinale e $f: \alpha \to \alpha$ è una funzione crescente, allora $\gamma \leq f(\gamma)$ per ogni $\gamma \in \alpha$.

Visto che la restrizione $f|_{\omega_1}: \omega_1 \to \omega_1$ è crescente, per la proprietà di sopra $f(\gamma) \ge \gamma$ per ogni $\gamma < \omega_1$, e si avrebbe che $f(\omega_1) \ge \sup_{\gamma < \omega_1} f(\gamma) \ge \sup_{\gamma < \omega_1} \gamma = \omega_1$.

- (2). Se per assurdo esistesse $\alpha < \omega_1$ con $f(\alpha) \ge \omega_1$, allora dalla crescenza di f seguirebbe che $f(\alpha + \beta) \ge f(\alpha) + \beta \ge \omega_1 + \beta$ per ogni $\beta < \omega_1$. (Notiamo che $\alpha, \beta < \omega_1 \Rightarrow \alpha + \beta < \omega_1$.) Questo è assurdo perché allora avremmo $f(\omega_1) \ge \sup_{\beta < \omega_1} f(\alpha + \beta) \ge \sup_{\beta < \omega_1} \omega_1 + \beta = \omega_1 + \omega_1$.
- (3). Se $\operatorname{cof}(\lambda) = \kappa$, allora l'esistenza di funzioni crescenti $f: \kappa \to \lambda$ vale banalmente per la definizione di cofinalità. Viceversa, supponiamo che esista una funzione strettamente crescente e illimitata $f: \kappa \to \lambda$, dunque $\operatorname{cof}(\lambda) \le \kappa$. Supponiamo per assurdo che $\operatorname{cof}(\lambda) < \kappa$, e prendiamo una funzione crescente ed illimitata $g: \mu \to \lambda$ dove il cardinale $\mu < \kappa$. Per ogni $\alpha \in \mu$ definiamo $\gamma_{\alpha} := \min\{\gamma \in \kappa \mid f(\gamma) > g(\alpha)\}$. È immediato verificare che $(\gamma_{\alpha} \mid \alpha \in \mu)$ è illimitata in κ , e perciò $\mu \ge \operatorname{cof}(\kappa) = \kappa$, assurdo.

Esercizio 4. Sia $\gamma < \omega_1$. Dimostrare che $\prod_{\alpha < \gamma} \aleph_{\alpha} = (\aleph_{\gamma})^{|\gamma|}$.

Soluzione. Se $\gamma = n \in \omega$ è finito, allora la tesi vale banalmente perché

$$\prod_{\alpha \leq \gamma} \aleph_{\alpha} = \aleph_0 \cdot \ldots \cdot \aleph_n = \max \{\aleph_0, \ldots, \aleph_n\} = \aleph_n = (\aleph_n)^n.$$

Supponiamo ora γ limite. Intanto si ha $\prod_{\alpha \leq \gamma} \aleph_{\alpha} \leq \prod_{\alpha \leq \gamma} \aleph_{\gamma} = (\aleph_{\gamma})^{|\gamma+1|} = (\aleph_{\gamma})^{|\gamma|}$. Per l'altra disuguaglianza, osserviamo che $\operatorname{cof}(\gamma) = \aleph_0$; possiamo quindi prendere una sequenza crescente $(\gamma_n \mid n \in \omega)$ tale che $\sup_{n < \omega} \gamma_n = \gamma$. Usando la formula per i prodotti infiniti vista a lezione, si ottiene: $\prod_{\alpha \leq \gamma} \aleph_{\alpha} \geq \prod_{n < \omega} \aleph_{\gamma_n} = (\sup_{n < \omega} \aleph_{\gamma_n})^{\aleph_0} = (\aleph_{\gamma})^{|\gamma|}.$ Resta da considerare il caso in cui $\gamma > \omega$ è successore. Scriviamo $\gamma = \lambda + n$ dove λ è limite e

Resta da considerare il caso in cui $\gamma > \omega$ è successore. Scriviamo $\gamma = \lambda + n$ dove λ è limite e $0 < n < \omega$. Per quanto visto sopra, $\prod_{\alpha \le \lambda} \aleph_{\lambda} = (\aleph_{\lambda})^{|\lambda|}$. Inoltre, il prodotto finito $\prod_{i=0}^{n} \aleph_{\lambda+i} = \aleph_{\lambda+n}$. Infine, usando la formula di Hausdorff, possiamo concludere:

$$(\aleph_{\lambda+n})^{|\lambda+n|} = (\aleph_{\lambda+n})^{|\lambda|} = (\aleph_{\lambda})^{|\lambda|} \cdot \aleph_{\lambda+n} = \left(\prod_{\alpha < \lambda} \aleph_{\lambda}\right) \cdot \prod_{i=0}^n \aleph_{\lambda+i} = \prod_{\alpha < \gamma} \aleph_{\alpha}.$$