W: Coxeter group of affine type;
Y_{w} orbit configuration space $\left(Y_{w}=I_{C} \backslash U\left(H_{n}\right)_{C}\right)$

Conjecture [Arnold, Brieskorn, Wham, Whom (60-70)
The orbit space Y_{w} is a $K(\pi, 1)$ space.

Thy. (Paolim- S, Inv. Math, '21) The K(T, 1) -conjecture holds for all Actin groups of affine type.

Teublive proof: thy to we the dual structure on W.
So, tare $R=$ all reflections, $c=$ Coxeter element,
$P=[1, c]$ interval below c, and ting b prove:

1. P is a lattice (so $K=K(s)$ in a $K(\pi, i)$)
2. $\sigma=G(B) \cong \pi(K)$
dual Anting group

$$
\cong G_{w}
$$

stoundord ANting group
3. Phare that $K \simeq Y_{W}$
(of conve, $3 \rightarrow 2$)

Unforimatly: 1 in trees $W=\tilde{A}_{m}$ (fon sarece c), $\tilde{C}_{n}, \tilde{G}_{2}$

Outline of the prool

1. We proof that the assciatted complax K is a. $K(\pi, 1)$ even if $[1, c]$ is not a latice.
2. We give honetory equivalence between K and the abit configuation space Y_{w}.
teds: (i) identificetion of a finite subcomplex $X_{w}^{\prime} \subset K$ which has the henobopy hyse of $Y_{w} \quad\left(X_{w}^{\prime} \cong X_{w}\right)$
(ii) we find an EL. shelling on $[1, c]$ and coulinatriel Morse theory do contact $M \searrow X_{w}^{\prime}$

Some geometrical parties.

- we W is elliptic of it fixes some points
- w is hagpentelic otherwise.

The coxcter elomat $c \in W /$ in myperbelic, so every point p in the affine spae is moved. Actually, there is a line l of paints which are minimally moved, which is colled the Coxeter axis; the ustriction ale is a translation.

$$
\begin{gathered}
\tilde{A}_{2}: \\
\boldsymbol{c}=s_{1} s_{2} s_{3}
\end{gathered}
$$

$$
\mathbf{c}=s_{1} s_{2} s_{3}
$$

Coxeter axis $\ell=$

 dotted line vertical reflections:$r: F i x(r) \cap \ell \neq \emptyset$
horizontal reflections:
$r: \operatorname{Fix}(r) \cap \ell=\emptyset$
axial chambers (grey):
$C: \operatorname{int}(C) \cap \ell \neq \emptyset$
\widetilde{G}_{2}

McConmed_Sulwoy, Inve math '1t
Chacabinistion of the apfections $r \leq c$:
$\tau \in[1, c] \Longleftrightarrow 1$ in verthical;
r is hariontel but "close to \&
(it wherects on axtie clounter)

They take as unch as pasible from Gounch Nheoy: they add suibble fimkest of Mensletivers ho W, fuolng a lorgen grap GoW, end sach that

$$
\begin{aligned}
& {[1, c]_{i}^{G} \longleftrightarrow[1, c]^{W}} \\
& \text { isa eldice }
\end{aligned}
$$

Thengore $\tilde{K}=n\left([1, c]^{6}\right)$ is a funte dinusiuad $K(T, 1)$, There in a diagram of gramas:

where the gramps on the aught are Grumble; thin gives a dingean of ceplexes

and me prod that K_{c}^{D} in a $K(\pi, 1)$.
Therefore a Mages-Wehis argmatt gives that K_{c}^{W} in a $h(\pi, 1)$.

It remains to velate $K=n_{c}^{*}$ to $Y w$.

Let $X_{w}^{\prime} \subset K$ be the sulcequlex given bug Whore sumplien $\left[x_{1}|\cdots| x_{g}\right]$ et. $x_{1} \cdots x_{9}$ lixes one vertox of the ber chember C_{0}.

Thnn $\quad X_{w}^{\prime} \simeq X_{w}\left(\bumpeq Y_{w}\right)$
ides: tane picees of both complexes which conesperd to perebalic sulgapss:
une strawhed theous
in cls. hapolesy end
induction do glue
 hountery spinelres of the prises:

The last shop is do contract $K \pm X_{w}^{\prime \prime}$. Here we use disocte More theory in 2 steps:

1) There in a post map $\mathcal{F}(k) \longrightarrow \mathbb{N}$ such that each fiber loom live

thess un con easily put a matting which reduces n to a finite subcopplex $n^{\prime} \supset x^{\prime} w$
(example in cox $\hat{A_{2}}$:)

2) We find a seand matching on k^{\prime} which in a "perfect metching" on $K^{\prime} \cup X_{w}^{\prime}\left(s H^{\prime} \Delta X_{\omega}^{\prime}\right)$ To cunstuct thin notching, we wre:

Thm There exist a balel ardering on
$Q_{0}=Q \cap[1, c]$ which moner the pent $[1, c]$ EL-stullable.

El-shellable: \forall interval $[x<y]$ (i) $]$ a unigre incleosing moximal chain γ; (ii) γ is the viminum in the lexicogroplical ader anong der mexachal cham.

The ardering of R_{0} is an "axial ablenng": roflection ou oredud eccasting a than intusection with the Coxeter axis.

We we thas is "contual" cells in n^{n}.

Prible generdizations and problems.

- \forall coaten grown W, is the $n(\pi, 1)$ conjecthne true ?
let c be a Coseden elmant:
- is $[1, c]$ a lottice? in it shellable?
- Let We be the glamp difined by $[1, c]$ (the dmel group). Is it isomaphic to th sloudeod Antin graap?
can one sobe the nodd gublem and find the cunter?

Theorem (Delucchi, Paolimi, S. ,'22

Let (W, S) be a Coxeter system of rank 3 and G_{W} the associated Artin group. Let $w \in W$ be any Coxeter element, and consider the associated noncrossing partition poset $[1, w]$.
$1[1, w]$ is a lattice.
$2[1, w]$ is EL-shellable.
3 Let G_{W} be an Artin group of rank 3. The dual Artin group associated with $[1, w]$ is isomorphic to G_{W}.
$4 G_{W}$ is a Garside group.
5 The $K(\pi, 1)$ conjecture holds for G_{W}.
6 The word problem for G_{W} is solvable.
7 The center of G_{W} is trivial unless W is finite.

0

Figure: Examples of arrangements of rank-three hyperbolic Coxeter groups in the Poincaré model. Each picture is captioned with the labels (m_{1}, m_{2}, m_{3}) of the corresponding Coxeter diagram. The hyperbolic plane is tiled by triangles with angles $\frac{\pi}{m_{1}}, \frac{\pi}{m_{2}}, \frac{\pi}{m_{3}}$.

- One can oftain that K is a $K(\pi, 1)$ even if $[1, c]$ in nd a laftice: how to generalize Gerside theory, weakening tiln's coudition?

Other genenalizations of $K(\pi, 1)$ property:

- to complements of discrinminant of nen-artional (A, D, E) singulortise (~ elliptic)
- to compleunents of simplicial affine arrangenents of hyperplawes. in polticulor periodic affine arrangements (see ferexample papers by Wermyss and collaborabiors on the space of "Bridgeland stability couditions.)
(feme Wencrss :)
Theorem 0.5 (Section 4.2). Suppose that $\Delta_{\text {aff }}$ is extended $A D E D y n k i n$, and $\mathcal{K} \subseteq \Delta_{\text {aff }}$ satisfies $|\mathcal{K}|=3$. Then, up to changing the slopes of some of the hyperplanes, Level (\mathcal{K}) is one of following sixteen hyperplane arrangements:

In addition, each of the sixteen arrangements appears as $\operatorname{Level}\left(\mathcal{J}_{\text {aff }}\right)$ for some subset of the ADE Dynkin $\mathcal{J} \subseteq \Delta$ satisfying $\left|\mathscr{J}^{c}\right|=2$.

