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General facts on Automorphisms

Automorphisms

If X = compact complex manifold, Bochner and Montgomery
proved that
Aut(X ) (the group of biholomorphisms of X ) is a finite
dimensional complex Lie Group,
with Lie Algebra the space H0(ΘX ) of holomorphic vector fields.
Let Aut0(X ) be the connected component of the identity: then
the quotient group Aut(X )/Aut0(X ) is called the group of
components: it is at most countable, and can be infinite.

Example

Let E be an elliptic curve, and let X = En.
Then Aut0(X ) = En, while the group Aut(X )/Aut0(X ) contains
GL(n,Z), acting in the obvious way:

g ∈ GL(n,Z), x = (x1, . . . , xn) 7→ gx = (
∑

j

g1jxj , . . . ,
∑

j

gnjxj).
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General facts on Automorphisms

Automorphisms with some topological triviality.

I will concentrate mostly on the group of cohomologically trivial
automorphisms,

AutZ(X ) := {σ ∈ Aut(X ) | σ induces a trivial action on H∗(X ;Z)},

and the larger group AutQ(X ), of numerically trivial
automorphisms (important for the theory of period maps).

For Teichmüller theory is also important the smaller subgroup

Autiso(X ) = {σ ∈ Aut(X ) | σ ∈ Diff0(X )},

of differentiably-isotopically trivial automorphisms, contained in
the group of homotopically trivial automorphisms

Authom(X ) = {σ ∈ Aut(X ) | σ is homotopic to idX}

Open Question: is there an example with
Autiso(X ) 6= Authom(X )?
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General facts on Automorphisms

A chain of subgroups.

We have a chain (of normal subgroups)

Aut0(X ) C Autiso(X ) C Authom(X ) C AutZ(X ) C AutQ(X ) C Aut(X ).

For complex dimension n = 1 everything simplifies: in fact here
Aut0(X ) = AutQ(X ).
But already for n = 2 the situation is extremely delicate (in fact
there are many wrong theorems and assertions in the
literature).
An important REMARK is: AutZ(X ) = AutQ(X ) if the
cohomology H∗(X ,Z) is torsion-free, since then
H∗(X ,Z) ⊂ H∗(X ,Q).
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General facts on Automorphisms

The case of curves.

If X has dimension n = 1, and genus g, then, as we saw:
1 g = 0⇔ X = P1 ⇒ Aut(X ) = Aut0(X ) = PGL(2,C),
2 g = 1⇔ X = C/(Z⊕ τZ),

X ∼= Aut0(X ) is the subgroup of translations,
Γ(X ) := Aut(X )/Aut0(X ) equals Z/2 unless τ = i
(Γ(X ) = Z/4), or τ3 = 1 (Γ(X ) = Z/6).

3 g ≥ 2⇒ |Aut(X )| ≤ 84(g − 1), by Hurwitz’ theorem.
4 AutQ(X ) = Aut0(X ), as shown by Lefschetz (hence, for

g ≥ 2, AutQ(X ) = {IdX}).
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General facts on Automorphisms

The case of Kähler manifolds.

The case where X is a compact Kähler Manifold (this case
includes the case of projective manifolds) was considered
around 1978 by Lieberman and Fujiki; in particular, follows from
their results:

Theorem
The quotient group

AutQ(X )/Aut0(X )

is a finite group.

Hence a natural question is to see when the group
AutQ(X )/Aut0(X ) can be nonzero, and to give an upper bound
for its cardinality in terms of the numerical invariants of X ; ditto
for AutZ(X )/Aut0(X ).
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General facts on Automorphisms

AutQ(X )/Aut0(X ) =?

Around 1975 Piatetski-Shapiro and later Burns and Rapoport
proved that, for a K3 surface X , AutQ(X ) is a trivial group.
Recall that a K3 surface is a surface with trivial canonical
divisor, and simply connected (this distinguishes the case of K3
surfaces from the case of complex tori, which have
π1(X ) = Z4).

Peters began the study of AutQ(X ) for more general compact
Kähler surfaces. Automorphisms of surfaces were also
investigated by Ueno and Maruyama in the 70’s, Mukai and
Namikawa in the 80’s, and other authors later.
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General results for compact Kähler surfaces.

Kodaira dimension

Definition
The Kodaira dimension of a compact complex manifold X,
denoted Kod(X ), is the maximal dimension of the image
Φm(X )of the m-th pluricanonical map Φm, (m ≥ 1).
Φm is associated to a basis s1, . . . sPm of the space of
holomorphic sections in H0(OX (mKX )) as follows:
Φm : X → PPm−1 is the rational map given by

Φm(x) := (s1(x), . . . sPm (x)).

If Pm = 0∀m ≥ 1, then we say that Kod(X ) := −∞

Obviously Kod(X ) ≤ dim(X ), and, if equality holds, one says
that X is of general type.
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General results for compact Kähler surfaces.

Classification of algebraic surfaces according to
Kodaira dimension

Two algebraic manifolds X1,X2 are said to be birational if their
fields of meromorphic functions are isomorphic, C(X1) ∼= C(X2).
For surfaces S1,S2 this is equivalent to be obtained one from
the other via a sequence of one point blow ups and their
inverses.
S is said to be minimal if it is not the blow up of another
surface.

1 Kod(S) = −∞⇔ S is ruled, that is, birational to a product
C × P1. S is rational if it is birational to P1 × P1 ∼bir P2.

2 Kod(S) = 0 and S minimal⇔ 12KS ≡ 0 (tori, K3,
Enriques, hyperelliptic surfaces).

3 Kod(S) = 1⇔ Φ12 is a fibration with fibres elliptic curves.
4 Kod(S) = 2: by definition, S is of general type.



Coh trivial Automorphisms

General results for compact Kähler surfaces.

Surfaces of general type

Theorem
(Cai) For surfaces S of general type, Aut(S) is a finite group,
and there is an absolute constant C such that

|AutQ(S)| ≤ C.

For the Beauville surface |AutQ(S)| = 25.
Recall that this is a surface isogenous to a product,
S = (C × C)/G, G ∼= (Z/5)2, where C is the Fermat quintic
curve, and the action is free. AutQ(S) is induced by G × Id , and
Frapporti calculated that in this case |AutZ(S)| = 1.
Is 25 the maximum for surfaces of general type?
What about max |AutZ(S)| (again for S of general type) ?
There seem to be only examples with |AutZ(S)| = 2. (?)
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General results for compact Kähler surfaces.

First unboundedness Result for Surfaces not of
general type

In my pre-covid joint work with Wenfei Liu the following theorem
(contradicting earlier assertions of other authors) answered two
questions raised by Meersseman in 2017:

Theorem
For each positive integer m there exists a rational surface Xm
such that AutQ(Xm) ∼= Z/m.

The surface Xm is an iterated blow-up of the projective plane.
A key point is that, if X ′ → X is the blow up of a point P, then
AutQ(X ′) ⊂ AutQ(X ) is the subgroup fixing the point P. In fact..
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General results for compact Kähler surfaces.

Some elementary observations.

(1) Let g ∈ AutQ(X ), where X is a surface, and let C be an
irreducible curve with C2 < 0.
Then g(C) = C.
Proof: If g(C) 6= C, then C · g(C) ≥ 0 (and > 0 if C ∩ g(C) 6= ∅).
But since g(C) has the same class of C, we have
C · g(C) = C2 < 0, a contradiction.
(2) Let f : X → B be a fibration of the surface X onto a curve,
and σ ∈ AutQ(X ): then σ preserves the fibration, that is, there is
an action of σ on B such that σ ◦ f = f ◦ σ.
Moreover, if F ′′red is a reducible fibre, then f (F ′′) = F ′′.
Proof: Let C be an irreducible fibre of f : since
C · g(C) = C2 = g(C)2 = 0, follows that g(C), which is
irreducible, is another fibre of f .
Zariski proved that the components C of F ′′ satisfy C2 < 0.
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General results for compact Kähler surfaces.

AutQ(Xm) = Aut∗(Xm) ∼= Z/m

Let P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1) be the
coordinate points of P2, and let P4 = (1 : 1 : 0).

•
P1 •

P4
•

P2

•P3

Let π : X4 → P2 be the blow-up of the four points Pi ,1 ≤ i ≤ 4.
Let G4 = {σ ∈ PGL(3) | σ(Pi) = Pi for 1 ≤ i ≤ 4}. Then

AutQ(X4) ∼= G4 =


1 0 0

0 1 0
0 0 a

 ∣∣∣∣ a ∈ C∗ = C \ {0}
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General results for compact Kähler surfaces.

AutQ(Xm) = Aut∗(Xm) ∼= Z/m

Blowing up further m + 1 points, the first m ones infinitely near
to P4 on the proper transform of the line joining P3,P4, and the
last one a different point on the last exceptional line, one
reaches the conclusion that AutQ(Xm) = {a ∈ C∗|am = 1}.
That AutQ(Xm) = Aut∗(Xm) follows argueing like this:
differentiably Xm is the same as the blow up X ′m where the last
point continues to lie on the proper transform of the line joining
P3,P4. In the latter case AutQ(X ′m) = C∗, and Aut(Xm) ∼= Z/m
corresponds under the diffeomorphism to a subgroup of
Aut(X ′m) = C∗: hence these diffeomorphisms are isotopic to the
identity.
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General results for compact Kähler surfaces.

Rational and ruled surfaces

Theorem
(C.-Liu) Let X be a smooth projective rational surface. Then

Autiso(X ) = AutZ(X ) = AutQ(X ).

The same unboundedness phenomenon for Autiso(X )/Aut0(X )
can happen also for minimal ruled surfaces:

Theorem
For E an elliptic curve, let X := P(OE ⊕OE (D)), where D is a
divisor of positive degree d: then

AutQ(X ) = Autiso(X ), |Autiso(X )/Aut0(X )| ≥ d2.
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General results for compact Kähler surfaces.

More unboundedness Results for Surfaces of
special type (that is, not of general type)

Wenfei Liu and I showed unboundedness also for other
quotients of the standard chain of subgroups:

Theorem
i) For each positive integer n there exists a minimal surface Sn
of Kodaira dimension 1 such that [AutQ(Sn) : AutZ(Sn)] ≥ n.
ii) For each positive integer n there exists a (non minimal)
surface S′n of Kodaira dimension 1 such that
Autiso(S′n) = {idS′

n
}, and

AutZ((S′n)) = Z/n.

For (ii) is the same blow-up game, starting with minimal
surfaces S with Aut0(S) infinite.
For (i) these are surfaces S with χ(S) = 0, χ := 1− q + pg .
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General results for compact Kähler surfaces.

Boundedness fo Kodaira dimension 0

The case Kod(X ) = 0 is pretty well understood (and we have
boundedness, that is, an absolute upper bound for all such
surfaces).

For complex tori and their blow ups X , Aut0(X ) = AutQ(X ).
For K3 surfaces AutQ(X ) = 0.
For minimal Enriques surfaces (quotients of a K3 by a
fixpoint free involution) Mukai and Namikawa proved that
|AutQ(X )| ≤ 4, and exist examples with AutZ(X ) = Z/2.
For hyperelliptic surfaces X , Wenfei Liu and I showed that
AutZ(X ) = Aut0(X ) is a quotient of Alb(X ),
while AutQ(X )/AutZ(X ) can be described in each case.
It is a group of order ≤ 12, and A4 occurs.
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General results for compact Kähler surfaces.

Hyperelliptic surfaces and surfaces isogenous to a
product

Definition
A surface S is said to be isogenous to a product of unmixed
type if

1 there is a finite group G,
2 there are curves C1,C2 of genera g1,g2 ≥ 1 on which G

acts faithfully, such that
3 the diagonal action g(x , y) = (gx ,gy) is free on C1 × C2,
4 S = (C1 × C2)/G.
5 S is said to be hyperelliptic (bielliptic) if g1 = g2 = 1,
6 isogenous to a higher product if g1,g2 ≥ 2,
7 isogenous to a higher elliptic product if g1 ≥ 2,g2 = 1.
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Properly elliptic surfaces

The situation for Kodaira dimension 1

Properly elliptic surfaces are minimal surfaces with Kodaira
dimension K(X ) = 1. Recall that χ(S) := 1− q(S) + pg(S), and
that for these surfaces 12χ = (Noether) = e(S) + K 2

S = e(S).
There is a canonical fibration f : X → B over a curve B and with
general fibre a smooth elliptic curve; Aut(X ) acts equivariantly
on X ,B.
We have several cases (and Aut0(X ) is nontrivial only for a
subcase of (2), the peudo-elliptic surfaces):

1 χ(X ) > 0 and pg(X ) > 0,
2 χ(X ) = 0
3 χ(X ) = 1, pg(X ) = q(X ) = 0.

Peters claimed in 1980 that AutQ(X ) = 0 in case (1), Cai gave a
new proof in 2009, but with Liu and Schütt we gave
counterexamples, showing unboundedness, as we shall see.
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Properly elliptic surfaces

Properly elliptic surfaces with χ(X ) = 0

In this initial, yet quite complicated case, we got very near to a
complete classification.
Here, by surface classification, the pluricanonical fibration is an
elliptic quasi-bundle (all reduced fibres are smooth elliptic) and
the surfaces are isogenous to a higher elliptic product.
This means that S is the quotient of the product of a curve C of
genus g′ ≥ 2 with an elliptic curve E by the free action of a
finite group G

S = (C × E)/G.

G acts on C and on E , and on the product via
g(x , y) = (g(x),g(y)).
S is said to be pseudo-elliptic if G acts on E via translations,
i.e., if E/G has genus 1.
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Properly elliptic surfaces

Pseudo-elliptic surfaces

S = (C × E)/G is said to be pseudo-elliptic if G acts on E via
translations, i.e., if E/G has genus 1.
In this case E acts on S via translations

t ∈ E ⇒ t(x , y) := (x , y + t),

hence Aut0(S) has dimension 1.

Theorem

If S is pseudo elliptic, Aut0(S) is infinite, and either
(1) AutZ(S) = Aut0(S) or
(2) |AutZ(S)/Aut0(S)| = 2.
Case (2) occurs precisely when G = Z/2m, with m an odd
integer, C/G = P1 and C → P1 is branched in four points with
local monodromies {m,m,2,−2}:
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Properly elliptic surfaces

Other elliptic surfaces with χ = 0

Theorem
Assume that S is a properly elliptic surface with χ(S) = 0 and
with Aut0(S) trivial (i.e., S is not pseudo-elliptic).
If AutZ(S) is nontrivial, then

(II-a) B := C/G has genus h at least 1
(II-b) AutZ(S) is isomorphic to one of the following groups:

Z/2Z,Z/3Z, (Z/2Z)2.

(II-c) The cases where AutZ(S) = Z/2, respectively
AutZ(S) = Z/3, do actually occur.
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Properly elliptic surfaces

Key observations

By Poincaré duality H i(S,Z) ∼= H4−i(S,Z).
H1(S,Z) is free abelian, while we have a non canonical splitting
H1(S,Z) = Tors(S)⊕A, where A is free abelian. Moreover, the
torsion subgroup of H2(S,Z) = H2(S,Z) is canonically equal to
Tors(S).

Corollary

If Tors(S) = 0, then AutZ(S) = AutQ(S).

General strategy: describe π1(S) and its abelianization
H1(S,Z) and determine the group H of automorphisms in
AutQ(S) acting trivially on it; then, in the case Tors(S) 6= 0, see
whether H acts non trivially also on H2(S,Z).
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Properly elliptic surfaces

Tips for χ(S) = 0

If S = (C × E)/G is isogenous to a higher elliptic product, then
G acts on E , hence there is a 2-generated abelian group T
such that

G = T o µr , r ∈ {2,3,4,6}.

In turn, C and the action of G on C are determined by the
Monodromy of the G-covering of B := C/G.

Finally, Aut(S) = NG/G, where NG is the Normalizer of G
inside Aut(C × E); and this formula implies that AutZ(S) is
contained in the centre of G.
The fundamental group π1(S) can be determined using the
method of Reidemeister-Schreier, once G and the Monodromy
are given. This gives rise to an infinite number of cases, and
makes a complete classification cumbersome.
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Properly elliptic surfaces

Examples for χ(S) = 0 of AutZ(S) = Z/3,Z/2.

Take G = Z/3× µ3 or G = Z/2× µ4, take B a genus two curve
and C → B unramified with values of the Monodromy
homomorphism π1(B) ↪→ G on the four generators:
(0, ε), (1, Id), (0, Id)(0, Id),(here ε is a generator of µr ).
Then S → B is a fibre bundle with fibre an elliptic curve E ,
hence we have an exact sequence
1→ π1(E)→ π1(S)→ π1(B)→ 1.
Taking the Abelianizations, we get the exact sequence

H1(E ,Z)→ H1(S,Z)→ H1(B,Z)→ 0.

We show then that H1(E ,Z) maps to 0, hence Tors(S) = 0.
We get AutZ(S) = Z/3,Z/2, taking automorphisms which are
the identity on C, and translations by T on E .

We have also examples with Tors(S) 6= 0. To prove the upper
bound we must use computer algebra for implementing the
algorithm of Reidemeister-Schreier.
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Properly elliptic surfaces

Properly elliptic isotrivial surfaces with χ(S) > 0

Here f : S → B isotrivial means that S is birational to
(C × E)/G, with non free action by G = T o µr , r ∈ {2,3,4,6}.
Since Bir(S) = Aut(S) , with similar methods to the case
χ(S) = 0, with Liu and Schütt we proved:

Theorem
If S properly elliptic, isotrivial with χ(S) > 0, then
|AutZ(S)| ≤ 3,
and exist infinitely many cases with order 2,3. Moreover
|AutQ(S)| ≤ r , for r ≤ 4,≤ 3 for r = 6,
except for q(S) = pg(S) = 0, where, s being the number of
multiple fibres
|AutQ(S)| ≤ 4s ≤ 4(P2(S) + 1),
and for each value of s ∈ N, exist cases with
|AutQ(S)| = 4s = 4(P2(S) + 1).
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Properly elliptic surfaces

Elliptic algebraic surfaces with χ(S) > 0: the
Mordell-Weil method.

Since f : S → B yields a curve C of genus 1 over the field
K := C(B), and since Bir(S) = Aut(S), we have to study
Aut(C), except that we allow automorphisms of the base field.
In other words, we have an exact sequence

1→ AutK(C)→ Aut(C)→ Aut(K).

Now, after a (finite) Galois field extension K′ ⊃ K, the curve
E := C ⊗ K′ acquires a K′-rational point, hence it is an elliptic
curve, hence E ∼= Picd (E) for each integer d .
In particular

AutK(C) ⊂ AutK′(E) ∼= E o µr , r ∈ {2,4,6}.

Instead, C is not isomorphic to Pic0(C) if C has no rational point
(corresponding to a section of the fibration f ).
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Properly elliptic surfaces

The Mordell-Weil method.

At any rate, C is a principal homogeneous space over
Jac(C) := Pic0(C), and on C operates the Mordell-Weil group
MW (C), which is defined as the group of K-rational points of
Jac(C) = Pic0(C).
Geometrically, to Jac(C) corresponds the Jacobian surface
Jac(f ), MW (f ) is the group of sections of the Jacobian fibration,
which acts on S inducing the identity on the base curve B.
An important feature is that S and J := Jac(f ) have the same
singular fibres, except for the multiple fibres: the multiple fibres
of F which are of the form mF ′ with F ′ singular, lose their
multiplicity, and become just F ′.
To bound |Aut(S)| we use the analogous exact sequence

1→ AutB(S)→ Aut(S)→ Aut(S)|B → 1,Aut(S)|B < Aut(B).
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Properly elliptic surfaces

Elliptic surfaces with χ(S) > 0: the Mordell-Weil
method.

A construction introduced by Kondo for Enriques surfaces can
be used to construct numerically trivial automorphisms:

start with a finite subgroup H < MW (f ), and take a suitable
H-Galois cover B′ → B.
define S = (B′ ×B S)/H, where H acts diagonally, and
freely for a suitable choice of H and the covering B′.
take the action of H on S induced by the product of the
identity times the action of H on S.

There remains to see whether H has a numerically trivial
action: the main point is to show that it does not permute the
irreducible components of the singular fibres, and that these
and the multisection associated to H generate H2(S,Q).
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Properly elliptic surfaces

Non isotrivial elliptic surfaces with χ(S) > 0: the
main results.

Theorem
1) If pg(S) = 0 and S is not isotrivial (not all smooth fibres are
isomorphic) |AutQ(S)| ≤ 9 and equality can hold.
2) If pg(S) 6= 0, AutQ(S) is isomorphic to a subgroup of
MW (f )tors, and conversely for any finite 2-generated abelian
group H there is such a surface S with H < AutQ(S).
3) If pg(S) 6= 0 then |AutQ(S)| ≤ 12π2(q(S) + 2) .
4) AutQ(S) is trivial if there is an additive fibre, or all multiple
fibres have smooth support, or the fibration is isotrivial.

1) For pg(S) = 0 then Jac(f ) is a rational elliptic surface, and
MW (f ) has been described by Miranda, Oguiso-Shioda ..
2-3) For pg(S) > 0 in the non isotrivial case we view f : S → B
as pull-back of an elliptic modular surface to get upper bounds.
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Properly elliptic surfaces

Non isotrivial elliptic surfaces with χ(S) > 0 and
pg(S) > 0: triviality.

We have shown in particular:

4) AutQ(S) is trivial if there is an additive fibre, or all multiple
fibres have smooth support, or the fibration is isotrivial.

This result rescues somehow the claims by Peters and Cai (that
the group is always trivial) making clear the problems especially
with the more refined arguments by Cai, and confirming to us
that surfaces were created by the devil..
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Examples of non isotrivial elliptic surfaces with
AutZZ (S) = /ZZ/2,Z/3.

Theorem
(I) For any s ∈ N there is a 2s-dimensional family of
non-isotrivial elliptic surfaces Y → P1 with pg(Y ) = q(Y ) = 0
and h0(2KY ) = 2s − 1 admitting a cohomologically trivial
involution.
(II) There is a 1-dimensional family of non-isotrivial properly
elliptic surfaces Y → P1 with q = pg = 0 admitting a
cohomologically trivial automorphism of order 3.

In (I), for s = 1, the previous theorem recovers the family of
Enriques surfaces first studied by Barth–Peters.
Difficulty of the proof : to find an explicit basis of H2(S,Z).
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AutZ(S) versus AutQ(S).

One main difference is first of all that, while numerical
automorphisms preserve the reducible fibres, cohomologically
trivial automorphisms preserve also the multiple fibres in the
case where q(S) = genus(B).

There are no known examples, in the case where KS is nef,
where the group AutZ(S) has at least 4 elements.
A trivial but important remark is that, even if one establishes
that an automorphism σ ∈ AutQ(S) acts trivially on H1(S,Z)
(hence trivially also on Tors(S) ⊂ H2(S,Z)), the action of σ is
trivial on H2(S,Z)/Tors(S) but not necessarily on H2(S,Z).
For pg(S) = 0, it is difficult but sometimes possible to find an
explicit basis of H2(S,Z) to see how σ acts; for pg(S) > 0 we
have no hint on how to complete the sublattice
Num(S)⊕ Transc(S) to the full lattice H2(S,Z).
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The end

THANKS FOR YOUR ATTENTION!
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