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Abstract

We will give an overview of Nichols algebras and their connections with geometry,
Lie theory, combinatorics, moduli spaces and hyperplane arrangements.

1 Braided Vector Spaces
For simplicity we will work over the field of complex numbers C throughout the text, even
if most results hold in a wider generality.

Definition 1.1. A braided vector space is the datum of a vector space V together with an
element c ∈ GL(V ⊗ V ), called braiding, satisfying the so-called braid equation:

(c⊗ id)(id⊗ c)(c⊗ id) = (id⊗ c)(c⊗ id)(id⊗ c). (1.1)

Example 1.2. 1. (V, τ), where τ : V ⊗ V → V ⊗ V is the standard flip v ⊗ w 7→ w ⊗ v
for v, w ∈ V

2. V = V0 ⊕ V1 is a Z2-graded vector space and c(v ⊗ w) = (−1)ljw ⊗ v for v ∈ Vl and
w ∈ Vj.

3. Let {v1, . . . , vn} be a basis for V and let M ∈ Mn(C) be a matrix with non-zero entries.
Then the automorphism of V ⊗ V given by c(vk ⊗ vl) = mklvl ⊗ vk satisfies (1.1). A
braiding of this form is called diagonal.

1.1 A class of examples: Yetter-Drinfeld modules

Definition 1.3. Let G be a group. A Yetter-Drinfeld module for G is the datum of a G-
graded G-module V =

⊕
g∈G Vg satisfying the compatibility condition gVh = Vghg−1. The

support of V is the G-stable subset

supp(V ) = {h ∈ G | Vh ̸= 0}.
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Yetter-Drinfeld modules form a category G
GYD, where morphisms are the G-module mor-

phisms preserving the grading, and Yetter-Drinfeld submodules and simple Yetter-Drinfeld
submodules are defined in the usual way. If G is finite, it follows from [44, Section 1] that
G
GYD is semisimple, that is, every Yetter-Drinfeld module is the direct sum of simple Yetter-
Drinfeld modules.

Example 1.4. Examples of Yetter-Drinfeld modules:

1. The trivial G-module with grading concentrated in 1G.

2. Let G = Z2 = {0, 1} and let V be a finite-dimensional representation of G, with
decomposition into isotypical compenents V = Vtriv⊕Vsign. Then taking Vtriv = V1 and
Vsign = V0 or Vtriv = V0 and Vsign = V1 gives a Yetter-Drinfeld module structure on V .

3. If G is abelian and V is a G-module, then any decomposition of V as a direct sum of
G-stable subspaces labeled by g ∈ G equips V with a Yetter-Drinfeld module structure.

4. Let g ∈ G and let W be a representation of CG(g). Then V = IndG
CG(g)(W ) is a

Yetter-Drinfeld module, with grading determined by setting Vg = W .

Proposition 1.5. Let G be a group and let V =
⊕

g∈G Vg be a G-graded faithful G-module.
Then the linear map c ∈ End(V ⊗2) given by

c(v ⊗ w) = gw ⊗ v, v ∈ Vg, w ∈ V (1.2)

is a solution of the braid equation if and only if V is a Yetter-Drinfeld module for G.

Proof. Exercise. The “if” direction does not require faithfulness.

If V is a Yetter-Drinfeld module, c will denote the braiding as in Proposition 1.5.

Example 1.6. If V is the trivial representation with trivial braiding then c is the usual flip
τ . If G = Z2 = {0, 1}, and V is a direct sum of sign representations, concentrated in degree
1, then c = −τ .

Let G be finite and let Og be the conjugacy class of g ∈ G and let V =
⊕

h∈G Vh

be a Yetter-Drinfeld module for G. Then, VOg :=
⊕

h∈Og
Vh is G-stable and it is again a

Yetter-Drinfeld module, and V decomposes as V =
⊕

Og class in G
VOg . This leads to a

decomposition of the category G
GYD into blocks, parametrized by the conjugacy classes of

G. The objects in the block corresponding to Og are the Yetter-Drinfeld modules whose
support is Og. Hence, each simple object in G

GYD lies in one of these blocks (and it is
finite-dimensional).

Proposition 1.7. Let G be a finite group. The irreducible Yetter-Drinfeld modules are
parametrized by the G-conjugacy classes of pairs (Og,W ) where Og is the conjugacy class of
g in G and W is an irreducible representation of CG(g). The correspondence is obtained by
taking V = IndG

CG(g)W and Vg = W .
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Proof. (Sketch) Assume that V is simple. Then, V = VOg for some g ∈ G and Vg is CG(g)-
stable. In addition, V is a quotient of IndG

CG(g)Vg = CG⊗CCG(g) Vg. By dimensional reasons,
V = IndG

CG(g)Vg, and Vg is necessarily irreducible. Conversely, any Yetter-Drinfeld module
constructed in this way is simple. Equivalence up to conjugacy is obtained by standard
arguments.

Exercise 1.8. Complete the details in the proof of Proposition 1.7.

Remark 1.9. Yetter-Drinfeld modules can be interpreted as G-equivariant sheaves on the
(possibly finite) variety G: the homogeneous component Vg is the stalk of the sheaf at g.
The simple equivariant sheaves for G finite were identified in [44], and re-discovered in many
different setups: irreducible representations of Drinfeld quantum double, conformal field
theory, Hopf modules.

1.2 The braid groups

Let n ≥ 2. The Braid group Bn on n strands is the group generated by σ1, . . . , , σn−1 with
relations σjσj+1σj = σj+1σjσj+1 for j = 1, . . . , n − 2 and σjσl = σlσj for |l − j| > 1 and
1 ≤ l < j ≤ n− 1.

The group B2 ≃ Z is abelian, but Bn not abelian for n > 2 since there is a surjective
group homomorphism π : Bn → Sn, determined by π(σj) = (j j + 1).

The morphism π has a set-theoretic section M : Sn → Bn called the Matsumoto section,
that is uniquely determined following the recipe: take σ ∈ Sn, decompose it as a product
of transpositions of the form (j j + 1) using a minimal number of terms, so σ = (j1 j1 +
1)(j2 j2 + 1) · · · (jl jl + 1). Then, M(σ) := σj1 · · · σjl . Matsumoto’s theorem states that the
map M is well-defined.

Remark 1.10. The group Bn is the fundamental group of the space Symn
̸=(C) := Cn

̸=/Sn of
unordered configurations of n distinct points in C.

Any braided vector space (V, c) gives naturally a representation ρn of Bn on V ⊗n for any
n ≥ 2 according to the following rule:

ρn(σi) := id
⊗(j−1)
V ⊗ c⊗ id

⊗(n−j−1)
V . (1.3)

2 Tensor algebra, shuffle algebra and Nichols algebra
In this section (V, c) is a braided vector space.

We recall that the tensor algebra T!(V ) of a vector space V is the graded algebra whose
underlying vector space is C⊕

⊕
n≥1 V

⊗n, with unit 1C and product given by juxtaposition of
tensors. It has the universal property that any linear map V → A , where A is an associative
algebra, extends to a unique associative algebra morphism T!(V ) → A.

The space C⊕
⊕

n≥1 V
⊗n can be equipped with another graded associative algebra struc-

ture: the shuffle algebra (or cotensor algebra), that we denote by T∗(V ).
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First, let n, k, l ∈ N with n ≥ 2 and n = k + l. We say that σ ∈ Sn is a (k, l)-shuffle
if σ(a) < σ(b) if 1 ≤ a < b ≤ k or k + 1 ≤ a < b ≤ n. We denote by Σk,l the subset
of Sn consisting of (k, l)-shuffles in Sk+l. So Σ1,1 = S2 and Σ1,2 = {id, (12), (132)} and
Σ2,1 = {id, (23), (123)}.

The product • of two homogeneous elements va1 ⊗ · · · ⊗ vak and vak+1
⊗ · · · ⊗ vak+l

in
T∗(V ) is given by

(va1 ⊗· · ·⊗ vak)• (vak+1
⊗· · ·⊗ vak+l

) =
∑

σ∈Σk,l

ρk+l(M(σ))(va1 ⊗· · ·⊗ vak ⊗ vak+1
⊗· · ·⊗ vak+l

).

where ρn is as in (1.3) and M is Matsumoto section. It is a non-trivial result that this algebra
is associative.

Example 2.1. For any u, v, w ∈ V there holds

v • w = v ⊗ w + c(v ⊗ w) (2.1)
(u⊗ v) • w = u⊗ v ⊗ w + u⊗ c(v ⊗ w) + (c⊗ id)(id⊗ c)(u⊗ v ⊗ w).

1. If c = τ is the usual flip, then (2.1) become

v • w = v ⊗ w + w ⊗ v

(u⊗ v) • w = u⊗ v ⊗ w + u⊗ w ⊗ v + w ⊗ u⊗ v.

2. If G = Z2 and V = V0 ⊕ V1 is a Yetter-Drinfeld module for G with G acting trivially
on V0 and by −1 on V1, then c(v ⊗ w) = (−1)|v||w|w ⊗ v for all homogeneous v, w ∈ V
and (2.1) become

v • w = v ⊗ w + (−1)|w||v|w ⊗ v

(u⊗ v) • w = u⊗ v ⊗ w + (−1)|v||w|u⊗ w ⊗ v + (−1)|v||w|+|u||w|w ⊗ u⊗ v.

Remark 2.2. The product in Example 2.1 (1) has a long history: it was introduced in
[50] to retrieve in a uniform way several results concerning the Baker–Campbell–Hausdorff
formula.

Exercise 2.3. Compute the number of k, l shuffles in Sn.

The universal property of T!(V ) applied to the natural inclusion V → T∗(V ) guarantees
that there is a unique algebra morphism Q : T!(V ) → T∗(V ) extending idV .

The Nichols algebra of (V, c), denoted by T!∗(V ) for simplicity, is the image of Q, so
T!∗(V ) = Im(Q) ≃ T!(V )/Ker(Q). Nichols algebras firstly appeared in the work of Nichols
[49], and were re-discovered in [56], see also [29].

4



Example 2.4. 1. If c is the usual flip τ , then for any u, v, w ∈ V we have

Q(v ⊗ w) = Q(v) •Q(w) = v ⊗ w + w ⊗ v,

Q(u⊗ v ⊗ w) = Q(u⊗ v) •Q(w) = (u⊗ v + v ⊗ u) • w
= u⊗ v ⊗ w + u⊗ w ⊗ v + w ⊗ u⊗ v + v ⊗ u⊗ w + v ⊗ w ⊗ u+ w ⊗ v ⊗ u.

One can verify that T!∗(V ) is the symmetric algebra S(V ), that is a quadratic, infinite
dimensional algebra.

2. If G = Z2, and V carries the sign representation and is concentrated in odd degree
V = V1, then for any u, v, w ∈ V we have

Q(v ⊗ w) = Q(v) •Q(w) = v ⊗ w − w ⊗ v,

Q(u⊗ v ⊗ w) = Q(u⊗ v) •Q(w) = (u⊗ v − v ⊗ u) • w
= u⊗ v ⊗ w − u⊗ w ⊗ v + w ⊗ u⊗ v − v ⊗ u⊗ w + v ⊗ w ⊗ u− w ⊗ v ⊗ u.

One can verify that T!∗(V ) = ∧V , the exterior algebra, that is a quadratic, finite
dimensional algebra.

More generally, the morphism Q is explicitly given by

Q : T!(V ) → T∗(V ), Q := idC ⊕ idV ⊕
⊕
n≥2

Qn,

Qn : V
⊗n → V ⊗n, Qn :=

∑
σ∈Sn

ρn(M(σ)).

The component Qn is called the n-th quantum symmetrizer, [52].

Example 2.5. Let G = Zn, let V = Cn be a Yetter-Drinfeld module for G with basis
{v1, . . . , vn} of homogeneous common eigenvectors of V . Let vl ∈ Vgl and glvj = χj(gl)vj for
l, j ∈ {1, . . . , n}. Then, c(vl ⊗ vj) = χj(gl)vj ⊗ vl and Q(vl ⊗ vj) = vl ⊗ vj + χj(gl)vj ⊗ vl.
By direct calculation, Q(v⊗m

j ) =
∏m

l=1(1 +χj(gj) + · · ·χj(gj)
l−1)v⊗m

j for any l ∈ N. If χj(gj)

is a non-trivial N -th root of 1, then v⊗N
j ∈ KerQ. If χj(gj) is 1 or it is not a root of unity,

then Im(Q) contains all tensor powers of vj and it is therefore infinite-dimensional.

Exercise 2.6. Let A =
(

2 −1
−1 2

)
, let q ∈ C∗ and let c be the diagonal braiding on V =

span(v1, v2) given by c(vl ⊗ vj) = qaljvj ⊗ vl. Show that

Q
(
v1 ⊗ v2 ⊗ v2 − (q + q−1)v2 ⊗ v1 ⊗ v2 + v2 ⊗ v2 ⊗ v1

)
= 0,

Q
(
v2 ⊗ v1 ⊗ v1 − (q + q−1)v1 ⊗ v2 ⊗ v1 + v1 ⊗ v1 ⊗ v2

)
= 0.

Example 2.7. [29, 51] Let q ∈ C∗, let D,A ∈ Mn(Z) where A is the Cartan matrix of
a semisimple Lie algebra g and D is an invertible diagonal matrix with coefficients in
{0, 1, 2, 3} such that DA is symmetric. Let then mlj := qdlalj for l, j ∈ {1, . . . , n}. Let
V = span(v1, . . . , vn) be a braided vector space with diagonal braiding given by the matrix
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M = (mlj). Then, T!∗(V ) is the algebra generated by v1, . . . , vn subject to the so-called
quantum Serre relations

1−alj∑
l=0

(−1)l
[1− alj]qdl !

[1− alj − l]qdl ![l]qdl !
enl eje

1−alj−l

l = 0, l ̸= j

where [t]a :=
qa−q−a

q−q−1 for t, a ∈ Z≥0 and [t]a! :=
∏t

s=1[s]a. In other words, T!∗(V ) is isomorphic
to the positive part of the quantized enveloping algebra of g.

3 An important example: Fomin-Kirillov algebras
For n ≥ 2, let G = Sn, let g = (12), so H := CG(g) = ⟨(12)⟩ × Sn−2. We consider the 1-
dimensional representation ρ = sgn⊠triv of H and the corresponding simple Yetter-Drinfeld
module

Vn = IndSn
H Cρ = CSn ⊗CH Cρ =

⊕
σ∈Sn/H

Cσ ⊗ 1.

where σ ⊗ 1 is in degree σ · (12) ∈ OSn
g . For any (lj) ∈ OSn

g , we choose σ(lj) ∈ Sn such that
σ(lj) · g = (lj) and set xlj := σ(lj) ⊗ 1, so Vn = spanC(xlj, 1 ≤ l < j ≤ n).

The relations of T!∗(Vn) in degree 2 read as follows, [48]:

x2
(ij) = 0, 1 ≤ i < j ≤ n, (3.1)

x(lj)x(jk) = x(jk)x(lk) + x(lk)x(lj), 1 ≤ l < j < k ≤ n,

x(jk)x(lj) = x(lk)x(jk) + x(lj)x(lk), 1 ≤ l < j < k ≤ n,

x(mj)x(kl) = x(kl)x(mj), 1 ≤ m, j, k, l ≤ n, |{m, j, l, k}| = 4.

The quotient of T!(Vn) subject to the relations (3.1) is the Fomink-Kirillov algebra FKn,
introduced in [30] in order to give a combinatorial framework for Schubert calculus. because
it contains a finite-dimensional, commutative subalgebra that is isomorphic to the cohomol-
ogy algebra H∗(GLn(C)/Bn,C∗) of the flag variety GLn(C)/Bn. Here Bn, is the subgroup
of upper-triangular matrices in GLn(C). In more concrete terms, H∗(GLn(C)/Bn,C) is iso-
morphic to the coinvariant algebra C[X1, . . . , Xn]/In, where In is the ideal generated by the
non-constant, symmetric polynomials. It was shown in [31,48] that FKn contains and is free
over a subalgebra isomorphic to FKn−1.

For n ≤ 5 is has been shown in [30,32,48], with contributions of M. Graña and Roos, that
FKn is finite-dimensional and that the natural surjection FKn → T!∗(Vn) is an isomorphism.
A proof of infinite-dimensionality of FK6 appeared in [15] and it is conjectured that T!∗(Vn) ≃
FKn for any n. The coinvariant algebra is also contained in T!∗(Vn).

The numerology of FKn, for n ≥ 2 is intriguing: let dn be the dimension of the top
degree component in the grading of FKn. Relying on the result in [15], the sequence reads:
1, 4, 12, 40, ?, ?. The sequence 1, 4, 12, 40,∞,∞, . . . gives also the number of indecomposable
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representations of the pre-projective algebra of type An−1, [45], the number of clusters of
the cluster algebra structure on C[Un], where Un is the group of upper triangular unipotent
matrices in GLn(C), [41]. In addition, the sequence 1, 4, 12, 40 describes the sequence of
dimensions of prehomogeneous vector spaces with finite generic stabilizer, [24]. In this case,
the generic stabilizers are precisely the symmetric groups Sn for n = 2, 3, 4, 5. This suggests
that there might be interesting connections among these apparently different families of
objects.

If we consider instead the representations ρ′ = sgn ⊠ sgn of H and the corresponding
irreducible Yetter-Drinfeld module

V −
n = IndSn

H Cρ′ = CSn ⊗CH Cρ′ =
⊕

σ∈Sn/H

Cσ ⊗ 1

then V− has the same underlying vector space as V but with a simpler braiding: c(x(mj) ⊗
x(kl)) = −x(mj)(kl)(mj) ⊗ x(mj) for 1 ≤ m, j, k, l ≤ n. The corresponding algebra T!∗(V

−
n ) has

the following relations in degree 2:

x2
(ij) = 0, 1 ≤ i < j ≤ n, (3.2)

x(lj)x(jk) + x(jk)x(lk) + x(lk)x(lj) = 0, 1 ≤ l < j < k ≤ n,

x(jk)x(lj) + x(lk)x(jk) + x(lj)x(lk) = 0, 1 ≤ l < j < k ≤ n,

x(mj)x(kl) + x(kl)x(mj) = 0, 1 ≤ m, j, k, l ≤ n, |{m, j, l, k}| = 4.

has the same Hilbert series as T!∗(V ), and the same holds for the corresponding quadratic
approximations, Ã(Sn) and FKn. This holds because the Yetter-Drinfeld modules Vn and
V −
n can be obtained from one another twisting by a 2-cocycle of Sn, [54].

The algebra Ã(Sn) occurred in [43, Section 5], as a cover of an algebra An used to
compute the cohomology of the non-reduced Milnor fiber for the hyperplane arrangement
Hn−1 of type An−1. It was observed there that the Orlik-Solomon algebra OS(An−1) ≃
H∗(Cn−1 \

⋃
H∈Hn−1

H,C) is a finite-dimensional quotient of Ã(Sn). Summarizing, we have
the following picture:

FKn Ã(Sn)

H∗(GLn(C)/Bn,C) OS(An−1)

T!∗(Vn) T!∗(V
−
n )

twist

?

twist

where the existence of the dashed arrow is under investigation.

A family of Nichols algebras with similar properties as those of T!∗(Vn) for an arbitrary
finite Coxeter group W was obtained by Bazlov, [16]. These algebras also contain a subal-
gebra isomorphic to the corresponding coinvariant algebra of W . For W ̸= Sn, they are all
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infinite-dimensional, [23]. One can also define the analogue of T!∗(V
−
n ) for arbitrary W . It

is again twist-equivalent to Bazlov’s algebra, [23]. If the Coxeter graph has no even-labeled
edges, the quadratic approximation of T!∗(V

−
n ) is the algebra Ã(W ) defined in [43] and un-

der the same assumptions on the graph of W , the Orlik-Solomon algebra for W is again a
quotient of Ã(W ). It would be interesting to know if the Orlik-Solomon algebra is also a
quotient of the Nichols algebra.

Exercise 3.1. 1. For j = 1, . . . , n, let θj := −
∑

1≤i<j x(ij) +
∑

j<k≤n x(jk) ∈ FKn. Show
that the subalgebra Hn of FKn generated by the θj is commuative.

2. Let now n = 3. Show that in the subalgebra H3 of FK3 generated by θ1, θ2 and θ3 there
hold the relations:

θ1 + θ2 + θ3 = 0, θ21 + θ22 + θ23 = 0, θ1θ2θ3 = 0.

Deduce that all symmetric functions in θ1, θ2 and θ3 without constant term vanish. ie.,
H3 is a quotient of C[θ1, θ2, θ3]/(C[θ1, θ2, θ3]S3+ ), where C[θ1, θ2, θ3]S3+ denotes the terms
of positive degree. For a proof that the two algebras are isomorphic, we refer to [30].

4 Questions
The main questions we are interested in are the following:

• For which braided vector spaces (V, c) is T!∗(V ) finite-dimensional?

• Can we classify finite-dimensional Nichols algebras?

• For which braided vector spaces (V, c) is T!∗(V ) finitely presented?

• For which braided vector spaces (V, c) are the relations of T!∗(V ) generated up to degree
d? Special case, d = 2: for which braided vector spaces (V, c) is T!∗(V ) quadratic?

• Same questions as above but restricting the possibilities for V : for instance, assuming
that V a Yetter-Drinfeld module for a fixed group G or a fixed family of groups G, and
that c is defined as in (1.2).

4.1 Reduction arguments

1. The construction of T!∗(V ) is functorial, that is, if (V, cV ) and (U, cU) are braided vector
spaces and f : V → U is a linear map satisfying cU ◦ (f ⊗ f) = (f ⊗ f) ◦ cV , then f
induces an algebra morphism T!∗(f) : T!∗(V ) → T!∗(U). If f is injective, then T!∗(f)
is injective. Hence, if a braided vector space (U, c) contains a subspace V such that
c(V ⊗ V ) ⊂ V ⊗ V (i.e., a braided vector subspace) and T!∗(V ) is infinite-dimensional,
then the same holds for T!∗(U), [36, Proposition 1.10.12].
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2. A special case of inclusion of braided vector spaces can be obtained as follows: let
V =

⊕
g∈G Vg be a Yetter-Drinfeld module for G, and let H ≤ G. Then, the restriction

VH :=
⊕

h∈H Vh is a Yetter-Drinfeld module for H whose associated braiding is the
restriction to VH ⊗VH of the braiding of V . Hence, we have a natural algebra inclusion
T!∗(VH) ⊂ T!∗(V ). This shows that simple Yetter-Drinfeld modules might have braided
vector subspaces.

3. Let (V, c) be a braided vector space and assume that V = U1 ⊕ U2 for some subspaces
U1, U2 ⊂ V such that c(Ul⊗Uj) ⊆ Uj⊗Ul for l, j ∈ {1, 2}. For instance, this happens if
V is a Yetter-Drinfeld module and V = U1⊕U1 is a decomposition as a sum of Yetter-
Drinfeld submodules. If c◦ c|U1⊗U2 = idU1⊗U2 , then as vector spaces T!∗(U1)⊗T!∗(U2) ≃
T!∗(V ). More precisely, the two algebras are isomorphic if we twist the tensor product
algebra multiplication using c where we would usually apply the standard flip τ . If
c ◦ c|U1⊗U2 ̸= idU1⊗U2 , then one has a proper inclusion T!∗(U1) ⊗ T!∗(U2) ⊂ T!∗(V ),
[36, Proposition 1.10.12].

Exercise 4.1. Let G = Z2 and V = V0 ⊕V1, with G acting trivially on V0 and by −1 on V1.
Show that T!∗(V ) is isomorphic to S(V0)⊗ ∧(V1).

5 Nichols algebras associated with Yetter-Drinfeld mod-
ules

We focus on Nichols algebras for which the braided vector space comes from a Yetter-Drinfeld
module of a group G. We call them “Nichols algebras over G”. The situation is addressed
differently according to whether G is abelian or not.

5.1 Abelian groups and diagonal braidings

In this section G is an abelian group. Then, if V =
⊕

g∈G Vg is a Yetter-Drinfeld module, each
homogeneous component is a G-submodule, and as such it splits as a sum of 1-dimensional
G-stable subspaces that are again Yetter-Drinfeld modules. The braiding is then diagonal
with respect to a basis of V compatible with this decomposition.

The question becomes then: let V = span(v1, . . . , vn), let q = (qlj) ∈ Mn(C) with qlj ∈
C∗ and let cq ∈ GL(V ⊗ V ) be defined by cq(vl ⊗ vj) = qljvj ⊗ vl. Under which assumptions
on q is T!∗(V ) finite dimensional? For such q, can we describe T!∗(V ) by generators and
relations?

Example 3 shows that if T!∗(V ) is finite-dimensional, then qll is necessarily a non-trivial
root of unity for any l = 1, . . . , n, so in this Section we restrict to this situation.

We attach to the matrix q a generalized Dynkin diagram with n nodes, labeled by
q11, . . . , qnn. There is an edge between the l-th node and the j-th node if and only if
qljqjl ̸= 1, and in this case we label the edge by qljqjl.
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Remark 5.1. 1. If the generalized Dynkin diagram is not connected, then the reduction
argument 3 shows that the Nichols algebra is the (twisted) tensor product of the Nichols
algebras whose associated Dynkin diagrams are the connected components of the initial
diagram.

2. There is a loss of information when passing from cq to the generalized Dynkin diagram.
However, Nichols algebras with the same diagram differ by a twist via a cocycle, hence
they have the same Hilbert series, [1, Theorem 4], [9, Proposition 3.9].

The classification of generalized Dynkin diagrams associated with finite dimensional
Nichols algebras with diagonal braiding has been obtained by I. Heckenberger in [34]. They
key tool is the Weyl groupoid he introduced in [33] and the idea of a root system given by
the degrees in a (restricted) Poincaré-Birkhoff-Witt (PBW) type basis of a Nichols algebra.
Finite-dimension is then related to the root system being finite and this in turn corresponds
to the Weyl groupoid being finite. The latter can be classified combinatorially with little use
of the complicated relations in the Nichols algebra.

The explicit presentations of the corresponding Nichols algebras were then given by I.
Angiono in [12, 13]. Here, convex orderings for this generalized notion of root systems are
introduced, and it is shown that the defining ideals of Nichols algebras with a finite root
system are finitely-generated. A generating set of the ideal can be chosen to contain only ele-
ments of two types: powers of generators of a PBW basis, and elements leading to variations
of quantum Serre-relations.

Remark 5.2. Further connections with Lie theory occur for the special family of Cartan
braidings: these are diagonal braidings such that there exist alj ∈ Z≤0, and Nl ∈ Z≤0, for
l ̸= j such that

qNl
ll = 1, ∀l, qljqjl = q

alj
ll , ,∀l, j, l ̸= j

The name is due to the fact that we can assign to this braiding a generalized Cartan matrix
A by setting all = 2 for all l and choosing alj ∈ {−Nl, . . . , 0} for all j ̸= l. It was proved in
[10,33] that the corresponding Nichols algebra is finite-dimensional if and only if the matrix
A is a Cartan matrix of finite type.

5.2 Non-abelian groups

In this section G is a finite non-abelian group. The reduction techniques in Section 4.1 show
that one can proceed inductively, by looking at subgroups or at braided vector subspaces. Re-
striction to abelian subgroups allows to invoke the classification of finite-dimensional Nichols
algebras corresponding to diagonal braidings. However, this is in general not enough to state
general results about all Yetter-Drinfeld modules over G.

General results have been obtained setting either conditions on the Yetter-Drinfeld mod-
ule or on the group, the main lines being: the Yetter-Drinfeld module is not simple; or G is
solvable; or G is a non-abelian simple group. The latter strongly relies on the first.
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5.2.1 Non simple Yetter-Drinfeld modules

Let V be a non simple Yetter-Drinfeld module. If for some Yetter-Drinfeld module decom-
position V = U1⊕U2 the restriction of c◦c to U1⊕U2 is the identity then we may invoke the
Reduction (1) and reduce the problem to an analysis of the Nichols algebras of U1 and U2

respectively. Therefore, it is not restrictive to assume that V is braid-indecomposable, that
is, the restriction of c ◦ c to U1 ⊕ U2 is not the identity for any non-trivial decomposition of
V . In addition, if the support of V generates a proper subgroup H of G, then V is also a
Yetter-Drinfeld module for H, with same braiding. Therefore, there is no loss of generality
in assuming that G is generated by the support of V .

A complete classification of the Yetter-Drinfeld modules satisfying these assumptions and
whose corresponding Nichols algebra is finite-dimensional is given in [37–39]. They are again
classified in terms of variations of Dynkin diagrams whose rank is given by the number of
simple summands, encoding information about the modules (dimension, support,...). The
dimensions of the corresponding Nichols algebras are explicitly given. Also in this situa-
tion the key tool is a Weyl groupoid. The classification shows that there are very strong
restrictions on the group G, the supports of the module, and its dimension.

More precisely, for j = 1, 2, 3, 4, let φj be the 3-cycle in {(243),(134),(142),(123)} fixing
j, let n ∈ N≥2 and let

Γn := ⟨g, h, ϵ | hg = ϵgh, gϵ = ϵ−1g, hϵ = ϵh, ϵn = 1⟩,
T := ⟨z⟩ × ⟨gj, j = 1, 2, 3, 4, | gjgl = gφj(l)gj, j = 1, 2, 3, 4⟩.

Theorem 5.3. ([37,38]) Let G be a non-abelian group let U1, U2 be finite-dimensional simple
Yetter-Drinfeld modules of G, with

⟨supp(U1 ⊕ U2)⟩ = G, (id− c ◦ c)|U1⊗U2 ̸= 0, dimT!∗(U1 ⊕ U2) < ∞.

Then G is an epimorphic image of Γ2,Γ3,Γ4 or T . The possibilities for the cover of G, the
dimension of T!∗(U1 ⊕ U2), the dimension of U1 and U2, and the sizes of their support are
collected in Table 1 and all of them occur.

cover of G dimT!∗(U1 ⊕ U2) size supports (dimU1, dimU2)
Γ2 64 (2,2) (2,2)
Γ3 10368 (3,1) (3,1)
Γ3 10368 (3,2) (3,2)
Γ3 2304 (3,2) (3,2)
Γ3 2304 (3,1) (3,2)
T 80621568 (4,1) (4,1)
Γ4 262144 (4,2) (4,2)

Table 1: Finite-dimensional Nichols algebras T!∗(U1 ⊕ U2) for G non-abelian
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In addition, the conjugacy structure of the supports of U1 and U2 can be explicitly
described, as well as the Yetter-Drinfeld modules.

The case of modules with more than two simple components is more involved. The simple
components turn out to be all induced by 1-dimensional representations of centralizers, and
the classification is given in terms of labeled Dynkin-type diagrams called skeleta encoding
the size of the supports of the simple components, the commutation among supports, and
some information about the Yetter-Drinfeld modules. For further information we refer to
[39].

5.2.2 Simple Yetter-Drinfeld modules for non-abelian simple groups

Here one focuses on simple Yetter-Drinfeld modules for G. Each such module is associated
to a pair (O, ρ) where O = Og, the support of V , is a conjugacy class in G and ρ is an
irreducible representation of CG(g). One aims at finding criteria on O ensuring that the
associated Nichols algebra is infinite-dimensional for all choices of ρ. The strong restrictions
on non-simple Yetter-Drinfeld modules described in Section 5.2.1 allow to translate the
analysis into purely group theoretic terms. The basic idea is that if G has a subgroup H
such that O ∩H is not a single conjugacy class for H, then for any simple Yetter-Drinfeld
module V supported on O the Yetter-Drinfeld module VH is not simple for H. The condition
c ◦ c ̸= id translates in group theoretic terms in the existence of suitable non-commuting,
non-H-conjugate elements in O∩H. The remaining conditions can be translated into extra
conditions on O∩H, or on the size of the H-conjugacy classes therein. These considerations
lead to the following

Theorem 5.4. ([2, 3, 6]) Let O be a conjugacy class in G. Assume that one of these condi-
tions is verified:

1. There exist r, s ∈ O such that (rs)2 ̸= (sr)2 and r, s are not conjugate in ⟨r, s⟩.

2. There exist pairwise non-commuting r1, r2, r3, r4 ∈ O such that rl and rj are not
conjugate in H = ⟨r1, r2, r3, r4⟩ if l ̸= j.

3. There exists a subgroup H of G and non-commuting r, s ∈ H ∩ O such that the H-
conjugacy classes OH

r and OH
s of r and s respectively are disjoint, generate H and

satisfy min(|OH
r |, |OH

s |) > 2 or max(|OH
r |, |OH

s |) > 4.

Then dimT!∗(V ) = ∞ for any Yetter-Drinfeld module of G supported on O.

The conditions in Theorem 5.4 propagate, in the sense that if a class in G satisfies one of
these three conditions, then the same holds for its saturation in any overgroup of G and its
lift to any covering group of G. For this reason, the first natural family of groups on which
they are being tested is the family of non-abelian simple groups.

In this case one has the folklore conjecture:

Conjecture 5.4.1. If G is a non-abelian finite simple group then there exists no non-zero
finite-dimensional Nichols algebra over G.
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Conjecture 5.4.1 holds in the following situations:

1. G is an alternating group, [6]

2. G is a sporadic group with the possible exceptions of Fi22, B and M , see [7, 18] and
[28, Remarks 3.6 and 3.7].

3. G is a finite simple group of Lie type G(q) and

(a) q is even and G is PSL2(q) with q > 2; PΩ+
4n(q), PΩ−

4n(q), for n ≥ 1; 3D4(q),
E7(q), E8(q), F4(q), or G2(q), [4, Theorem 1.3].

(b) G = PSp2n(q) for and n > 3 any q, or else for n = 2 and q > 7 [5, Theorem II]
and [4, Theorem 6.3].

(c) G = PSLn(q) and n ≥ 4 for any q or else for n = 3 and q > 2 [5, Theorem III];

(d) G is a Suzuki or Ree group, [19].

If G is a finite simple group of Lie type and is none of the above groups, then a class O
in G supporting a Yetter-Drinfeld-module V for which dimT!∗(V ) < ∞ may occur only if
G ≃ PSL2(3) and O is the class of an element of order 4; or G ≃ PSp4(q) with q = 3, 5, 7
and O is a class of involutions, or else G is any further group, and O is semisimple, that is, it
is the class of an element of order coprime to q, see [4, Theorem 1.2] and following remarks.

Exercise 5.5. 1. Let n ∈ N≥5 be an odd number. Show that the conjugacy class of n-
cycles satisfies condition 3 in Theorem 5.4.

2. Let n ∈ N≥5. Show that the conjugacy class of 3-cycles satisfies condition 3 in Theorem
5.4 (Hint: use A4).

3. Verify that the class consisting of transpositions in Sn for n ≥ 3 does not satisfy any
of the assumptions from Theorem 5.4.

5.2.3 Simple Yetter-Drinfeld modules over solvable groups

The combinatorial analysis of the supports of Yetter-Drinfeld modules has proved to be
extremely effective. The case of supports and Yetter-Drinfeld modules of prime dimension
has been addressed in [35], using techniques involving deformation and reduction mod p.
This lead to important constraints.

Theorem 5.6. Let G be a non-abelian group and let V be a simple Yetter-Drinfeld module
whose support generates G. Assume in addition that dimV is a prime number and that
dimT!∗(V ) < ∞. Then dimV ∈ {3, 5, 7} and V occurs in a list of 6 precise examples,
[35, Section 1].

This approach has been exploited further and lead to a complete answer in the case in
which G is solvable.
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Theorem 5.7. ([8, Theorem 6.14]) Let G be a finite solvable non-cyclic group, and let V be a
Yetter-Drinfeld module such that its support is a conjugacy class of G generating it. Assume
in addition that T!∗(V ) < ∞. Then V is simple and it has either prime size, or T!∗(V ) is
(twist equivalent to) FK4, or V = IndS4

CS4 (1234)
(C−1) and dimT!∗(V ) = 576. In particular, |G|

is even and not coprime with 105.

Combining with the strategies from Section 5.2.2 one can state the following

Theorem 5.8. ([8, Theorem 6.18]) Let V be a Yetter-Drinfeld module for G, with |G| odd.
If dimT!∗(V ) < ∞, then the braiding on V is of diagonal type.

6 Hopf Algebras in braided categories
Nichols algebras are not just algebras: they have a richer structure that we now introduce.
All categories here will be categories of vector spaces with additional structure, Hom sets
will be C-vector spaces with bilinear composition (C-linear), and direct sums are allowed
(additive).

Definition 6.1. A (strict) braided monoidal category is a category C equipped with

• a bifunctor ⊗ : C × C → C called tensor product

• a unit object 1C, with an isomorphism ι : 1C ⊗ 1C → 1C

• a natural transformation c−,− : ⊗ → ⊗op (the tensor product in opposite order) called
braiding

satisfying compatibility axioms, called pentagon, triangle, and hexagonal axioms, [27, Defini-
tion 2.1.1, Definition 8.1.1].

A consequence of the hexagonal axiom is that for all triplets of objects U, V,W there
holds

(cV,W ⊗ idU) ◦ (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW ) = (idW ⊗ cU,V ) ◦ (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W ).

Example 6.2. The following are examples of braided monoidal categories

1. The category Vec of vector spaces with usual tensor product, 1Vec = C, and braiding
given by the usual flip τ .

2. The category sVec of Z2-graded vector spaces with usual tensor product, 1sVec = C,
with trivial grading, and braiding given on V ⊗ W by v ⊗ w 7→ (−1)|v||w|w ⊗ v for
homogeneous v ∈ V and w ∈ W .

3. The category of representations of a group G, with usual tensor product of representa-
tions, unit object given by the trivial representation and usual flip.
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4. The category of representations of a semisimple Lie algebra, with usual tensor product
or representations, unit object given by the trivial representation and usual flip.

5. The category G
GYD of Yetter-Drinfeld modules over G. The tensor product of two objects

V =
⊕

g∈G V and W =
⊕

g∈GW is the G-module V ⊗W with grading (V ⊗W )g :=⊕
h,l∈G,hl=g Vh ⊗ Wl. The unit object is the trivial representation on C with trivial

grading. The braiding V ⊗W → W ⊗ V is given by cV,W (v ⊗ w) = g.w ⊗ v for v ∈ Vg

and w ∈ W .

Exercise 6.3. Verify the statements in Example 6.2.

An algebra in a braided monoidal category C is an associative algebra A (our objects are
vector spaces!) such that the multiplication map mA and the inclusion C → A induced by
the unit are morphisms in C. For any two algebras in C, the tensor product A⊗B is naturally
equipped with an algebra structure by setting mA⊗B := (mA ⊗mB) ◦ (idA ⊗ cB,A ⊗ idB).

Dually, a coalgebra in C is an object C in C together with two morphisms ∆: C → C⊗C
(called comultiplication) and ε : C → 1C (called counit) in C satisfying (∆ ⊗ idC) ◦ ∆ =
(idC ⊗∆) ◦∆ and idC = (ε⊗ idC) ◦∆ = (idC ⊗ ε) ◦∆.

A bialgebra B in C is an object B that is simultaneously an algebra, a coalgebra, and such
that the comultiplication ∆: B → B ⊗B and the counit ε : B → C are algebra morphisms.

Example 6.4. Let V ∈ G
GYD. Then,

1. T!(V ) is a bialgebra in G
GYD, where ε is the projection on the zero degree term and

∆(v) = v ⊗ 1 + 1⊗ v for all v ∈ V , extended to T!(V ) as an algebra morphism.

2. T∗(V ) is a bialgebra in G
GYD, where ε is the projection on the zero degree term and

∆(v) = v ⊗ 1 + 1⊗ v for all v ∈ V , extended to T∗(V ) as an algebra morphism.

3. It can be verified that Q : T!(V ) → T∗(V ) is a morphism in G
GYD and a coalgebra mor-

phism, that is, it intertwines the comultiplications in T!(V ) and T∗(V ) and is compatible
with the counits. Hence, T!∗(V ) is a bialgebra in G

GYD. It can be shown that the degree
1 component satisfies

V = {x ∈ T!∗(V ) | ∆(x) = x⊗ 1 + 1⊗ x}.

Exercise 6.5. Verify the statement in Example 6.4 1.

7 Applications
We review here two applications of Nichols algebras in mathematics. Nichols algebras have
applications also in physics, for instance through the action of Nichols algebras on vertex
algebras via screening operators, [42, 53], but this goes beyond the scope of these lecture
notes.
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7.1 Classification of pointed Hopf algebras

A Hopf algebra in a braided monoidal category C is a bialgebra H in C with a morphism
S : H → H in C, called antipode, satisfying

mH(S ⊗ id)∆(h) = mH(S ⊗ id) ◦∆(h) = ε(h)1, ∀h ∈ H.

One can show that S is an algebra antimorphism and that if H has an antipode, then it is
unique.

Example 7.1. 1. The group algebra CG of a group G is a Hopf algebra in Vec with
comultiplication, counit, and antipode defined on g ∈ G by ∆(g) = g⊗g, ε(g) = 1, and
S(g) = g−1.

2. The universal enveloping algebra U(g) of a Lie algebra g is a Hopf algebra in Vec
with comultiplication, counit, and antipode defined on the generators x ∈ g by ∆(x) =
x⊗ 1 + 1⊗ x, ε(x) = 0, and S(x) = −x.

3. If V ∈ G
GYD, then T!(V ), T∗(V ), and T!∗(V ) are Hopf algebras in G

GYD, with antipode
given by S(v) = −v for all v ∈ V .

If H is a Hopf algebra in Vec satisfying τ ◦ ∆ = ∆, then results by Cartier, Milnor,
Moore and Kostant from the 60’s show that H is a (sort of ) semi-direct product of a group
algebra and a universal enveloping algebra. However, if we drop the τ -invariance assumption
on ∆, the situation becomes wild. The classification of Hopf algebras in full generality is an
untractable problem, but significant progress has been achieved for special families, identified
for example by finite-dimensionality, and/or properties of the algebra structure, or in terms
of other invariants.

There are two natural invariants one can attach to a Hopf algebra H in Vec: the group
G(H) = {g ∈ H | ∆(g) = g ⊗ g} of the so-called grouplike elements, and the coradical H0

given by the sum of all subcoalgebras of H that contain no proper subcoalgebra. One has
always the inclusion CG(H) ⊆ H0. A Hopf algebra is pointed if CG(H) = H0.

Exercise 7.2. Show that if H is a Hopf algebra in Vec, then G(H) is a group.

Example 7.3. The group algebra CG, the universal enveloping algebra U(g) of a Lie al-
gebra, the quantized enveloping algebras of a semisimple Lie algebra, and Lusztig’s finite-
dimensional specialization of it (the so-called small quantum group) are examples of pointed
Hopf algebras.

The classification of finite-dimensional pointed Hopf algebras is an open problem in gen-
eral. The most effective strategy so far has been the lifting method introduced in [11] that
we now recall.

Let H be a pointed Hopf algebra. The dual version of the Jacobson filtration induces
a filtration on H whose associated graded turns out to be a (sort of) semi-direct product
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CG(H)#R where R is a bialgebra in G(H)
G(H)YD with an induced grading. Its degree 1 compo-

nent R1 is an object in G(H)
G(H)YD and it is shown that R contains T!∗(R1) as a subalgebra. So

the problem becomes:

• Classify the finite-dimensional Nichols algebras in G(H)
G(H)YD;

• Classify all pointed Hopf algebras whose associated graded is CG(H)#T!∗(V ) where
T!∗(V ) is finite-dimensional;

• Show that finite-dimensional pointed Hopf algebras are generated in degree ≤ 1, so
that R = T!∗(R1) in the construction above.

The above strategy, together with the results in [12, 13, 33, 34] lead to a complete classi-
fication of finite-dimensional pointed Hopf algebras with abelian coradical, [14].

7.2 Malle’s conjecture

Methods in algebraic topology have been combined with Hopf algebraic methods in [26] in
order to prove a function field version of a conjecture of Malle [46] on the distribution of
Galois groups. For a transitive subgroup G of Sn the conjecture predicts that the number
NG,K(X) of separable field extensions of degree n of a given field K, with Galois group G and
discriminant bounded by X behaves as cXaM log(X)bM−1, for constants aM , bM depending
on the group theory of G and the action of Gal(K

separable
/K) on G.

An upper bound for NG,K(X) in the case in which K is a function field was given in [26].
More precisely, the authors show that for any n and any transitive subgroup G of Sn there
are constants c(G), Q(G), e(G) and a(G) depending on G such that for all X > 0 and all
q > Q(G) coprime with |G| there holds

NG,Fq(t)(X) ≤ C(G)Xa(G) log(X)e(G), where e(G) ≥ bM − 1.

We sketch here the approach, which surprisingly uses Nichols and shuffle algebras, fol-
lowing the account in [55].

First of all, extensions L/Fq(t) correspond to curves Σ = Spec(OL) defined over Fq and
maps Σ → Spec(Fq[t]). In addition, the set of extensions one wishes to estimate can be
viewed as the set of isomorphism classes of the (branched) covers Σ → Spec(Fq[t]), and also
as the set of Fq-points of suitable components in a moduli space of branched covers, called
the Hurwitz moduli space HG,n. Then the Grothendieck-Lefschetz formula and Deligne’s
bounds on eigenvalues of Frobenius are invoked to reduce the initial problem into the algebro-
topological problem of controlling the Betti numbers r(j, n) = rkQ(H

j
sing(HG,n(C),Q)). Now,

to estimate the growth of the r(j, n), it is observed that the function HG,n(C) → Sym̸=(C)
which associates to a covering its branch locus is a covering space. This property is used to
translate the computation of Hj

sing(HG,n(C),Q) into the computation of group cohomology for
the fundamental group Bn with coefficients in suitable subrepresentations of the braid group
representation. Via a cellular stratification of Symn

̸=(C), the calculation can be rephrased
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in terms of the cohomology of a shuffle algebra T∗(V ), where V is, up to a sign in the
braiding, the dual of the Yetter-Drinfeld module Q[G \ 1], with conjugation action of G.
This algebra is filtered and the associated graded is a twisted tensor product of T!∗(V ) with
a complementary subalgebra. Then the sought bounds are obtained through an analysis of
the Koszul complex of the Nichols algebra and a control on the number of orbits for the
action of the braid group.

8 Geometric methods
In these sections we show two different geometric approaches to Nichols algebras. In both
cases, it emerges that Nichols algebras are canonical objects among bialgebras in braided
categories. We introduce some further notation.

A connected bialgebra (respectively Hopf algebra) in a braided category C is a bialgebra
(respectively, Hopf algebra) B in C such that both its quotient by the radical, and its coradical
are the unit objects in C. We set CH(C) to be the category of connected Hopf algebras, where
morphisms are the morphisms in C preserving the Hopf algebra operations.

A graded connected bialgebra in a braided category C is a bialgebra B with a grading
B =

⊕
n∈N Bn in C such that

B0 = 1C = C, mB(Bj ⊗Bl) ⊂ Bj+l, j, l ∈ N ∆(Bj) ⊆ ⊕j
k=0Bk ⊗Bj−k.

We set GCB(C) to be the category of graded connected bialgebras, where morphisms are
the morphisms in C preserving the grading and the bialgebra operations. Graded connected
bialgebras are connected Hopf algebras, [36, Proposition 6.4.2].

Example 8.1. For any V ∈ G
GYD, the bialgebras T!(V ), T!∗(V ) and T∗(V ) are objects in

GCB(GGYD) and in CH(GGYD)

8.1 Nichols algebras as closed orbits

Nichols algebras can be studied by invariant theoretic and deformation theoretic methods. A
possible way is the following, due to E. Meir, [47]. His results are for more general categories
but we restrict to C = G

GYD, for a finite group G for simplicity.

Fixing an object B in C, one can study the moduli space XB of connected Hopf algebra
structures on B. The points in XB represent the possible structure constants of objects in
CH(C) with underlying object B. More precisely, we consider the affine space

AN = HomC(B ⊗B,B)⊕ HomC(C, B)⊕ HomC(B,C)⊕ HomC(B,B ⊗B)⊕ HomC(B,B).

A point in AN is a 5-uple (m,u, ε,∆, S). We set XB as the set of points in AN that satisfy
the connected Hopf algebra conditions. This way we view the points in XB as objects in
CH(C). Writing B =

⊕
Sj simple object in C Mj⊗Sj where Mj is a C-vector space indicating
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the multiplicity of Sj in B, one can translate the connected Hopf algebra conditions into
polynomial equalities between structure constants, showing that XB is an affine variety.

The space AN has a natural algebraic action of the automorphism group ΓB of B in C.
This action preserves each of the direct summands and XB, and the orbits in XB are the
isomorphism classes of connected Hopf algebra structures on B. Using the decomposition
of B given above, one sees that ΓB ≃

∏
j GL(Mj), so it is reductive, and one can use all

invariant theoretic machinery, together with the natural properties of Nichols algebras, to
deduce the following cheracterization of Nichols algebras.

Theorem 8.2. ([47, Theorem 1.2]) Let A ∈ XB and assume it is finite-dimensional. Then,
the ΓB-orbit of A in XB is closed if and only if A is isomorphic to a Nichols algebra. Hence,
all the ΓB-orbits in XB are closed if and only if all connected Hopf algebras with underlying
object B are Nichols algebras.

We can also introduce deformation ideas: for A,H ∈ XB, we say that A specializes to
H, or that A is a deformation of H, if H lies in ΓB · A. Since the closure of every ΓB-
orbit contains a closed orbit, Theorem 8.2 states that every algebra in CH(C) in XB is a
deformation of a Nichols algebra with underlying object B. In fact, Nichols algebras satisfy
a rigidity property.

Theorem 8.3. ([47, Theorem 1.4]) Let V ∈ G
GYD. If V is simple and T!∗(V ) is finite-

dimensional, then T!∗(V ) is rigid, that is, its ΓB-orbit is not contained in the closure of any
orbit in XB.

In case T!∗(V ) is finite-dimensional but not rigid, a description of the possible deforma-
tions of T!∗(V ) can also be given, in terms of quotients of T!(V

′) for V ′ ⊊ V .

8.2 Kapranov and Schechtman’s equivalence

We turn now to an interpretation, due to Kapranov and Schechtman, of Nichols algebras in
terms of perverse sheaves. For basic notions on perverse sheaves we refer the reader to [17]
and to the formulary and crash course in [25, §1.5, 2.7, 5.8].

We consider the infinite-dimensional variety Sym(C) =
∐

n∈N Sym
n(C), where Symn(C) =

Cn/Sn. It can be seen as the space of monic polynomials with coefficients in C. This way,
for n ∈ N the variety Symn(C) is seen as the affine space of polynomials of degree n. It is
stratified by setting in the same stratum all polynomials of degree n for which the roots have
multiplicities according to the same partition of n. The subset Sym̸=(C) =

∐
n∈N Sym

n
̸=(C)

corresponding to multiplicity-free polynomials is open, and each of its connected components
Symn

̸=(C) is open dense in Symn(C).

The category FPS(Sym(C), C) of factorizable perverse sheaves on Sym(C) with values
in a braided monoidal category C was introduced in [40]. Objects are pairs (F , µ) where
F = (Fn)n∈N is a perverse sheaf on Sym(C) constructible with respect to the stratification
given by the multiplicities, and with values in C, and µ is a family of isomorphisms that
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takes into account the monoid structure on Sym(C). The description is technical and we
omit it. Morphisms are morphisms of perverse sheaves that are compatible with the families
of isomorphisms µ.

Each object in C induces naturally three objects in FPS(Sym(C), C), that are constructed
extending to Sym(C) suitable perverse sheaves on the open dense subset Sym̸=(C) as we
now explain. Perverse sheaves on each Symn

̸=(C) are locally constant (i.e., local systems),
because Symn

̸=(C) consists a unique stratum. Hence, they correspond to representations
of the fundamental group π1(Sym

n
̸=(C)) = Bn. Let V be an object in C. The braiding

cV,V : V ⊗V → V ⊗V coming from the braided category structure in C gives a representation
of Bn on V ⊗n for any n ∈ N, as explained in Section 1.2. The family of representations of this
form, where n runs through N gives a perverse sheaf L(V ) on Sym̸=(C) that is compatible
with the monoid structure of Sym̸=(C). Let j : Sym ̸=(C) → Sym(C) be the natural inclusion.
It is an open embedding and it can be shown that the perverse sheaves obtained as extensions
j!(L(V )), j!∗(L(V )), and j∗(L(V )) can be equipped with canonical families of isomorphisms
µ!, µ!∗ and µ∗, respectively, to become objects in FPS(Sym(C), C).

The category FPS(Sym(C), C) is related to the category of connected bialgebras CB(C).
For an object V in C, the symbol V [1] denotes the braided vector space with underlying
space V and braiding −cV,V .

Theorem 8.4. ([40]) Let C be a braided monoidal category. There is an equivalence of
categories

L : CB(C) → FPS(Sym(C), C)

such that for every object V in C there holds

L(T!(V )) = (j!(L(V [1])), µ!) L(T!∗(V )) = (j!∗(L(V [1])), µ!∗) L(T∗(V )) = (j∗(L(V [1])), µ∗).

If C has a duality, then CB(C) inherits a duality and L intertwines the duality in CB(C) with
Verdier duality.

In [20] approximation functors generalizing the quadratic approximation of a graded
bialgebra quotient of T!(V ) have been defined for all degrees and to all objects in CB(C).
The notions of factorized perverse sheaves can be generalized as to be defined over suitable
open subsets of Sym(C) in [21]. Then, the dictionary in Theorem 8.4 is expanded in [22] as
to give a geometric counterpart to the approximation functors. This allows for a geometric
translation of the property of a bialgebra to have relations generated up to a given degree,
or to be finitely presented.
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