ANALISI FUNZIONALE

-17.2.2009-

- 1. Data $f_n(x) := e^{n(x^4 x^2)}$
 - (a) Provare che, per $n \to +\infty$, si ha

$$\int_0^{1/2} f_n(x)dx = an^b(1 + o(1)),$$

calcolando le costanti a e b.

(b) Provare che, per $n \to +\infty$, si ha

$$\int_0^1 f_n(x)dx = a'n^{b'}(1+o(1)),$$

calcolando le costanti a' e b'.

(a) Effettuando il cambio di variabile $y = \sqrt{n}x$ si ottiene

$$\int_0^{1/2} e^{n(x^4-x^2)} dx = \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}/2} e^{y^2(\frac{y^2}{n}-1)} dy = \frac{1}{\sqrt{n}} \int_{\mathbb{R}} e^{y^2(\frac{y^2}{n}-1)} \chi_{[0,\sqrt{n}/2]}(y) dy;$$

d'altra parte, visto che $y^2/n-1 \leq 3/4 \quad \forall y \in [0,\sqrt{n}/2]$, otteniamo

$$0 \le e^{y^2(\frac{y^2}{n}-1)} \chi_{[0,\sqrt{n}/2]}(y) \le e^{-\frac{3}{4}y^2} \qquad \forall y \in \mathbb{R}^+$$
 inoltre $e^{y^2(\frac{y^2}{n}-1)} \chi_{[0,\sqrt{n}/2]}(y) \to e^{-y^2} \qquad \forall y \in \mathbb{R}^+.$

Per il teorema di convergenza dominata si ha

$$\int_0^{1/2} e^{n(x^4 - x^2)} dx = \frac{1}{\sqrt{n}} \left(\int_0^{+\infty} e^{-y^2} dy + o(1) \right) \qquad \text{per} \qquad n \to +\infty.$$

Pertanto $a=\int_0^{+\infty}e^{-y^2}dy=\frac{\sqrt{\pi}}{2}$, b=-1/2.

(b) Osserviamo che

$$\int_0^1 e^{n(x^4 - x^2)} dx = \int_0^{1/2} e^{n(x^4 - x^2)} dx + \int_{1/2}^1 e^{n(x^4 - x^2)} dx.$$
 (1)

Per stimare il secondo termine al membro destro osserviamo che $\varphi(x):=x^4-x^2$ è una funzione convessa su [1/2,1], da ciò si deduce facilmente che $\varphi(x) \leq \frac{3}{8}(x-1)$. Usando questa maggiorazione ed il cambio di variabile y=n(1-x) otteniamo

$$0 \le \int_{1/2}^{1} e^{n(x^4 - x^2)} dx \le \int_{1/2}^{1} e^{n\frac{3}{8}(x - 1)} dx \le \frac{1}{n} \int_{0}^{n/2} e^{-\frac{3}{8}y} dy = O(1/n)$$

per $n \to +\infty$. Dunque, per (1), si ha

$$\int_0^1 e^{n(x^4 - x^2)} dx = \frac{1}{\sqrt{n}} (1 + o(1)) + O(1/n) = \frac{1}{\sqrt{n}} (1 + o(1)),$$

e quindi $a'=a=\frac{\sqrt{\pi}}{2}$, b'=b=-1/2.

2. Data $c := (c_n)_{n \in \mathbb{N}}$ una successione di reali positivi si consideri l'insieme

$$X_c := \{ x \in \ell_{\mathbb{R}}^p(\mathbb{N}) : |x_n| \le c_n \ \forall n \in \mathbb{N} \}.$$

- (a) Mostrare che X_c è un sottoinsieme convesso e chiuso di $\ell^p_{\mathbb{R}}(\mathbb{N})$.
- (b) Dire per quali successioni $(c_n)_{n\in\mathbb{N}}$ X_c risulta essere limitato.
- (c) Dire per quali successioni $(c_n)_{n\in\mathbb{N}}$ X_c risulta essere compatto.
- (d) Mostrare che per ogni $p \in [1, +\infty]$ si ha che

$$\forall x \in \ell_{\mathbb{R}}^p(\mathbb{N}) \ \exists ! \ \bar{x} \in X_c : \|x - \bar{x}\|_p = \min_{x' \in X_c} \|x - x'\|_p.$$

Che succede per $p = +\infty$?

- (a) Ciascuna delle condizioni $|x_n| \leq c_n$ definisce un conveso chiuso in $\ell^p_{\mathbb{R}}(\mathbb{N})$, pertanto X_c convesso chiso in quanto intersezione di convessi chiusi.
- (b) Se $c\in \ell^p_{\mathbf{R}}(\mathbb{N})$ e $R:=\|c\|_p$ allora $X_c\subset \overline{B(0,R)}$ e quindi limitato. Viceversa, se $c\notin \ell^p_{\mathbf{R}}(\mathbb{N})$ allora $\sum_{k=0}^{+\infty}c^p_k=+\infty$ e, posto

$$P_m:(c_n)_{n\in\mathbb{N}}\to(c_n\chi_{[0,m]}(n))_{n\in\mathbb{N}}$$

il proiettore sulle prime m coordinate si ha che la successione $[m\mapsto P_mc]$ assume valori in $\ell^p_{\mathbb{R}}(\mathbb{N})$ ma

$$\|P_mc\|_p^p=\sum_{k=1}^m c_k^p o +\infty \quad {
m per} \quad m o +\infty.$$

(c) Se $p<+\infty$ X_c compatto se e solo se $c\in\ell^p_{\mathbf{R}}(\mathbb{N})$. In effetti per i punti precedenti basta mostrare che se $c\in\ell^p_{\mathbf{R}}(\mathbb{N})$ allora X_c è totalmente limitato, cioé può essere ricoperto con un numero finito di palle di raggio arbitrariamente piccolo. Sia quindi $\epsilon>0$ fissato e scegliamo m in modo che

$$||P_m c - c||_p < \epsilon. \tag{2}$$

Si noti che, se $x \in X_c$ allora $\|P_m x - x\|_p \le \|P_m c - c\|_p < \epsilon$.

 P_mX_c è totalmente limitato (è un insieme limitato contenuto in un sottospazio finito dimensionale) pertanto P_mX_c può essere ricoperto con un numero finito di palle di raggio ϵ o, equivalentemente, esiste un insieme finito A con la proprietà che

$$\forall x \in X_c \quad \exists a \in A \quad : \quad \|P_m x - a\|_p < \epsilon.$$

Ma allora, per ogni $x \in X_c$ esiste $a \in A$ tale che $\|x-a\|_p \leq \|x-P_mx\|_p + \|P_mx-a\|_p < 2\epsilon$ ovvero X_c si può ricoprire con un numero finito di palle di raggio minore di 2ϵ . Se $p=+\infty$ e $\lim c_n=0$ allora l'equazione (2) continua a valere e la dimostrazione vista sopra si adatta facilmente a questo caso (praticamente basta sostituire il simbolo di sommatoria con quello di sup). Ma se c_n non fosse infinitesima esisterebbe una sottosucc $n_k \to +\infty$ tale che $c_{n_k} \geq \delta > 0$: chiamando e_m l'm-esimo elemento della base canonica si verifica facilmente che δe_{n_k} è una successione in X_c che non ammette alcuna sottosuccesione convergente.

(d) Sia $I:=\{n\in\mathbb{N} \ : \ |x_n|>c_n\}$, verifichiamo che

$$\bar{x} := \left\{ \begin{array}{ll} x_n & \text{se } n \notin I \\ \frac{x_n}{|x_n|} c_n & \text{se } n \in I \end{array} \right.$$

ha le proprietà desiderate. Chiaramente $|\bar{x_n}| \leq c_n \forall n$ e quindi $\bar{x} \in X_c$, inoltre se $x' \in X_c$ allora

$$||x - x'||_p^p = \sum_{n \in \mathbb{N}} |x_n - x_n'|^p \ge \sum_{n \in I} |x_n - x_n'|^p \ge \sum_{n \in I} (|x_n| - c_n)^p = ||x - \bar{x}||_p^p$$

e la prima disuguaglianza è un'uguaglianza se e solo se $x_n=x_n'\forall n\notin I$ mentre la seconda solo se $x_n'=\frac{x_n}{|x_n|}c_n$. Nel caso $p=+\infty$ è quasi tutto uguale, salvo che viene a mancare l'unicità.

3. In uno spazio di Hilbert H siano dati N vettori x_i , $1 \le i \le N$; sia inoltre r < 1 fissato. Mostrare che esiste $y \in H$ tale che

$$||y|| \le 1 \text{ ma } ||y - x_i|| > r \ \forall i \in \{1, ..., N\}.$$

Sia $V:=\mathrm{span}(x_1,...,x_n)$; $\dim V\leq N$ e quindi V un sottospazio chiuso di H. Chiaramente $V\neq H$. Basta allora prendere un qualunque vettore unitario v ortogonale a V e si avr che

$$||v - x_i||^2 = ||v||^2 + ||x_i||^2 \ge ||v||^2 = 1$$

e quindi $||v - x_i|| \ge 1 > r$.

Chi trovasse in questo testo errori, refusi o parti non chiare può segnalarlo via e-mail a carminat@dm.unipi.it