Introduzione al concetto di infinito Esercizi proposti

Massimo Caboara

Ricordiamo che una funzione $f: A \longrightarrow B$

- è surgettiva se per ogni $b \in B$ esiste $a \in A$ tale che f(a) = b.
- È iniettiva se per ogni $x, y \in A$ $f(x) = f(y) \Longrightarrow x = y$
- è una corrispondenza biunivoca (è bigettiva) se è sia iniettiva che surgettiva.
- Ha inversa se esiste $g:b\longrightarrow A$ (l'inversa di f) tale che per ogni $b\in B$ f(g(b))=b e per ogni $a\in A$ g(f(a))=a.

Esercizi

- 1. Data $f:A\longrightarrow B$ funzione, dimostrare che $f \text{ iniettiva e surgettiva} \Longleftrightarrow f \text{ ha inversa}$
- 2. Costruire una funzione bigettiva esplicita tra \mathbb{N} e \mathbb{Q} .
- 3. Costruire una funzione bigettiva esplicita tra (0,1) e la retta reale.
- 4. Dimostrare che | (0,1) |=| [0,1] | senza usare il teorema di Cantor-Schroeder-Bernstein.
- 5. Sia X un insieme. Dimostare che $|X| < |\wp(X)|$.
- 6. Siano A_1, A_2 insiemi numerabili. Dimostare che

$$A_1 \times A_2 = \{(a, b) \mid a \in A, b \in B\}$$

è numerabile.

7. Siano A_1, A_2, \ldots insiemi numerabili. Dimostare che

$$\sum_{i=1}^{\infty} A_i = A_1 \times A_2 \times A_3 \cdots$$

è numerabile. Come conseguenza, $\mathbb{Q}[x]$ (i polinomi a coefficienti razionali) è numerabile.

8. Siano A_1,A_2,\ldots insiemi numerabili. Dimostare che

$$\bigcup_{i=1}^{\infty} A_i$$

è numerabile.

9. Dimostrare il teorema di Cantor-Schroeder-Bernstein: Siano A,Binsiemi con | $A\mid\geq\mid B\mid$ e | $B\mid\geq\mid A\mid$. Allora | $B\mid=\mid A\mid$. Difficile.