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Basic Math - Fourth and Last lesson

Caboara

Notations

. The set of natural numbers (positive integers) is denoted by N. The elements of N are

0,1,2,--- etc..

. The set of integer numbers is denoted by Z. The elements of Z are 0,1,—-1,—-2, —2---

etc..

. The set of rationals (numeric fractions) is denoted by Q. The elements of Q are —3,0,2, 2

y“yr 5
etc..

. The set of reals is denoted by R. Elements of R are —3,0, 2, %, V2,7 etc..
. Note that all these sets are nested NCZ C QCR

. The set of polynomials over R (with real coefficients) is denoted by R[z]. Elements of

R[z] are mz + 1,2° — 22% + 1,27 — V2 ete..
The sets N[z], Z[z], Q[z] are defined similarly.

Note that these sets are nested N[z] C Z[z] C Q[z] C R[z].

Definition 1. Let n € N. The set of divisors of n, denoted DIV(n), is the set of all natural
numbers that divide n. For example,

2

DIV(12) = {1,2,3,4,6,12}.

Theorems and Propositions

Proposition 2. For all a,b € R[z], the following hold:

e a’—b = (a+0b)(a—0).

o a3 — b= (a—0b)(a®+ ab+b?).

o a3+ b= (a+0b)(a®—ab+b?).

e a? +b? cannot be factored further over R.



Theorem 3 (Ruffini’s Theorem). Let f(x) € R[z] and a € R such that f(a) =0 (i.e., a is a
root of f(x)). Then,
(x—a) | f(z).

Proposition 4. Let f(x),g(x), h(z) € Rlz] such that f(z) | h(x), g(z) | h(z), and f(z),g(z)
are coprime. Then,
f(@)g(x) | hlx).

Theorem 5 (Rational Root Theorem). Let f(z) = agz? + ag_12% ' + -+ 4+ ag € Z[z] and
a € Q such that f(a) =0. Then,

ac {iz | p € DIV(ag), g € DIV(ad)} .

3 Exercises

1. P(x) = 2% + 23 + 22 + 1 = 0. Note that P(—1) = 0. Use polynomial division.
e Factorization 2° + 23 + 2% + 1= (22 + 1)(2® + 1) = (z + 1)(2® + 1)(2? — x + 1).
e The solution is x = —1.

2. P(z) = 2% — 92% — 822 + 72 = 0. Note that P(3) = P(2) = 0. Use division.
e Factorization 25 — 923 — 822 + 72 = (z + 3)(z — 3)(z — 2)(2? + 2z + 4).
e The solutions are z = +3, 2.

3. P(x) = 2* — 32% + 22 — 6 = 0. Note that P(3) = 0. Use division.

e Factorization 2* — 323 4+ 22 — 6 = (x — 3)(2® + 2).
e The solutions are z = 3, /2.

4 Proposed exercises

Solutions will be given in the next installment of these notes. Regrouping will be more difficult
here. Use of the root rule and Ruffini is recommended.

1. For the parameter a € R, P(z) = 2® — az? — 2z + 2a = 0. Note that P(a) = 0. Use
division.
e Factorization 2® — ax? — 22 + 2a = (v — a)(2? — 2).
e The solutions are z = a, +/2.
2. For the parameter a € R, P(x) = 2® — ax® — 2z + 2a = 0. Note that P(a) = 0. Use
division.

3 2

e Factorization 2® — a2? — ax + a® = (v — a)(z? — a).

e The solutions are x = a always, if a > 0 also +/a.



a3+ (1—a)x? — (a+6)z+6a=0
c 223 —172% + 382z — 15 =0

.3zt — 2223 — 222 + 662 —21 =0

cad = 1722 + 922 — 160 = 0
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a8 — 122t 4+ 4722 - 60=0
10. 2% —za® — 2zab —xb® — 22 +a®> +2ab+ 1> =0

11. 2% + 322y + 3xy? +y° — 222 — 4wy — 2y?> —x —y + 2 = 0. Hint: try to detect powers.

5 Greater Common Divisor - N

Definition 6. If a,b € N, the greater common divisor of a,b is the biggest p € N such that pla
and plb. Since 1|a and 1|b, if there are no other common divisor, ged(a,b) = 1.

Remark 7. Ifa,b € N a divides b & exists ¢ € N such that b= c-a. We write
alb< 3 c €N such thatb=c-a

Since for every a € N 0 = 0-a, we have that 0 is divisible by any natural number. Hence,
ged(a,0) =a

Computing GCD’s using factorizations.

Proposition 8. If we have a,b € N and their prime factorization

I n Y m _ B 0 0
aipll...pg qll...q;{n and aipll...pg 811...Stt

(the p; are the common prime factors) then

min(a1,81) .pﬁin(m,ﬁﬂ

ged(a, b) = py

We can say that the greatest common divisor of a and b, if their prime factorizations are known,
s the product of the common prime factors, taken with the minimum exponent.

Example 9.
1. Since 600 = 23 - 3 - 52 and 252 = 22 - 3% - 7 we have that ged(600,252) = 2% -3 = 12.
2. Since 710 =2-5-7 and 429 = 3 - 11 - 3 we have that gcd(70,429) = 1.

The greatest common divisor has the following properties



Proposition 10. Ifa,b,c € N

1. ged
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If a = cb+r, withr the remainder of the division of a by b we have ged(a, b) = ged(cb+r,b) = ged(r,b) = ged(b, r).

Computing GCD’s using Euclid’s Algorithm.

Example 11. Using the rule ’ ged(a, b) = ged(b, r) ‘ with r the remainder of a divided by b. We
compute some ged using the EuclidVerbose procedure of CoCoA.

1. EuclidVerbose(15,12);
[15, 12]
[12, 3]
[3, 0]
GCD(15,12)=3
3

2. EuclidVerbose(2343,432) ;
[2343, 432]
[432, 183]

[183, 66]

[66, 51]

(51, 15]

[15, 6]

[6, 3]

[3, 0]
GCD(2343,432)=3
3

8. EuclidVerbose(347,237);
[347, 237]
[237, 110]
[110, 17]
[17, 8]
[8, 1]
[1, 0]
GCD(347,237)=1
1



Definition 12. Ifa,b € N and ged(a,b) = 1 we say that a,b are coprime. Coprime natural
numbers have mo common divisors other than 1. A prime number p is coprime with every
natural number except its multiples, i.e., numbers of the form p™.

Remark 13. We remark that if ¢ € N is coprime with b € N then ged(ac,b) = ged(a,b). We
can discard coprime factors.

1. ged(32-5,27) = ged(32,27) since 5,27 are coprime.

6 Greater Common Divisor - Polynomials

Definition 14. An polynomial p(x) € R[z] is irreducible if there is no other polynomial
f(z) € Rlz] of degree bigger or equal to 1 that divides p(x). A polynomial is reducible if it
is not irreducible. itself. Irreducible polynomials play the role of prime numbers.

Example 15.
1. All degree one polynomials are irreducible.
. A polynomial ax® + bx + c is irreducible if and only if A = b* — 4ac > 0.

.22 4+ x4+ 1 is irreducible since A =1—4 < 0.

. The polynomial x*>—5x+6 is reducible because (x—2)|(z2—5x+6). Also A =25—-24 =1 > 0.
. The polynomial 4x>—12x+9 is reducible because (2x—3)|(42%—122+9). Also A = 144—144 = 0.

2

3

4. 2 + 1 is irreducible since A =0—4 < 0..

5

6

7. The polynomial p(z) = x*—3x3+52%2—92+6 is reducible since p(x) = (x—1)(z—2)(22+3).
8

. Find if a polynomial of degree > 3 is reducible or not can be quite difficult.

Remark 16. All the properties of the GCD over the natural numbers hold for the polynomials.
Moreover by convention, the GCD of polynomials is defined not taking into consideration purely
numeric factors. Hence, we can take out of the computations any pure number, not only coprime
factors.

F(z),G(z) € Rlz], a € R, gecd(F(x),aG(z)) = ged(F(z),G(x))

We have ged (222, 4x) = =, and
ged((x —2)(3x — 3),22 — 1) = ged(3(x —2)(x —1),22 — 1)
= ged((z —2)(z —1),2% - 1)
= ged((x —2)(z—1),(z+ 1)(z - 1)

rz—1

We can compute Polynomial GCD’s easily if we know the irreducible factorization, at least
of one factor



Example 17. The polynomials x — 2,x — 7, — 1 are irreducible since they have degree one.
The polynomial 2 + 2 is irreducible since it has negative A.

ged((2—2)2(2%42)3 (2=7), (z—2) (x> +2)* (2 —1)) = (x—2)™ZD (321 2)mnGA) — (1_9)(2242)3

Example 18. We have to compute ged(z* + x — 7,22 — 1). We define p(z) = 2* +x — 7 and
we note that irreducible factorization ¥?> — 1 = (x + 1)(z — 1), so

ged(z + o — 7,22 —1) = ged(z* + 2 — 7, (x + 1) (z — 1))
the GCD has to have the common factors, but there are none, since
p(l) ==5=(z—-1tplx) and p(-1)=-T=(z+1)1p(z)
Hence, ged(z* +2 — 7,22 — 1) =1 and 2* + 2 — 7, 22 — 1 are coprime.

We can use Euclid’s Algorithm for the GCD in the polynomial case, using polynomial
divisions.

The computations are done using the GCDPolyVerbose command of the CoCoA system.
The remainder sequence for f(z), g(x) is given by f(z), g(x) and the remainders, if suitable
regrouping and taking out numeric factors

Example 19.

GCD(x~2+x+1,x72+2) =
We divide x~2+x+1 by x"2+2, the remainder is x - 1
(x"2 + x + D=(D)*(x"2 + 2)+(x - 1)

=GCD(x~2+2,x - 1)=
(x72 + 2)=(x + 1)*(x - 1)+(3)
We divide x~2+2 by x-1, the remainder is 3

=GCD(x - 1,3)=GCD(x - 1,1) (we took out the number 3)
=GCD(x - 1,1)=1 there is no common factor

The remainder sequence is x"2 + x + 1, x*2 + 2, x - 1, 1
Example 20.

GCD(x~4+x~3-1,x"3+x-2)=
(x4 + x°3 - D=(x + D*"3 +x - 2)+(-x"2 + x + 1)
We divide x74+x~3-1 by x"3+x-2 the remainder is -x"2 + x + 1

=GCD (x~3+x-2,-x"2 + x + 1)=
(x"3 + x - 2)=(-x - D*(-x"2 + x + 1)+(3x - 1)
We divide x~3+x-2 by -x"2 + x + 1 the remainder is 3x - 1



=GCD(-x"2 + x + 1,3x - 1)=
(-x72 + x + 1)=(-1/3x + 2/9)*(3x - 1)+(11/9)
We divide -x"2 + x + 1 by 3x - 1 the remainder is 11/9

=GCD(3x - 1,11/9)=GCD(3x - 1,1)=1 We took out the numeric factor 11/9

The remainder sequence is x4 + x"3 -1, x*3+x -2, -x2+x+1, 3x -1, 1
Example 21.

GCD(x~4 - 6x73 + 7x"2 + 12x - 18,x"3 + x72 - 2x - 2)=

(x~4 - 6x"3 + 7x"2 + 12x - 18)=(x - T)*(x"3 + x~2 - 2x - 2)+(16x~2 - 32)

We divide x74 - 6x73 + 7x72 + 12x - 18 by x"3 + x72 - 2x - 2,

the remainder is 16x~2 - 32=16(x"2-2)
We take out the number 16, the remainder is now x~2-2

=GCD(x~3 + x~2 - 2x - 2,x°2-2)=
(8x73 + 2x72 - 6x - 4)=(-3x - 2)*(-x"2 + 2)+(0)
We divide x°3 + x72 - 2x - 2 by x72-2, the remainder is O

=GCD(x"2-2,0)=x"2-2

The remainder sequence is x74 - 6x73 + 7x72 + 12x - 18, x"3 + x72 - 2x - 2, x72 - 2



