Basic Math - First lesson

Caboara

1 Notations

- 1. The set of natural numbers (positive integers) is denoted by \mathbb{N} . The elements of \mathbb{N} are $0, 1, 2, \cdots$ etc..
- 2. The set of integer numbers is denoted by \mathbb{Z} . The elements of \mathbb{Z} are $0, 1, -1, -2, -2 \cdots$ etc..
- 3. The set of rationals (numeric fractions) is denoted by \mathbb{Q} . The elements of \mathbb{Q} are $-3, 0, 2, \frac{4}{5}$ etc..
- 4. The set of reals is denoted by \mathbb{R} . Elements of R are $-3, 0, 2, \frac{4}{5}, \sqrt{2}, \pi$ etc..
- 5. Note that all these sets are nested $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$
- 6. The set of polynomials over \mathbb{R} (with real coefficients) is denoted by $\mathbb{R}[x]$. Elements of $\mathbb{R}[x]$ are $\pi x + 1, x^3 \frac{2}{5}x^2 + 1, x^2 \sqrt{2}$ etc..
- 7. The sets $\mathbb{N}[x], \mathbb{Z}[x], \mathbb{Q}[x]$ are defined similarly.
- 8. Note that these sets are nested $\mathbb{N}[x] \subset \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x]$.

Definition 1. Let $n \in \mathbb{N}$. The set of divisors of n, denoted DIV(n), is the set of all natural numbers that divide n. For example,

 $DIV(12) = \{1, 2, 3, 4, 6, 12\}.$

2 Theorems and Propositions

Proposition 2. For all $a, b \in \mathbb{R}[x]$, the following hold:

- $a^2 b^2 = (a+b)(a-b)$.
- $a^3 b^3 = (a b)(a^2 + ab + b^2).$
- $a^3 + b^3 = (a+b)(a^2 ab + b^2).$
- $a^2 + b^2$ cannot be factored further over \mathbb{R} .

Theorem 3 (Ruffini's Theorem). Let $f(x) \in \mathbb{R}[x]$ and $a \in \mathbb{R}$ such that f(a) = 0 (i.e., a is a root of f(x)). Then,

$$(x-a) \mid f(x).$$

Proposition 4. Let $f(x), g(x), h(x) \in \mathbb{R}[x]$ such that $f(x) \mid h(x), g(x) \mid h(x)$, and f(x), g(x) are coprime. Then,

$$f(x)g(x) \mid h(x).$$

Theorem 5 (Rational Root Theorem). Let $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0 \in \mathbb{Z}[x]$ and $a \in \mathbb{Q}$ such that f(a) = 0. Then,

$$a \in \left\{ \pm \frac{p}{q} \mid p \in \text{DIV}(a_0), \ q \in \text{DIV}(a_d) \right\}.$$

3 Exercises

- 1. $P(x) = x^5 + x^3 + x^2 + 1 = 0$. Note that P(-1) = 0. Use polynomial division.
 - Factorization $x^5 + x^3 + x^2 + 1 = (x^2 + 1)(x^3 + 1) = (x + 1)(x^2 + 1)(x^2 x + 1).$
 - The solution is x = -1.
- 2. $P(x) = x^5 9x^3 8x^2 + 72 = 0$. Note that $P(\pm 3) = P(2) = 0$. Use division.
 - Factorization $x^5 9x^3 8x^2 + 72 = (x+3)(x-3)(x-2)(x^2+2x+4)$.
 - The solutions are $x = \pm 3, 2$.
- 3. $P(x) = x^4 3x^3 + 2x 6 = 0$. Note that P(3) = 0. Use division.
 - Factorization $x^4 3x^3 + 2x 6 = (x 3)(x^3 + 2)$.
 - The solutions are $x = 3, \pm \sqrt[3]{-2}$.
- 4. For the parameter $a \in \mathbb{R}$, $P(x) = x^3 ax^2 2x + 2a = 0$. Note that P(a) = 0. Use division.
 - Factorization $x^3 ax^2 2x + 2a = (x a)(x^2 2)$.
 - The solutions are $x = a, \pm \sqrt{2}$.
- 5. For the parameter $a \in \mathbb{R}$, $P(x) = x^3 ax^2 2x + 2a = 0$. Note that P(a) = 0. Use division.
 - Factorization $x^3 ax^2 ax + a^2 = (x a)(x^2 a)$.
 - The solutions are x = a always, if $a \ge 0$ also $\pm \sqrt{a}$.

4 Proposed exercises

Solutions will be given in the next installment of these notes. Regrouping will be more difficult here. Use of the root rule and Ruffini is recommended.

1.
$$x^{3}2 - 1 = 0$$

2. $x^{8} - 4 = 0$
3. $x^{3} + (1 - a)x^{2} - (a + 6)x + 6a = 0$
4. $2x^{3} - 17x^{2} + 38x - 15 = 0$
5. $3x^{4} - 22x^{3} - 2x^{2} + 66x - 21 = 0$
6. $x^{3} - 17x^{2} + 92x - 160 = 0$
7. $x^{6} - 12x^{4} + 47x^{2} - 60 = 0$
8. $x^{3} - xa^{2} - 2xab - xb^{2} - x^{2} + a^{2} + 2ab + b^{2} = 0$
9. $x^{3} + 3x^{2}y + 3xy^{2} + y^{3} - 2x^{2} - 4xy - 2y^{2} - x - y + 2 = 0$. Hint: try to detect powers.